1932

Abstract

Extended X-ray absorption fine structure (EXAFS) spectroscopy is a premiere method for analysis of the structure and structural transformation of nanoparticles. Extraction of analytical information about the three-dimensional structure and dynamics of metal–metal bonds from EXAFS spectra requires special care due to their markedly non-bulk-like character. In recent decades, significant progress has been made in the first-principles modeling of structure and properties of nanoparticles. In this review, we summarize new approaches for EXAFS data analysis that incorporate particle structure modeling into the process of structural refinement.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-114929
2019-06-12
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061318-114929.html?itemId=/content/journals/10.1146/annurev-anchem-061318-114929&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Mostafa S, Behafarid F, Croy JR, Ono LK, Li L et al. 2010. Shape-dependent catalytic properties of Pt nanoparticles. J. Am. Chem. Soc. 132:15714–19
    [Google Scholar]
  2. 2.
    Guliamov O, Frenkel AI, Menard LD, Nuzzo RG, Kronik L 2007. Tangential ligand-induced strain in icosahedral Au13. J. Am. Chem. Soc. 129:10978–79
    [Google Scholar]
  3. 3.
    Zhang L, Henkelman G. 2014. Computational design of alloy-core@shell metal nanoparticle catalysts. ACS Catal 5:655–60
    [Google Scholar]
  4. 4.
    Choi Y-W, Mistry H, Roldan Cuenya B 2017. New insights into working nanostructured electrocatalysts through operando spectroscopy and microscopy. Curr. Opin. Electrochem. 1:95–103
    [Google Scholar]
  5. 5.
    Behafarid F, Roldan Cuenya B. 2013. Towards the understanding of sintering phenomena at the nanoscale: geometric and environmental effects. Top. Catal. 56:1542–59
    [Google Scholar]
  6. 6.
    Billinge SJL, Levin I. 2007. The problem with determining atomic structure at the nanoscale. Science 316:561–65
    [Google Scholar]
  7. 7.
    Rehr JJ, Albers RC. 2000. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72:621–54
    [Google Scholar]
  8. 8.
    Sayers DE, Stern EA, Lytle FW 1971. New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray–absorption fine structure. Phys. Rev. Lett. 27:1204
    [Google Scholar]
  9. 9.
    Stern E. 1988. Theory of EXAFS. X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES D Koningsberger, R Prins 3–52 New York: John Wiley & Sons
    [Google Scholar]
  10. 10.
    Frenkel AI, Yevick A, Cooper C, Vasic R 2011. Modeling the structure and composition of nanoparticles by extended X-ray absorption fine-structure spectroscopy. Annu. Rev. Anal. Chem. 4:23–39
    [Google Scholar]
  11. 11.
    Frenkel AI. 2012. Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem. Soc. Rev. 41:8163–78
    [Google Scholar]
  12. 12.
    Sinfelt J, Via G, Lytle F 1984. Application of EXAFS in catalysis. Structure of bimetallic cluster catalysts. Catal. Rev. Sci. Eng. 26:81–140
    [Google Scholar]
  13. 13.
    Yevick A, Frenkel AI. 2010. Effects of surface disorder on EXAFS modeling of metallic clusters. Phys. Rev. B 81:115451
    [Google Scholar]
  14. 14.
    Hansen LB, Stoltze P, Nørskov JK, Clausen B, Niemann W 1990. Is there a contraction of the interatomic distance in small metal particles. Phys. Rev. Lett. 64:3155
    [Google Scholar]
  15. 15.
    Chill ST, Anderson RM, Yancey DF, Frenkel AI, Crooks RM, Henkelman G 2015. Probing the limits of conventional extended X-ray absorption fine structure analysis using thiolated gold nanoparticles. ACS Nano 9:4036–42
    [Google Scholar]
  16. 16.
    Stern EA, Ma Y, Hanske-Petitpierre O, Bouldin CE 1992. Radial distribution function in X-ray-absorption fine structure. Phys. Rev. B 46:687–94
    [Google Scholar]
  17. 17.
    Prasai B, Wilson A, Wiley B, Ren Y, Petkov V 2015. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments. Nanoscale 7:17902–22
    [Google Scholar]
  18. 18.
    Yancey DF, Chill ST, Zhang L, Frenkel AI, Henkelman G, Crooks RM 2013. A theoretical and experimental examination of systematic ligand-induced disorder in Au dendrimer-encapsulated nanoparticles. Chem. Sci. 4:2912–21
    [Google Scholar]
  19. 19.
    Anderson RM, Yancey DF, Zhang L, Chill ST, Henkelman G, Crooks RM 2015. A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity. Acc. Chem. Res. 48:1351–57
    [Google Scholar]
  20. 20.
    Anderson RM, Zhang L, Loussaert JA, Frenkel AI, Henkelman G, Crooks RM 2013. An experimental and theoretical investigation of the inversion of Pd@Pt core@shell dendrimer-encapsulated nanoparticles. ACS Nano 7:9345–53
    [Google Scholar]
  21. 21.
    Di Cicco A, Minicucci M, Principi E, Witkowska A, Rybicki J, Laskowski R 2002. Testing interaction models by using X-ray absorption spectroscopy: solid Pb. J. Phys. Condens. Matter 14:3365
    [Google Scholar]
  22. 22.
    Roscioni OM, Zonias N, Price SW, Russell AE, Comaschi T, Skylaris C-K 2011. Computational prediction of L3 EXAFS spectra of gold nanoparticles from classical molecular dynamics simulations. Phys. Rev. B 83:115409
    [Google Scholar]
  23. 23.
    Price SW, Zonias N, Skylaris C-K, Hyde TI, Ravel B, Russell AE 2012. Fitting EXAFS data using molecular dynamics outputs and a histogram approach. Phys. Rev. B 85:075439
    [Google Scholar]
  24. 24.
    Gurman S, McGreevy R. 1990. Reverse Monte Carlo simulation for the analysis of EXAFS data. J. Phys. Condens. Matter 2:9463
    [Google Scholar]
  25. 25.
    Timoshenko J, Kuzmin A, Purans J 2014. EXAFS study of hydrogen intercalation into ReO3 using the evolutionary algorithm. J. Phys. Condens. Matter 26:055401
    [Google Scholar]
  26. 26.
    Timoshenko J, Frenkel AI. 2017. Probing structural relaxation in nanosized catalysts by combining EXAFS and reverse Monte Carlo methods. Catal. Today 280:274–82
    [Google Scholar]
  27. 27.
    Opletal G, Petersen T, O'Malley B, Snook I, McCulloch DG et al. 2002. Hybrid approach for generating realistic amorphous carbon structure using metropolis and reverse Monte Carlo. Mol. Simul. 28:927–38
    [Google Scholar]
  28. 28.
    Timoshenko J, Anspoks A, Kalinko A, Kuzmin A 2015. Local structure of nanosized tungstates revealed by evolutionary algorithm. Phys. Status Solidi A 212:265–73
    [Google Scholar]
  29. 29.
    Kompch A, Sahu A, Notthoff C, Ott F, Norris DJ, Winterer M 2015. Localization of Ag dopant atoms in CdSe nanocrystals by reverse Monte Carlo analysis of EXAFS spectra. J. Phys. Chem. C 119:18762–72
    [Google Scholar]
  30. 30.
    Merrill NA, McKee EM, Merino KC, Drummy LF, Lee S et al. 2015. Identifying the atomic-level effects of metal composition on the structure and catalytic activity of peptide-templated materials. ACS Nano 9:11968–79
    [Google Scholar]
  31. 31.
    Timoshenko J, Shivhare A, Scott RWJ, Lu DY, Frenkel AI 2016. Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure. Phys. Chem. Chem. Phys. 18:19621–30
    [Google Scholar]
  32. 32.
    Duan Z, Li Y, Timoshenko J, Chill ST, Anderson RM et al. 2016. A combined theoretical and experimental EXAFS study of the structure and dynamics of Au147 nanoparticles. Catal. Sci. Technol. 6:6879–85
    [Google Scholar]
  33. 33.
    Vila FD, Hayashi ST, Moore JM, Rehr JJ 2016. Molecular dynamics simulations of supported Pt nanoparticles with a hybrid Sutton–Chen potential. J. Phys. Chem. C 120:14883–91
    [Google Scholar]
  34. 34.
    Avakyan L, Srabionyan V, Pryadchenko V, Bulat N, Bugaev L 2016. Construction of three-dimensional models of bimetallic nanoparticles based on X-ray absorption spectroscopy data. Opt. Spectrosc. 120:926–32
    [Google Scholar]
  35. 35.
    Jonane I, Lazdins K, Timoshenko J, Kuzmin A, Purans J et al. 2016. Temperature-dependent EXAFS study of the local structure and lattice dynamics in cubic Y2O3. J. Synchrotron Radiat. 23:510–18
    [Google Scholar]
  36. 36.
    Bedford NM, Showalter AR, Woehl TJ, Hughes ZE, Lee S et al. 2016. Peptide-directed PdAu nanoscale surface segregation: toward controlled bimetallic architecture for catalytic materials. ACS Nano 10:8645–59
    [Google Scholar]
  37. 37.
    Bugaev AL, Guda AA, Lazzarini A, Lomachenko KA, Groppo E et al. 2017. In situ formation of hydrides and carbides in palladium catalyst: when XANES is better than EXAFS and XRD. Catal. Today 283:119–26
    [Google Scholar]
  38. 38.
    House SD, Bonifacio CS, Timoshenko J, Kunal P, Wan H et al. 2017. Computationally assisted STEM and EXAFS characterization of tunable Rh/Au and Rh/Ag bimetallic nanoparticle catalysts. Microsc. Microanal. 23:2030–31
    [Google Scholar]
  39. 39.
    Timoshenko J, Keller KR, Frenkel AI 2017. Determination of bimetallic architectures in nanometer-scale catalysts by combining molecular dynamics simulations with X-ray absorption spectroscopy. J. Chem. Phys. 146:114201
    [Google Scholar]
  40. 40.
    Timoshenko J, Lu D, Lin Y, Frenkel AI 2017. Supervised machine learning-based determination of three-dimensional structure of metallic nanoparticles. J. Phys. Chem. Lett. 23:510–18
    [Google Scholar]
  41. 41.
    Duan Z, Timoshenko J, Kunal P, House SD, Wan H et al. 2018. Structural characterization on heterogeneous RhAu nanoparticles from a microwave-assisted synthesis. Nanoscale 10:22520–32
    [Google Scholar]
  42. 42.
    Vila FD, Rehr JJ, Nuzzo RG, Frenkel AI 2017. Anomalous structural disorder in supported Pt nanoparticles. J. Phys. Chem. Lett. 8:3284–88
    [Google Scholar]
  43. 43.
    Luo L, Timoshenko J, Lapp AS, Frenkel AI, Crooks RM 2017. Structural characterization of Rh and RhAu dendrimer-encapsulated nanoparticles. Langmuir 33:12434–42
    [Google Scholar]
  44. 44.
    Lapp AS, Duan Z, Marcella N, Luo L, Genc A et al. 2018. Experimental and theoretical structural investigation of AuPt nanoparticles synthesized using a direct electrochemical method. J. Am. Chem. Soc. 140:6249–59
    [Google Scholar]
  45. 45.
    Di Cicco A, Iesari F, Trapananti A, D'Angelo P, Filipponi A 2018. Structure and atomic correlations in molecular systems probed by XAS reverse Monte Carlo refinement. J. Chem. Phys. 148:094307
    [Google Scholar]
  46. 46.
    Ankudinov AL, Ravel B, Rehr JJ, Conradson SD 1998. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 58:7565–76
    [Google Scholar]
  47. 47.
    Frenkel AI. 1999. Solving the structure of nanoparticles by multiple-scattering EXAFS analysis. J. Synchrotron Radiat. 6:293–95
    [Google Scholar]
  48. 48.
    Frenkel A. 2007. Solving the 3D structure of metal nanoparticles. Z. Kristallogr. 222:605–11
    [Google Scholar]
  49. 49.
    Huang W, Sun R, Tao J, Menard L, Nuzzo R, Zuo J 2008. Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat. Mater. 7:308–13
    [Google Scholar]
  50. 50.
    Lei Y, Zhao H, Rivas RD, Lee S, Liu B et al. 2014. Adsorbate-induced structural changes in 1–3 nm platinum nanoparticles. J. Am. Chem. Soc. 136:9320–26
    [Google Scholar]
  51. 51.
    Petkov V, Prasai B, Ren Y, Shan S, Luo J et al. 2014. Solving the nanostructure problem: exemplified on metallic alloy nanoparticles. Nanoscale 6:10048–61
    [Google Scholar]
  52. 52.
    Clausen BS, Nørskov JK. 2000. Asymmetric pair distribution functions in catalysts. Top. Catal. 10:221–30
    [Google Scholar]
  53. 53.
    Clausen BS, Topsøe H, Hansen LB, Stoltze P, Nørskov JK 1993. The effect of anharmonicity on the EXAFS coordination number in small metallic particles. Jpn. J. Appl. Phys. 32:95
    [Google Scholar]
  54. 54.
    Clausen B, Topsøe H, Hansen L, Stoltze P, Nørskov J 1994. Determination of metal particle sizes from EXAFS. Catal. Today 21:49–55
    [Google Scholar]
  55. 55.
    Clausen B, Grabaek L, Topsøe H, Hansen L, Stoltze P et al. 1993. A new procedure for particle size determination by EXAFS based on molecular dynamics simulations. J. Catal. 141:368–79
    [Google Scholar]
  56. 56.
    Mierzwa B. 2004. EXAFS as a tool for studies of bimetallic PdCo nanocluster structure. J. Alloys Compd. 362:178–88
    [Google Scholar]
  57. 57.
    Mierzwa B. 2005. EXAFS studies of bimetallic palladium–cobalt nanoclusters using Molecular Dynamics simulations. J. Alloys Compd. 401:127–34
    [Google Scholar]
  58. 58.
    Frenkel A, Rehr J. 1993. Thermal expansion and X-ray-absorption fine-structure cumulants. Phys. Rev. B 48:585
    [Google Scholar]
  59. 59.
    Dalba G, Fornasini P. 1997. EXAFS Debye–Waller factor and thermal vibrations of crystals. J. Synchrotron Radiat. 4:243–55
    [Google Scholar]
  60. 60.
    Witkowska A, Di Cicco A, Principi E 2007. Local ordering of nanostructured Pt probed by multiple-scattering XAFS. Phys. Rev. B 76:104110
    [Google Scholar]
  61. 61.
    Filipponi A. 2001. EXAFS for liquids. J. Phys. Condens. Matter 13:R23
    [Google Scholar]
  62. 62.
    Gilbert B, Zhang H, Huang F, Banfield JF, Ren Y et al. 2004. Analysis and simulation of the structure of nanoparticles that undergo a surface-driven structural transformation. J. Chem. Phys. 120:11785–95
    [Google Scholar]
  63. 63.
    Crozier ED, Rehr JJ, Ingalls R 1988. Amorphous and liquid systems. X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES D Koningsberger, R Prins 373–442 New York: John Wiley & Sons
    [Google Scholar]
  64. 64.
    Kuzmin A, Chaboy J. 2014. EXAFS and XANES analysis of oxides at the nanoscale. IUCrJ 1:571–89
    [Google Scholar]
  65. 65.
    Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C 2013. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem. Rev. 113:1736–850
    [Google Scholar]
  66. 66.
    Frenkel A, Stern E, Voronel A, Qian M, Newville M 1993. Buckled crystalline structure of mixed ionic salts. Phys. Rev. Lett. 71:3485
    [Google Scholar]
  67. 67.
    Teo BK. 1986. Data analysis in practice. EXAFS: Basic Principles and Data Analysis BK Teo 114–57 Berlin/Heidelberg: Springer
    [Google Scholar]
  68. 68.
    Kuzmin A, Purans J. 1993. The influence of the focusing effect on the X-ray absorption fine structure above all the tungsten L edges in non-stoichiometric tungsten oxides. J. Phys. Condens. Matter 5:9423
    [Google Scholar]
  69. 69.
    Glasner D, Frenkel AI. 2007. Geometrical characteristics of regular polyhedra: application to EXAFS studies of nanoclusters. AIP Conf. Proc. 882:746–48
    [Google Scholar]
  70. 70.
    Frenkel AI, Frankel SC, Liu T 2005. Structural stability of giant polyoxomolybdate molecules as probed by EXAFS. Phys. Scr. 2005:721
    [Google Scholar]
  71. 71.
    Agostini G, Piovano A, Bertinetti L, Pellegrini R, Leofanti G et al. 2014. Effect of different face centered cubic nanoparticle distributions on particle size and surface area determination: a theoretical study. J. Phys. Chem. C 118:4085–94
    [Google Scholar]
  72. 72.
    Foster D, Ferrando R, Palmer R 2018. Experimental determination of the energy difference between competing isomers of deposited, size-selected gold nanoclusters. Nat. Commun. 9:1323
    [Google Scholar]
  73. 73.
    Li Y, Zakharov D, Zhao S, Tappero R, Jung U et al. 2015. Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes. Nat. Commun. 6:7583
    [Google Scholar]
  74. 74.
    Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM 2011. Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem. Sci. 2:1632–46
    [Google Scholar]
  75. 75.
    Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK 2001. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 34:181–90
    [Google Scholar]
  76. 76.
    Niu Y, Crooks RM. 2003. Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. Comptes Rendus Chim 6:1049–59
    [Google Scholar]
  77. 77.
    Roldan Cuenya B, Croy JR, Mostafa S, Behafarid F, Li L et al. 2010. Solving the structure of size-selected Pt nanocatalysts synthesized by inverse micelle encapsulation. J. Am. Chem. Soc. 132:8747–56
    [Google Scholar]
  78. 78.
    Jakhmola A, Bhandari R, Pacardo DB, Knecht MR 2010. Peptide template effects for the synthesis and catalytic application of Pd nanoparticle networks. J. Mater. Chem. 20:1522–31
    [Google Scholar]
  79. 79.
    Nykypanchuk D, Maye MM, Van Der Lelie D, Gang O 2008. DNA-guided crystallization of colloidal nanoparticles. Nature 451:549–52
    [Google Scholar]
  80. 80.
    McGreevy R, Pusztai L. 1988. Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol. Simul. 1:359–67
    [Google Scholar]
  81. 81.
    McGreevy RL. 2001. Reverse Monte Carlo modelling. J. Phys. Condens. Matter 13:R877
    [Google Scholar]
  82. 82.
    Tupy SA, Karim AM, Bagia C, Deng W, Huang Y et al. 2012. Correlating ethylene glycol reforming activity with in situ EXAFS detection of Ni segregation in supported NiPt bimetallic catalysts. ACS Catal 2:2290–96
    [Google Scholar]
  83. 83.
    Timoshenko J, Kuzmin A, Purans J 2012. Reverse Monte Carlo modeling of thermal disorder in crystalline materials from EXAFS spectra. Comp. Phys. Commun. 183:1237–45
    [Google Scholar]
  84. 84.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21:1087–92
    [Google Scholar]
  85. 85.
    Timoshenko J, Anspoks A, Kalinko A, Kuzmin A 2017. Thermal disorder and correlation effects in anti-perovskite-type copper nitride. Acta Mater 129:61–71
    [Google Scholar]
  86. 86.
    McGreevy R, Howe M. 1992. RMC: modeling disordered structures. Annu. Rev. Mater. Sci. 22:217–42
    [Google Scholar]
  87. 87.
    Tucker MG, Keen DA, Dove MT, Goodwin AL, Hui Q 2007. RMCProfile: reverse Monte Carlo for polycrystalline materials. J. Phys. Condens. Matter 19:335218
    [Google Scholar]
  88. 88.
    Pethes I, Pusztai L. 2017. Reverse Monte Carlo modeling of liquid water with the explicit use of the SPC/E interatomic potential. J. Chem. Phys. 146:064506
    [Google Scholar]
  89. 89.
    Di Cicco A, Trapananti A 2005. Reverse Monte Carlo refinement of molecular and condensed systems by X-ray absorption spectroscopy. J. Phys. Condens. Matter 17:S135
    [Google Scholar]
  90. 90.
    Sestu M, Navarra G, Carrero S, Valvidares S, Aquilanti G et al. 2017. Whole-nanoparticle atomistic modeling of the schwertmannite structure from total scattering data. J. Appl. Crystallogr. 50:1617–26
    [Google Scholar]
  91. 91.
    Kirkpatrick S, Gelatt CD, Vecchi MP 1983. Optimization by simulated annealing. Science 220:671–80
    [Google Scholar]
  92. 92.
    Ferrando R. 2012. Computational methods for predicting the structures of nanoalloys. Nanoalloys D Alloyeau, C Mottet, C Ricolleau 259–86 London: Springer
    [Google Scholar]
  93. 93.
    Ferrando R, Jellinek J, Johnston RL 2008. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108:845–910
    [Google Scholar]
  94. 94.
    Wales DJ, Scheraga HA. 1999. Global optimization of clusters, crystals, and biomolecules. Science 285:1368–72
    [Google Scholar]
  95. 95.
    Yu W-Y, Zhang L, Mullen GM, Evans EJ, Henkelman G, Mullins CB 2015. Effect of annealing in oxygen on alloy structures of Pd–Au bimetallic model catalysts. Phys. Chem. Chem. Phys. 17:20588–96
    [Google Scholar]
  96. 96.
    Holland JH. 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence Cambridge, MA: MIT Press
    [Google Scholar]
  97. 97.
    Wang L-L, Johnson D. 2007. Shear instabilities in metallic nanoparticles: hydrogen-stabilized structure of Pt37 on carbon. J. Am. Chem. Soc. 129:3658–64
    [Google Scholar]
  98. 98.
    Wang L-L, Khare SV, Chirita V, Johnson DD, Rockett AA et al. 2006. Origin of bulklike structure and bond length disorder of Pt37 and Pt6Ru31 clusters on carbon: comparison of theory and experiment. J. Am. Chem. Soc. 128:131–42
    [Google Scholar]
  99. 99.
    Kang JH, Menard LD, Nuzzo RG, Frenkel AI 2006. Unusual non-bulk properties in nanoscale materials: thermal metal–metal bond contraction of γ-alumina-supported Pt catalysts. J. Am. Chem. Soc. 128:12068–69
    [Google Scholar]
  100. 100.
    Bromley S, Sankar G, Catlow C, Maschmeyer T, Johnson B, Thomas J 2001. New insights into the structure of supported bimetallic nanocluster catalysts prepared from carbonylated precursors: a combined density functional theory and EXAFS study. Chem. Phys. Lett. 340:524–30
    [Google Scholar]
  101. 101.
    Mora-Fonz D, Lazauskas T, Woodley SM, Bromley ST, Catlow CRA, Sokol AA 2017. Development of interatomic potentials for supported nanoparticles: the Cu/ZnO case. J. Phys. Chem. C 121:16831–44
    [Google Scholar]
  102. 102.
    Shao G-F, Tu N-N, Liu T-D, Xu L-Y, Wen Y-H 2015. Structural studies of Au–Pd bimetallic nanoparticles by a genetic algorithm method. Phys. E Low-Dimens. Syst. Nanostructures 70:11–20
    [Google Scholar]
  103. 103.
    Pittaway F, Paz-Borbón LO, Johnston RL, Arslan H, Ferrando R et al. 2009. Theoretical studies of palladium−gold nanoclusters: Pd−Au clusters with up to 50 atoms. J. Phys. Chem. C 113:9141–52
    [Google Scholar]
  104. 104.
    Vila FD, Rehr J, Rossner H, Krappe H 2007. Theoretical X-ray absorption Debye-Waller factors. Phys. Rev. B 76:014301
    [Google Scholar]
  105. 105.
    Berne BJ, Thirumalai D. 1986. On the simulation of quantum systems: path integral methods. Annu. Rev. Phys. Chem. 37:401–24
    [Google Scholar]
  106. 106.
    Beccara S, Dalba G, Fornasini P, Grisenti R, Pederiva F et al. 2003. Local thermal expansion in copper: extended X-ray-absorption fine-structure measurements and path-integral Monte Carlo calculations. Phys. Rev. B 68:140301
    [Google Scholar]
  107. 107.
    Hayes T, Boyce J. 1980. EXAFS as a probe of atom-atom interaction potentials: AgI and CuI. J. Phys. C Solid State Phys. 13:L731
    [Google Scholar]
  108. 108.
    Aksoy Akgul F, Akgul G, Kurban M 2016. Microstructural properties and local atomic structures of cobalt oxide nanoparticles synthesised by mechanical ball-milling process. Philos. Mag. 96:3211–26
    [Google Scholar]
  109. 109.
    Hu XL, Piccinin S, Laio A, Fabris S 2012. Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation. ACS Nano 6:10497–504
    [Google Scholar]
  110. 110.
    Rehr J, Vila F. 2014. Dynamic structural disorder in supported nanoscale catalysts. J. Chem. Phys. 140:134701
    [Google Scholar]
  111. 111.
    Vila F, Rehr J, Kas J, Nuzzo R, Frenkel A 2008. Dynamic structure in supported Pt nanoclusters: real-time density functional theory and X-ray spectroscopy simulations. Phys. Rev. B 78:121404
    [Google Scholar]
  112. 112.
    Palmer BJ, Pfund DM, Fulton JL 1996. Direct modeling of EXAFS spectra from molecular dynamics simulations. J. Phys. Chem. 100:13393–98
    [Google Scholar]
  113. 113.
    Sutton A, Chen J. 1990. Long-range Finnis–Sinclair potentials. Philos. Mag. Lett. 61:139–46
    [Google Scholar]
  114. 114.
    Wen Y, Fang H, Zhu Z, Sun S 2009. Molecular dynamics investigation of shape effects on thermal characteristics of platinum nanoparticles. Phys. Lett. A 373:272–76
    [Google Scholar]
  115. 115.
    Timoshenko J, Kuzmin A, Purans J 2011. Molecular dynamics simulations of EXAFS in germanium. Cent. Eur. J. Phys. 9:710–15
    [Google Scholar]
  116. 116.
    Price SW, Zonias N, Skylaris C-K, Russell AE, Ravel B 2013. The application of molecular dynamics to fitting EXAFS data. J. Phys. Conf. Ser. 430:0120009
    [Google Scholar]
  117. 117.
    Binsted N, Edwards A, Evans J, Weller M 2005. The mean square variation of multiple scattering path length by molecular dynamics simulation. Phys. Scr. 2005:155
    [Google Scholar]
  118. 118.
    Karolewski M, Cavell R, Gordon R, Glover C, Cheah M, Ridgway MC 2013. Predicting XAFS scattering path cumulants and XAFS spectra for metals (Cu, Ni, Fe, Ti, Au) using molecular dynamics simulations. J. Synchrotron Radiat. 20:555–66
    [Google Scholar]
  119. 119.
    Timoshenko J, Anspoks A, Cintins A, Kuzmin A, Purans J, Frenkel AI 2018. Neural network approach for characterizing structural transformations by X-ray absorption fine structure spectroscopy. Phys. Rev. Lett. 120:225502
    [Google Scholar]
  120. 120.
    Timoshenko J, Wrasman CJ, Luneau M, Shirman T, Cargnello M et al. 2018. Probing atomic distributions in mono- and bimetallic nanoparticles by supervised machine learning. Nano Lett 19:520–29
    [Google Scholar]
  121. 121.
    Kuzmin A, Evarestov R. 2009. Quantum mechanics–molecular dynamics approach to the interpretation of X-ray absorption spectra. J. Phys. Condens. Matter 21:055401
    [Google Scholar]
  122. 122.
    Anspoks A, Kalinko A, Kalendarev R, Kuzmin A 2012. Atomic structure relaxation in nanocrystalline NiO studied by EXAFS spectroscopy: role of nickel vacancies. Phys. Rev. B 86:174114
    [Google Scholar]
  123. 123.
    Anspoks A, Kuzmin A. 2011. Interpretation of the Ni K-edge EXAFS in nanocrystalline nickel oxide using molecular dynamics simulations. J. Non-Cryst. Solids 357:2604–10
    [Google Scholar]
  124. 124.
    Anspoks A, Kalinko A, Kalendarev R, Kuzmin A 2013. Probing vacancies in NiO nanoparticles by EXAFS and molecular dynamics simulations. J. Phys. Conf. Ser. 430:012027
    [Google Scholar]
  125. 125.
    Anspoks A, Kuzmin A, Kalinko A, Timoshenko J 2010. Probing NiO nanocrystals by EXAFS spectroscopy. Solid State Commun 150:2270–74
    [Google Scholar]
  126. 126.
    Oliver P, Watson G, Parker S 1995. Molecular-dynamics simulations of nickel oxide surfaces. Phys. Rev. B 52:5323–29
    [Google Scholar]
  127. 127.
    Rousseau R, Schenter GK, Fulton JL, Linehan JC, Engelhard MH, Autrey T 2009. Defining active catalyst structure and reaction pathways from ab initio molecular dynamics and operando XAFS: dehydrogenation of dimethylaminoborane by rhodium clusters. J. Am. Chem. Soc. 131:10516–24
    [Google Scholar]
  128. 128.
    Chen Z, Duan Z, Wang Z, Liu X, Gu L et al. 2017. Amorphous cobalt oxide nanoparticles as active water oxidation catalysts. ChemCatChem 9:3641–45
    [Google Scholar]
  129. 129.
    Narayan O, Young AP. 2001. Convergence of Monte Carlo simulations to equilibrium. Phys. Rev. E 64:021104
    [Google Scholar]
  130. 130.
    Hansen PL, Molenbroek AM, Ruban AV 1997. Alloy formation and surface segregation in zeolite-supported Pt−Pd bimetallic catalysts. J. Phys. Chem. B 101:1861–68
    [Google Scholar]
  131. 131.
    Molenbroek AM, Nørskov JK, Clausen BS 2001. Structure and reactivity of Ni−Au nanoparticle catalysts. J. Phys. Chem. B 105:5450–58
    [Google Scholar]
  132. 132.
    Rehr J, Ankudinov A. 2005. Progress in the theory and interpretation of XANES. Coord. Chem. Rev. 249:131–40
    [Google Scholar]
  133. 133.
    Small MW, Sanchez SI, Marinkovic NS, Frenkel AI, Nuzzo RG 2012. Influence of adsorbates on the electronic structure, bond strain, and thermal properties of an alumina-supported Pt catalyst. ACS Nano 6:5583–95
    [Google Scholar]
  134. 134.
    Behafarid F, Ono L, Mostafa S, Croy J, Shafai G et al. 2012. Electronic properties and charge transfer phenomena in Pt nanoparticles on γ-Al2O3: size, shape, support, and adsorbate effects. Phys. Chem. Chem. Phys. 14:11766–79
    [Google Scholar]
  135. 135.
    Mazalova V, Soldatov A, Adam S, Yakovlev A, Möller T, Johnston R 2009. Small copper clusters in Ar shells: a study of local structure. J. Phys. Chem. C 113:9086–91
    [Google Scholar]
  136. 136.
    Gorczyca A, Moizan V, Chizallet C, Proux O, Del Net W et al. 2014. Monitoring morphology and hydrogen coverage of nanometric Pt/γ‐Al2O3 particles by in situ HERFD–XANES and quantum simulations. Angew. Chem. 126:12634–37
    [Google Scholar]
  137. 137.
    Vila FD, Rehr JJ, Kelly SD, Bare SR 2013. Operando effects on the structure and dynamics of PtnSnm/γ-Al2O3 from ab initio molecular dynamics and X-ray absorption spectra. J. Phys. Chem. C 117:12446–57
    [Google Scholar]
  138. 138.
    Naicker PK, Cummings PT, Zhang H, Banfield JF 2005. Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. J. Phys. Chem. B 109:15243–49
    [Google Scholar]
  139. 139.
    Yamamoto T, Kobayashi H, Kumara LSR, Sakata O, Nitta K et al. 2017. Disappearance of the superionic phase transition in sub-5 nm silver iodide nanoparticles. Nano Lett 17:5273–76
    [Google Scholar]
  140. 140.
    Petkov V, Hessel CM, Ovtchinnikoff J, Guillaussier A, Korgel BA et al. 2013. Structure–properties correlation in Si nanoparticles by total scattering and computer simulations. Chem. Mater. 25:2365–71
    [Google Scholar]
  141. 141.
    Gereben O, Petkov V. 2013. Reverse Monte Carlo study of spherical sample under non-periodic boundary conditions: the structure of Ru nanoparticles based on X-ray diffraction data. J. Phys. Condens. Matter 25:454211
    [Google Scholar]
  142. 142.
    Petkov V, Prasai B, Shastri S, Kim J-W, Shan S et al. 2017. Surface atomic structure and functionality of metallic nanoparticles: a case study of Au–Pd nanoalloy catalysts. J. Phys. Chem. C 121:7854–66
    [Google Scholar]
  143. 143.
    Petkov V, Prasai B, Shastri S, Park H-U, Kwon Y-U, Skumryev V 2017. Ensemble averaged structure–function relationship for nanocrystals: effective superparamagnetic Fe clusters with catalytically active Pt skin. Nanoscale 9:15505–14
    [Google Scholar]
  144. 144.
    Mejía-Rosales SJ, Fernández-Navarro C, Pérez-Tijerina E, Blom DA, Allard LF, José-Yacamán M 2007. On the structure of Au/Pd bimetallic nanoparticles. J. Phys. Chem. C 111:1256–60
    [Google Scholar]
  145. 145.
    Krayzman V, Levin I. 2012. Reverse Monte Carlo refinements of nanoscale atomic correlations using powder and single-crystal diffraction data. J. Appl. Crystallogr. 45:106–12
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-114929
Loading
/content/journals/10.1146/annurev-anchem-061318-114929
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error