- Home
- A-Z Publications
- Annual Review of Analytical Chemistry
- Previous Issues
- Volume 12, 2019
Annual Review of Analytical Chemistry - Volume 12, 2019
Volume 12, 2019
-
-
Well-Defined Materials for High-Performance Chromatographic Separation
Yu Liang, Lihua Zhang, and Yukui ZhangVol. 12 (2019), pp. 451–473More LessChromatographic separation has been widely applied in various fields, such as chemical engineering, precision medicine, energy, and biology. Because chromatographic separation is based on differential partitioning between the mobile phase and stationary phase and affected by band dispersion and mass transfer resistance from these two phases, the materials used as the stationary phase play a decisive role in separation performance. In this review, we discuss the design of separation materials to achieve the separation with high efficiency and high resolution and highlight the well-defined materials with uniform pore structure and unique properties. The achievements, recent developments, challenges, and future trends of such materials are discussed. Furthermore, the surface functionalization of separation ma-terials for further improvement of separation performance is reviewed. Finally, future research directions and the challenges of chromatographic separation are presented.
-
-
-
Separation Phenomena in Tailored Micro- and Nanofluidic Environments
Vol. 12 (2019), pp. 475–500More LessSeparations of bioanalytes require robust, effective, and selective migration phenomena. However, due to the complexity of biological matrices such as body fluids or tissue, these requirements are difficult to achieve. The separations field is thus constantly evolving to develop suitable methods to separate biomarkers and fractionate biospecimens for further interrogation of biomolecular content. Advances in the field of microfabrication allow the tailored generation of micro- and nanofluidic environments. These can be exploited to induce interactions and dynamics of biological species with the corresponding geometrical features, which in turn can be capitalized for novel separation approaches. This review provides an overview of several unique separation applications demonstrated in recent years in tailored micro- and nanofluidic environments. These include electrokinetic methods such as dielectrophoresis and electrophoresis, but also rather nonintuitive ratchet separation mechanisms, continuous flow separations, and fractionations such as deterministic lateral displacement, as well as methods employing entropic forces for separation.
-
-
-
Solving the Structure and Dynamics of Metal Nanoparticles by Combining X-Ray Absorption Fine Structure Spectroscopy and Atomistic Structure Simulations
Vol. 12 (2019), pp. 501–522More LessExtended X-ray absorption fine structure (EXAFS) spectroscopy is a premiere method for analysis of the structure and structural transformation of nanoparticles. Extraction of analytical information about the three-dimensional structure and dynamics of metal–metal bonds from EXAFS spectra requires special care due to their markedly non-bulk-like character. In recent decades, significant progress has been made in the first-principles modeling of structure and properties of nanoparticles. In this review, we summarize new approaches for EXAFS data analysis that incorporate particle structure modeling into the process of structural refinement.
-
-
-
Imaging and Analytics on the Helium Ion Microscope
Vol. 12 (2019), pp. 523–543More LessThe helium ion microscope (HIM) has emerged as an instrument of choice for patterning, imaging and, more recently, analytics at the nanoscale. Here, we review secondary electron imaging on the HIM and the various methodologies and hardware components that have been developed to confer analytical capabilities to the HIM. Secondary electron–based imaging can be performed at resolutions down to 0.5 nm with high contrast, with high depth of field, and directly on insulating samples. Analytical methods include secondary electron hyperspectral imaging (SEHI), scanning transmission ion microscopy (STIM), backscattering spectrometry and, in particular, secondary ion mass spectrometry (SIMS). The SIMS system that was specifically designed for the HIM allows the detection of all elements, the differentiation between isotopes, and the detection of trace elements. It provides mass spectra, depth profiles, and 2D or 3D images with lateral resolutions down to 10 nm.
-