1932

Abstract

The helium ion microscope (HIM) has emerged as an instrument of choice for patterning, imaging and, more recently, analytics at the nanoscale. Here, we review secondary electron imaging on the HIM and the various methodologies and hardware components that have been developed to confer analytical capabilities to the HIM. Secondary electron–based imaging can be performed at resolutions down to 0.5 nm with high contrast, with high depth of field, and directly on insulating samples. Analytical methods include secondary electron hyperspectral imaging (SEHI), scanning transmission ion microscopy (STIM), backscattering spectrometry and, in particular, secondary ion mass spectrometry (SIMS). The SIMS system that was specifically designed for the HIM allows the detection of all elements, the differentiation between isotopes, and the detection of trace elements. It provides mass spectra, depth profiles, and 2D or 3D images with lateral resolutions down to 10 nm.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-115457
2019-06-12
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061318-115457.html?itemId=/content/journals/10.1146/annurev-anchem-061318-115457&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ward BW, Notte JA, Economou NP 2006. Helium ion microscope: a new tool for nanoscale microscopy and metrology. J. Vac. Sci. Technol. B 24:62871–74
    [Google Scholar]
  2. 2.
    Hill R, Notte J, Ward B 2008. The ALIS He ion source and its application to high resolution microscopy. Phys. Proc. 1:135–41
    [Google Scholar]
  3. 3.
    Scipioni L, Stern LA, Notte J, Sijbrandij S, Griffin B 2008. Helium ion microscope. Adv. Mater. Process. 166:627–30
    [Google Scholar]
  4. 4.
    Notte J, Hill R, McVey S, Farkas L, Percival R, Ward B 2006. An introduction to helium ion microscopy. Microsc. Microanal. 12:S02126–27
    [Google Scholar]
  5. 5.
    Rahman FHM, McVey S, Farkas L, Notte JA, Tan S, Livengood RH 2012. The prospects of a subnanometer focused neon ion beam. Scanning 34:2129–34
    [Google Scholar]
  6. 6.
    Fox D, Zhou YB, O'Neill A, Kumar S, Wang JJ et al. 2013. Helium ion microscopy of graphene: beam damage, image quality and edge contrast. Nanotechnology 24:335702
    [Google Scholar]
  7. 7.
    Bazargan S, Heinig NF, Rios JF, Leung KT Electronic transport in tin(IV) oxide nanocrystalline films: two-medium transport with three-dimensional variable-range hopping mechanism for the ultrasmall nanocrystallite size regime. J. Phys. Chem. C 116:84979–85
    [Google Scholar]
  8. 8.
    Vanden Berg-Foels W, Scipioni L, Huynh C, Wen X 2012. Helium ion microscopy for high-resolution visualization of the articular cartilage collagen network. J. Microsc. 246:2168–76
    [Google Scholar]
  9. 9.
    Chen X, Udalagama CNB, Chen CB, Bettiol AA, Pickard DS et al. 2011. Whole-cell imaging at nanometer resolutions using fast and slow focused helium ions. Biophys. J. 101:71788–93
    [Google Scholar]
  10. 10.
    Hlawacek G, Gölzhäuser A, eds. 2016. Helium Ion Microscopy Basel, Switz: Springer Nature
    [Google Scholar]
  11. 11.
    Melli M, Polyakov A, Gargas D, Huynh C, Scipioni L et al. 2013. Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography. Nano Lett 13:62687–91
    [Google Scholar]
  12. 12.
    Sidorkin V, van Veldhoven E, van der Drift E, Alkemade P, Salemink H, Maas D 2009. Sub-10-nm nanolithography with a scanning helium beam. J. Vac. Sci. Technol. B 27:4L18
    [Google Scholar]
  13. 13.
    Belianinov A, Iberi V, Tselev A, Susner MA, McGuire MA et al. 2016. Polarization control via, He-ion beam induced nanofabrication in layered ferroelectric semiconductors. ACS Appl. Mater. Interfaces 8:117349–55
    [Google Scholar]
  14. 14.
    Petrov YV, Vyvenko OF. 2016. Secondary electron generation in the helium ion microscope: basics and imaging. See Ref 10:119–46
    [Google Scholar]
  15. 15.
    Boden SA. 2016. Introduction to imaging techniques in the HIM. See Ref 10:149–72
    [Google Scholar]
  16. 16.
    Ramachandra R, Griffin B, Joy D 2009. A model of secondary electron imaging in the helium ion scanning microscope. Ultramicroscopy 109:6748–57
    [Google Scholar]
  17. 17.
    Morgan J, Notte J, Hill R, Ward B 2006. An introduction to the helium ion microscope. Microsc. Today 24:S02126–27
    [Google Scholar]
  18. 18.
    Scipioni L, Sanford CA, Notte J, Thompson B, McVey S 2009. Understanding imaging modes in the helium ion microscope. J. Vac. Sci. Technol. B 27:3250–55
    [Google Scholar]
  19. 19.
    Mikhailovskii VY, Petrov YV, Vyvenko OF 2015. Energy filtration of secondary and backscattered electrons by the method of the retarding potential in scanning electron and ion microscopy. J. Surf. Investig. 9:196–202
    [Google Scholar]
  20. 20.
    Hlawacek G, Veligura V, Gastel R, Poelsema B 2014. Helium ion microscopy. J. Vac. Sci. Technol. B 32:020801
    [Google Scholar]
  21. 21.
    Joy DC. 2013. Helium Ion Microscopy: Principles and Applications New York: Springer
    [Google Scholar]
  22. 22.
    Maas DJ, Van Gastel R 2013. Helium ion microscopy. Surface Science Techniques G Bracco, B Holst 461–97 Heidelberg, Ger: Springer
    [Google Scholar]
  23. 23.
    Livengood R, Tan S, Greenzweig Y, Notte J, McVey S 2009. Subsurface damage from helium ions as a function of dose, beam energy, and dose rate. J. Vac. Sci. Technol. B 27:63244–49
    [Google Scholar]
  24. 24.
    O'Connell R, Chen Y, Zhang H, Zhou Y, Fox D et al. 2017. Comparative study of image contrast in scanning electron microscope and helium ion microscope. J. Microsc. 268:3313–20
    [Google Scholar]
  25. 25.
    Chee AKW, Boden SA. 2016. Dopant profiling based on scanning electron and helium ion microscopy. Ultramicroscopy 161:51–58
    [Google Scholar]
  26. 26.
    Jepson MAE, Inkson BJ, Liu X, Scipioni L, Rodenburg C 2009. Quantitative dopant contrast in the helium ion microscope. EPL 86:226005
    [Google Scholar]
  27. 27.
    Pöpsel C, Becker J, Jeon N, Döblinger M, Stettner T et al. 2018. He-ion microscopy as a high-resolution probe for complex quantum heterostructures in core-shell nanowires. Nano Lett 18:63911–19
    [Google Scholar]
  28. 28.
    Scipioni L, Ferranti DC, Smentkowski VS, Potyrailo RA 2010. Fabrication and initial characterization of ultrahigh aspect ratio vias in gold using the helium ion microscope. J. Vac. Sci. Technol. B 28:6C6P18–23
    [Google Scholar]
  29. 29.
    Baggott A, Mazaheri M, Zhou Y, Zhang H, Inkson BJ 2018. A comparison of He and Ne FIB imaging of cracks in microindented silicon nitride. Mater. Charact. 141:362–69
    [Google Scholar]
  30. 30.
    Pearson AJ, Boden SA, Bagnall DM, Lidzey DG, Rodenburg C 2011. Imaging the bulk nanoscale morphology of organic solar cell blends using helium ion microscopy. Nano Lett 11:4275–81
    [Google Scholar]
  31. 31.
    Hlawacek G, Jankowski M, Wormeester H, van Gastel R, Zandvliet HJW, Poelsema B 2016. Visualization of steps and surface reconstructions in Helium Ion Microscopy with atomic precision. Ultramicroscopy 162:17–24
    [Google Scholar]
  32. 32.
    Gölzhäuser A. 2016. Helium ion microscopy of carbon nanomembranes. See Ref 10225–44
  33. 33.
    Vieker H, Beyer A. 2016. HIM applications in combustion science: imaging of catalyst surfaces and nascent soot. See Ref 10187–203
  34. 34.
    Schenk M, Lieb S, Vieker H, Beyer A, Gölzhäuser A et al. 2013. Imaging nanocarbon materials: soot particles in flames are not structurally homogeneous. ChemPhysChem 14:143248–54
    [Google Scholar]
  35. 35.
    Schenk M, Hansen H, Vieker H, Beyer A, Gölzhäuser A, Kohse-Höinghaus K 2015. PAH formation and soot morphology in flames of C4 fuels. Proc. Combust. Inst. 35:1761–69
    [Google Scholar]
  36. 36.
    Chiriaev S, Dam Madsen N, Rubahn H-G, Ma Andersen S 2017. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures. AIMS Mater. Sci. 4:61289–1304
    [Google Scholar]
  37. 37.
    Burch MJ, Ievlev AV, Mahady K, Hysmith H, Rack PD et al. 2018. Helium ion microscopy for imaging and quantifying porosity at the nanoscale. Anal. Chem. 90:21370–75
    [Google Scholar]
  38. 38.
    Gölzhäuser A, Hlawacek G. 2016. HIM of biological samples. See Ref 10:173–85
    [Google Scholar]
  39. 39.
    Joens MS, Huynh C, Kasuboski JM, Ferranti D, Sigal YJ et al. 2013. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution. Sci. Rep. 3:3514
    [Google Scholar]
  40. 40.
    Rice WL, Van Hoek AN, Păunescu TG, Huynh C, Goetze B et al. 2013. High resolution helium ion scanning microscopy of the rat kidney. PLOS ONE 8:3e57051
    [Google Scholar]
  41. 41.
    Schürmann M, Frese N, Beyer A, Heimann P, Widera D et al. 2015. Helium ion microscopy visualizes lipid nanodomains in mammalian cells. Small 11:435781–89
    [Google Scholar]
  42. 42.
    Ma X, Hartmann R, Jimenez de Aberasturi D, Yang F, Soenen SJH et al. 2017. Colloidal gold nanoparticles induce changes in cellular and subcellular morphology. ACS Nano 11:7807–20
    [Google Scholar]
  43. 43.
    Tsuji K, Păunescu TG, Suleiman H, Xie D, Mamuya FA et al. 2017. Re-characterization of the glomerulopathy in CD2AP deficient mice by high-resolution helium ion scanning microscopy. Sci. Rep. 7:8321
    [Google Scholar]
  44. 44.
    Tsuji K, Suleiman H, Miner JH, Daley JM, Capen DE et al. 2017. Ultrastructural characterization of the glomerulopathy in Alport mice by helium ion scanning microscopy (HIM). Sci. Rep. 7:11696
    [Google Scholar]
  45. 45.
    Sato C, Sato M, Ogawa S 2018. Imaging of immunogold labeling in cells and tissues by helium ion microscopy. Int. J. Mol. Med. 42:1309–21
    [Google Scholar]
  46. 46.
    Herrera MG, Pizzuto M, Lonez C, Rott K, Hütten A et al. 2018. Large supramolecular structures of 33-mer gliadin peptide activate toll-like receptors in macrophages. Nanomedicine Nanotechnol. Biol. Med. 14:1417–27
    [Google Scholar]
  47. 47.
    De Souza W, Attias M 2018. New advances in scanning microscopy and its application to study parasitic protozoa. Exp. Parasitol. 190:10–33
    [Google Scholar]
  48. 48.
    de Souza W, Attias M 2015. New views of the Toxoplasma gondii parasitophorous vacuole as revealed by Helium Ion Microscopy (HIM). J. Struct. Biol. 191:176–85
    [Google Scholar]
  49. 49.
    Leppänen M, Sundberg L-R, Laanto E, de Freitas Almeida GM, Papponen P, Maasilta IJ 2017. Imaging bacterial colonies and phage-bacterium interaction at sub-nanometer resolution using helium-ion microscopy. Adv. Biosyst. 1:1700070
    [Google Scholar]
  50. 50.
    Boseman A, Nowlin K, Ashraf S, Yang J, LaJeunesse D 2013. Ultrastructural analysis of wild type and mutant Drosophila melanogaster using helium ion microscopy. Micron 51:26–35
    [Google Scholar]
  51. 51.
    Kim K-W. 2012. Helium ion microscopy of uncoated pine leaves. Appl. Microsc. 42:3147–50
    [Google Scholar]
  52. 52.
    Boden SA, Asadollahbaik A, Rutt HN, Bagnall DM 2012. Helium ion microscopy of Lepidoptera scales. Scanning 34:2107–20
    [Google Scholar]
  53. 53.
    Gadelha APR, Benchimol M, de Souza W 2015. Helium ion microscopy and ultra-high-resolution scanning electron microscopy analysis of membrane-extracted cells reveals novel characteristics of the cytoskeleton of Giardia intestinalis. J. Struct. Biol 190:3271–78
    [Google Scholar]
  54. 54.
    Bidlack FB, Huynh C, Marshman J, Goetze B 2014. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix. Front. Physiol. 5:395
    [Google Scholar]
  55. 55.
    Byrne JM, Schmidt M, Gauger T, Bryce C, Kappler A 2018. Imaging organic−mineral aggregates formed by Fe(II)-oxidizing bacteria using helium ion microscopy. Environ. Sci. Technol. Lett. 5:209–13
    [Google Scholar]
  56. 56.
    de Almeida FF, Santos-Silva EN, Ector L, Wetzel CE 2018. Eunotia amazonica sp. nov. (Bacillariophyta), a common stalk-forming species from the Rio Negro basin (Brazilian Amazon). Eur. J. Phycol. 53:2166–79
    [Google Scholar]
  57. 57.
    Valeri S. 1993. Auger electron emission by ion impact on solid surfaces. Surf. Sci. Rep. 17:85–150
    [Google Scholar]
  58. 58.
    Benazeth N, Agusti J, Benazeth C, Mischler J, Viel L 1976. Electronic emission from solid targets bombarded by noble gas ions (10–100 keV): energetic and spatial distributions. Nucl. Instrum. Methods 132:477–82
    [Google Scholar]
  59. 59.
    Polak M. 1995. Ion-excited low-energy Auger electron emission from Ti and TiNi. J. Phys. Condens. Matter 7:5275–79
    [Google Scholar]
  60. 60.
    Whaley R, Thomas EW. 1984. Auger spectra induced by Ne+ and Ar+ impact on Mg, Al, and Si. J. Appl. Phys. 56:1505
    [Google Scholar]
  61. 61.
    Xu F, Riccardi P, Oliva A, Bonanno A 1993. Ar L-shell and metal M-shell Auger electron emission for 14 keV Ar+ ion impact on Ca, Sc, Ti, V, Cr, Fe, Co, Ni, and Cu. Nucl. Instrum. Methods Phys. Res. B 78:251–54
    [Google Scholar]
  62. 62.
    Parvaneh H. 2014. A new route to nanoscale tomographic chemical analysis: focused ion beam-induced auger electron spectroscopy PhD Thesis, Rensselaer Polytech. Inst Troy, NY:
    [Google Scholar]
  63. 63.
    Parvaneh H, Hull R. 2014. Examination of ion-induced Auger electron spectra of Ti, Cr and Co in a mass-selecting Focused Ion Beam with a gold-silicon liquid metal source. Vacuum 110:69–73
    [Google Scholar]
  64. 64.
    Heller R, Klingner N, Hlawacek G 2016. Backscattering spectrometry in the helium ion microscope: imaging elemental compositions on the nm scale. See Ref 10265–95
  65. 65.
    Bell DC. 2009. Contrast mechanisms and image formation in HIM. Microsc. Microanal. 15:147–53
    [Google Scholar]
  66. 66.
    Hlawacek G, Ahmad I, Smithers MA, Kooij ES 2013. To see or not to see: imaging surfactant coated nano-particles using HIM and SEM. Ultramicroscopy 135:89–94
    [Google Scholar]
  67. 67.
    Sijbrandij S, Thompson B, Notte J, Ward BW, Economou NP 2008. Elemental analysis with the helium ion microscope. J. Vac. Sci. Technol. B 26:62103–6
    [Google Scholar]
  68. 68.
    Sijbrandij S, Notte J, Scipioni L, Huynh C, Sanford C 2010. Analysis and metrology with a focused helium ion beam. J. Vac. Sci. Technol. B 28:173–77
    [Google Scholar]
  69. 69.
    Klingner N, Heller R, Hlawacek G, von Borany J, Notte J et al. 2016. Nanometer scale elemental analysis in the helium ion microscope using time of flight spectrometry. Ultramicroscopy 162:91–97
    [Google Scholar]
  70. 70.
    Hlawacek G, Veligura V, Lorbek S, Mocking TF, George A et al. 2012. Imaging ultra thin layers with helium ion microscopy: utilizing the channeling contrast mechanism. Beilstein J. Nanotechnol. 3:1507–12
    [Google Scholar]
  71. 71.
    Veligura V, Hlawacek G, Van Gastel R, Zandvliet HJW, Poelsema B et al. 2012. Channeling in helium ion microscopy: mapping of crystal orientation. Beilstein J. Nanotechnol. 3:1501–6
    [Google Scholar]
  72. 72.
    Veligura V, Hlawacek G. 2016. Ionoluminescence. See Ref 10325–51
  73. 73.
    Franklin TMW. 2012. Scanning ionoluminescence microscopy with a helium ion microscope PhD Thesis, Univ Southampton, UK:
    [Google Scholar]
  74. 74.
    Boden SA, Franklin TMW, Scipioni L, Bagnall DM, Rutt HN 2012. Ionoluminescence in the helium ion microscope. Microsc. Microanal. 18:1253–66
    [Google Scholar]
  75. 75.
    Veligura V, Hlawacek G, Van Gastel R, Zandvliet HJW, Poelsema B 2015. Investigation of ionoluminescence of semiconductor materials using helium ion microscopy. J. Lumin. 157:321–26
    [Google Scholar]
  76. 76.
    Ogawa S, Iijima T, Awata S, Sugie R, Kawasaki N, Otsuka Y 2012. Characterization of damage in SiO2 during helium ion microscope observation by luminescence and TEM-EELS. Microsc. Microanal. 18:814–15
    [Google Scholar]
  77. 77.
    Veligura V, Hlawacek G, Gastel RV, Zandvliet HJW, Poelsema B 2014. A high resolution ionoluminescence study of defect creation and interaction. J. Phys. Condens. Matter 26:16165401
    [Google Scholar]
  78. 78.
    Veligura V. 2014. Material characterization and modification using helium ion microscopy: various examples PhD Thesis, Univ. Twente, Enschede, Neth .
    [Google Scholar]
  79. 79.
    Minqin R, Xiao C, Yi Z, Hao S, Qingguang R et al. 2013. Sub-100-nm STIM imaging and PIXE quantification of rare earth elements in algae cells. X-Ray Spectrom 42:4237–41
    [Google Scholar]
  80. 80.
    Watt F, Chen X, Chen C-BB, Udalagama CNB, Van Kan JA, Bettiol AA 2013. Whole cell structural imaging at 20 nanometre resolutions using MeV ions. Nucl. Instrum. Methods Phys. Res. B 306:6–11
    [Google Scholar]
  81. 81.
    Hall AR. 2013. In situ thickness assessment during ion milling of a free-standing membrane using transmission helium ion microscopy. Microsc. Microanal. 19:740–44
    [Google Scholar]
  82. 82.
    Emmrich D, Beyer A, Nadzeyka A, Bauerdick S, Meyer JC et al. 2016. Nanopore fabrication and characterization by helium ion microscopy. Appl. Phys. Lett. 108:163103
    [Google Scholar]
  83. 83.
    Woehl TJ, White RM, Keller RR 2016. Dark-field scanning transmission ion microscopy via detection of forward-scattered helium ions with a microchannel plate. Microsc. Microanal. 22:544–50
    [Google Scholar]
  84. 84.
    Kavanagh KL, Herrmann C, Notte J 2017. Camera for transmission He+ ion microscopy. J. Vac. Sci. Technol. B 35:06G902
    [Google Scholar]
  85. 85.
    Notte J, Hill R, McVey SM, Ramachandra R, Griffin B, Joy D 2010. Diffraction imaging in a He+ ion beam scanning transmission microscope. Microsc. Microanal. 16:05599–603
    [Google Scholar]
  86. 86.
    Wang J, Huang SH, Herrmann C, Scott SA, Schiettekatte F, Kavanagh KL 2018. Focussed helium ion channeling through Si nanomembranes. J. Vac. Sci. Technol. B 36:021203
    [Google Scholar]
  87. 87.
    Stehling N, Masters R, Zhou Y, O'Connell R 2018. New perspectives on nano-engineering by secondary electron spectroscopy in the helium ion and scanning electron microscope. MRS Commun 8:2226–40
    [Google Scholar]
  88. 88.
    Masters RC, Pearson AJ, Glen TS, Sasam F-C, Li L et al. 2015. Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy. Nat. Commun. 6:6928
    [Google Scholar]
  89. 89.
    Khursheed A. 2011. Scanning Electron Microscope Optics and Spectrometers Hackensack, NJ: World Sci. Publ.
    [Google Scholar]
  90. 90.
    Wirtz T, Vanhove N, Pillatsch L, Dowsett D, Sijbrandij S, Notte J 2012. Towards secondary ion mass spectrometry on the helium ion microscope: an experimental and simulation based feasibility study with He+ and Ne+ bombardment. Appl. Phys. Lett. 101:041601
    [Google Scholar]
  91. 91.
    Pillatsch L, Vanhove N, Dowsett D, Sijbrandij S, Notte J, Wirtz T 2013. Study and optimisation of SIMS performed with He+ and Ne+ bombardment. Appl. Surf. Sci. 282:908–13
    [Google Scholar]
  92. 92.
    Benninghoven A, Werner HW, Rüdenauer FG 1987. Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends New York: Wiley-Intersci.
    [Google Scholar]
  93. 93.
    Franzreb K, Lörincik J, Williams P 2004. Quantitative study of oxygen enhancement of sputtered ion yields. I. Argon ion bombardment of a silicon surface with O2 flood. Surf. Sci. 573:2291–309
    [Google Scholar]
  94. 94.
    Philipp P, Wirtz T, Migeon H-N, Scherrer H 2006. SIMS analysis with neutral cesium deposition: negative secondary ion sensitivity increase and quantification aspects. Int. J. Mass Spectrom. 253:1–271–78
    [Google Scholar]
  95. 95.
    Philipp P, Wirtz T, Migeon H-N, Scherrer H 2006. Important increase of negative secondary ion sensitivity during SIMS analysis by neutral cesium deposition. Appl. Surf. Sci. 252:197205–7
    [Google Scholar]
  96. 96.
    Wirtz T, Migeon H-N. 2004. Optimization of SIMS analyses performed in the MCsx+ mode by using an in situ deposition of neutral Cs. Surf. Sci. 557:57–72
    [Google Scholar]
  97. 97.
    Wirtz T, Migeon H-N. 2004. In situ deposition of neutral Cs for secondary ion mass spectrometry. Appl. Surf. Sci. 222:1–4186–97
    [Google Scholar]
  98. 98.
    Wirtz T, Dowsett D, Philipp P 2016. SIMS on the helium ion microscope: a powerful tool for high-resolution high-sensitivity nano-analytics. See Ref 10297–323
  99. 99.
    Wirtz T, Philipp P, Audinot J-N, Dowsett D, Eswara S 2015. High-resolution high-sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy. Nanotechnology 26:434001
    [Google Scholar]
  100. 100.
    Gratia P, Grancini G, Audinot J-N, Jeanbourquin X, Mosconi E et al. 2016. Intrinsic halide segregation at nanometer scale determines the high efficiency of mixed cation/mixed halide perovskite solar cells. J. Am. Chem. Soc. 138:4915821–24
    [Google Scholar]
  101. 101.
    Dowsett D, Wirtz T. 2017. Co-registered in situ secondary electron and mass spectral imaging on the helium ion microscope demonstrated using lithium titanate and magnesium oxide nanoparticles. Anal. Chem. 89:8957–65
    [Google Scholar]
  102. 102.
    Philipp P, Rzeznik L, Wirtz T 2016. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy. Beilstein J. Nanotechnol. 7:11749–60
    [Google Scholar]
  103. 103.
    Rzeznik L, Fleming Y, Wirtz T, Philipp P 2016. Experimental and simulation-based investigation of He, Ne and Ar irradiation of polymers for ion microscopy. Beilstein J. Nanotechnol. 7:1113–28
    [Google Scholar]
  104. 104.
    Gratia P, Zimmermann I, Schouwink P, Yum J-H, Audinot J-N et al. 2017. The many faces of mixed ion perovskites: unraveling and understanding the crystallization process. ACS Energy Lett 2:122686–93
    [Google Scholar]
  105. 105.
    Liu Y, Collins L, Proksch R, Kim S, Watson BR et al. 2018. Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nat. Mater. 11:1013–19
    [Google Scholar]
  106. 106.
    Fizesan I, Gutleb AC, Cambier S, Moschini E, Serchi T et al. 2019. In vitro exposure of a 3D-tetraculture representative for the alveolar barrier at the air-liquid interface to silver particles and nanowires. Part. Fibre Toxicol. In press
    [Google Scholar]
  107. 107.
    Vollnhals F, Audinot J-N, Wirtz T, Mercier-Bonin M, Fourquaux I et al. 2017. Correlative microscopy combining secondary ion mass spectrometry and electron microscopy: comparison of intensity-hue-saturation and Laplacian pyramid methods for image fusion. Anal. Chem. 89:2010702–10
    [Google Scholar]
  108. 108.
    Fleming Y, Wirtz T. 2015. High sensitivity and high resolution element 3D analysis by a combined SIMS-SPM instrument. Beilstein J. Nanotechnol. 6:11091–99
    [Google Scholar]
  109. 109.
    Wirtz T, Fleming Y, Gysin U, Glatzel T, Wegmann U et al. 2013. Combined SIMS-SPM instrument for high sensitivity and high-resolution elemental 3D analysis. Surf. Interface Anal. 45:1513–16
    [Google Scholar]
  110. 110.
    Fleming Y, Wirtz T, Gysin U, Glatzel T, Wegmann U et al. 2011. Three dimensional imaging using secondary ion mass spectrometry and atomic force microscopy. Appl. Surf. Sci. 258:41322–27
    [Google Scholar]
  111. 111.
    Vollnhals F, Wirtz T. 2018. Correlative microscopy in 3D: HIM-based photogrammetric topography reconstruction combined with HIM-SIMS. Anal. Chem. 90:1011989–95
    [Google Scholar]
  112. 112.
    Giannuzzi LA, Gorman BP. 2009. Particle-induced x-ray emission in stainless steel using 30 keV Ga+ focused ion beams. J. Vac. Sci. Technol. A 27:4668–71
    [Google Scholar]
  113. 113.
    Dyson NA. 1990. X-Rays in Atomic and Nuclear Physics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-115457
Loading
/content/journals/10.1146/annurev-anchem-061318-115457
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error