1932

Abstract

Separations of bioanalytes require robust, effective, and selective migration phenomena. However, due to the complexity of biological matrices such as body fluids or tissue, these requirements are difficult to achieve. The separations field is thus constantly evolving to develop suitable methods to separate biomarkers and fractionate biospecimens for further interrogation of biomolecular content. Advances in the field of microfabrication allow the tailored generation of micro- and nanofluidic environments. These can be exploited to induce interactions and dynamics of biological species with the corresponding geometrical features, which in turn can be capitalized for novel separation approaches. This review provides an overview of several unique separation applications demonstrated in recent years in tailored micro- and nanofluidic environments. These include electrokinetic methods such as dielectrophoresis and electrophoresis, but also rather nonintuitive ratchet separation mechanisms, continuous flow separations, and fractionations such as deterministic lateral displacement, as well as methods employing entropic forces for separation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125758
2019-06-12
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061417-125758.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125758&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Yager P, Edwards T, Fu E, Helton K, Nelson K et al. 2006. Microfluidic diagnostic technologies for global public health. Nature 442:412–18
    [Google Scholar]
  2. 2.
    Lee WG, Kim Y-G, Chung BG, Demirci U, Khademhosseini A 2010. Nano/microfluidics for diagnosis of infectious diseases in developing countries. Adv. Drug Delivery Rev. 62:449–57
    [Google Scholar]
  3. 3.
    Becker H, Gärtner C 2017. Microfluidics-enabled diagnostic systems: markets, challenges, and examples. Microchip Diagnostics V Taly, JL Viovy, S Descroix 3–21 New York: Humana Press
    [Google Scholar]
  4. 4.
    Haghi M, Thurow K, Stoll R 2017. Wearable devices in medical Internet of Things: scientific research and commercially available devices. Healthc. Inform. Res. 23:4–15
    [Google Scholar]
  5. 5.
    Kilic T, Erdem A, Ozsoz M, Carrara S 2018. MicroRNA biosensors: opportunities and challenges among conventional and commercially available techniques. Biosens. Bioelectron. 99:525–46
    [Google Scholar]
  6. 6.
    Chiu DT, Di Carlo D, Doyle PS, Hansen C, Maceiczyk RM, Wootton RC 2017. Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chemistry 2:201–23
    [Google Scholar]
  7. 7.
    Zhou J, Ellis AV, Voelcker NH 2009. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31:2–16
    [Google Scholar]
  8. 8.
    Abdallah BG, Ros A 2013. Surface coatings for microfluidic-based biomedical devices. Microfluidic Devices for Biomedical Applications X Li, Y Zhou 63–99 Cambridge, UK: Woodhead Publ.
    [Google Scholar]
  9. 9.
    Liu J, Hansen C, Quake SR 2003. Solving the “world-to-chip” interface problem with a microfluidic matrix. Anal. Chem. 75:4718–23
    [Google Scholar]
  10. 10.
    Ramsey JM 1999. The burgeoning power of the shrinking laboratory. Nat. Biotechnol. 17:1061–62
    [Google Scholar]
  11. 11.
    Xuan J, Lee ML 2014. Size separation of biomolecules and bioparticles using micro/nanofabricated structures. Anal. Methods 6:27–37
    [Google Scholar]
  12. 12.
    Levy SL, Craighead HG 2010. DNA manipulation, sorting, and mapping in nanofluidic systems. Chem. Soc. Rev. 39:1133–52
    [Google Scholar]
  13. 13.
    Van den Berg A, Craighead HG, Yang P 2010. From microfluidic applications to nanofluidic phenomena. Chem. Soc. Rev. 39:899–900
    [Google Scholar]
  14. 14.
    Kaji N, Okamoto Y, Tokeshi M, Baba Y 2010. Nanopillar, nanoball, and nanofibers for highly efficient analysis of biomolecules. Chem. Soc. Rev. 39:948–56
    [Google Scholar]
  15. 15.
    Volkmuth WD, Austin RH 1992. DNA electrophoresis in microlithographic arrays. Nature 358:600–2
    [Google Scholar]
  16. 16.
    Pohl HA 1978. Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields Cambridge, UK/New York: Cambridge Univ. Press
    [Google Scholar]
  17. 17.
    Jones TB, Jones TB 2005. Electromechanics of Particles Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  18. 18.
    Hölzel R, Calander N, Chiragwandi Z, Willander M, Bier FF 2005. Trapping single molecules by dielectrophoresis. Phys. Rev. Lett. 95:128102
    [Google Scholar]
  19. 19.
    Liao KT, Chou CF 2012. Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers. J. Am. Chem. Soc. 134:8742–45
    [Google Scholar]
  20. 20.
    Camacho-Alanis F, Gan L, Ros A 2012. Transitioning streaming to trapping in DC insulator-based dielectrophoresis for biomolecules. Sens. Actuators B 173:668–75
    [Google Scholar]
  21. 21.
    Nakano A, Ros A 2013. Protein dielectrophoresis: advances, challenges, and applications. Electrophoresis 34:1085–96
    [Google Scholar]
  22. 22.
    Srivastava SK, Gencoglu A, Minerick AR 2011. DC insulator dielectrophoretic applications in microdevice technology: a review. Anal. Bioanal. Chem. 399:301–21
    [Google Scholar]
  23. 23.
    Li M, Li WH, Zhang J, Alici G, Wen W 2014. A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation. J. Phys. D Appl. Phys. 47:063001
    [Google Scholar]
  24. 24.
    Martinez-Duarte R 2012. Microfabrication technologies in dielectrophoresis applications—a review. Electrophoresis 33:3110–32
    [Google Scholar]
  25. 25.
    Regtmeier J, Eichhorn R, Viefhues M, Bogunovic L, Anselmetti D 2011. Electrodeless dielectrophoresis for bioanalysis: theory, devices and applications. Electrophoresis 32:2253–73
    [Google Scholar]
  26. 26.
    Shafiee H, Caldwell JL, Sano MB, Davalos RV 2009. Contactless dielectrophoresis: a new technique for cell manipulation. Biomed. Microdevices 11:997
    [Google Scholar]
  27. 27.
    Huang Y, Joo S, Duhon M, Heller M, Wallace B, Xu X 2002. Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal. Chem. 74:3362–71
    [Google Scholar]
  28. 28.
    Khoshmanesh K, Baratchi S, Tovar-Lopez FJ, Nahavandi S, Wlodkowic D et al. 2011. On-chip separation of Lactobacillus bacteria from yeasts using dielectrophoresis. Microfluid. Nanofluid. 12:597–606
    [Google Scholar]
  29. 29.
    Khoshmanesh K, Zhang C, Tovar-Lopez F, Nahavandi S, Baratchi S et al. 2010. Dielectrophoretic-activated cell sorter based on curved microelectrodes. Microfluid. Nanofluid. 9:411–26
    [Google Scholar]
  30. 30.
    Alshareef M, Metrakos N, Juarez Perez E, Azer F, Yang F et al. 2013. Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics 7:011803
    [Google Scholar]
  31. 31.
    Yang F, Yang X, Jiang H, Bulkhaults P, Wood P et al. 2010. Dielectrophoretic separation of colorectal cancer cells. Biomicrofluidics 4:013204
    [Google Scholar]
  32. 32.
    Sonnenberg A, Marciniak JY, Krishnan R, Heller MJ 2012. Dielectrophoretic isolation of DNA and nanoparticles from blood. Electrophoresis 33:2482–90
    [Google Scholar]
  33. 33.
    Lin S-C, Lu J-C, Sung Y-L, Lin C-T, Tung Y-C 2013. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis. Lab Chip 13:3082–89
    [Google Scholar]
  34. 34.
    Choi S, Park JK 2005. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array. Lab Chip 5:1161–67
    [Google Scholar]
  35. 35.
    Choi W, Kim J-S, Lee D-H, Lee K-K, Koo D-B, Park J-K 2008. Dielectrophoretic oocyte selection chip for in vitro fertilization. Biomed. Microdevices 10:337–45
    [Google Scholar]
  36. 36.
    Yasukawa T, Suzuki M, Shiku H, Matsue T 2009. Control of the microparticle position in the channel based on dielectrophoresis. Sens. Actuators B 142:400–3
    [Google Scholar]
  37. 37.
    Zhu K, Kaprelyants AS, Salina EG, Markx GH 2010. Separation by dielectrophoresis of dormant and nondormant bacterial cells of Mycobacterium smegmatis. Biomicrofluidics 4:022809
    [Google Scholar]
  38. 38.
    Wu Y, Ren Y, Tao Y, Jiang H 2017. Fluid pumping and cells separation by DC-biased traveling wave electroosmosis and dielectrophoresis. Microfluid. Nanofluid. 21:38
    [Google Scholar]
  39. 39.
    Zhang C, Khoshmanesh K, Tovar-Lopez FJ, Mitchell A, Wlodarski W, Klantar-zadeh K 2009. Dielectrophoretic separation of carbon nanotubes and polystyrene microparticles. Microfluid. Nanofluid. 7:633–45
    [Google Scholar]
  40. 40.
    Krishnan JN, Kim C, Park HJ, Kang JY, Kim TS, Kim SK 2009. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis. Electrophoresis 30:1457–63
    [Google Scholar]
  41. 41.
    Li H, Bashir R 2002. Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. Sens. Actuators B 86:215–21
    [Google Scholar]
  42. 42.
    Li Y, Dalton C, Crabtree HJ, Nilsson G, Kaler KVIS 2007. Continuous dielectrophoretic cell separation microfluidic device. Lab Chip 7:239–48
    [Google Scholar]
  43. 43.
    Narayanan Unni KN, Hartono D, Yung LYL, Ng MML, Lee HP et al. 2012. Characterization and separation of Cryptosporidium and Giardia cells using on-chip dielectrophoresis. Biomicrofluidics 6:012805
    [Google Scholar]
  44. 44.
    Wu L, Yung LYL, Lim K-M 2012. Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells. Biomicrofluidics 6:014113
    [Google Scholar]
  45. 45.
    Auerswald J, Knapp HF 2003. Quantitative assessment of dielectrophoresis as a micro fluidic retention and separation technique for beads and human blood erythrocytes. Microelectron. Eng. 67–68:879–86
    [Google Scholar]
  46. 46.
    Han K-H, Frazier AB 2008. Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium. Lab Chip 8:1079–86
    [Google Scholar]
  47. 47.
    Kuczenski RS, Chang H-C, Revzin A 2011. Dielectrophoretic microfluidic device for the continuous sorting of Escherichia coli from blood cells. Biomicrofluidics 5:32005
    [Google Scholar]
  48. 48.
    Kim U, Qian J, Kenrick SA, Daugherty PS, Soh HT 2008. Multitarget dielectrophoresis activated cell sorter. Anal. Chem. 80:8656
    [Google Scholar]
  49. 49.
    Vahey MD, Voldman J 2008. An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal. Chem. 80:3135–43
    [Google Scholar]
  50. 50.
    Kralj JG, Lis MTW, Schmidt MA, Jensen KF 2006. Continuous dielectrophoretic size-based particle sorting. Anal. Chem. 78:5019–25
    [Google Scholar]
  51. 51.
    Yunus NAM, Nili H, Green NG 2013. Continuous separation of colloidal particles using dielectrophoresis. Electrophoresis 34:969–78
    [Google Scholar]
  52. 52.
    Hu X, Bessette PH, Qian J, Meinhart CD, Daugherty PS, Soh HT 2005. Marker-specific sorting of rare cells using dielectrophoresis. PNAS 102:15757
    [Google Scholar]
  53. 53.
    Lewpiriyawong N, Yang C, Lam YC 2010. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes. Electrophoresis 31:2622–31
    [Google Scholar]
  54. 54.
    Elitas M, Martínez-Duarte R, Dhar N, McKinney JD, Renaud P 2014. Dielectrophoresis-based purification of antibiotic-treated bacterial subpopulations. Lab Chip 14:1850–57
    [Google Scholar]
  55. 55.
    Jaramillo MC, Torrents E, Martínez-Duarte R, Madou MJ, Juárez A 2010. On-line separation of bacterial cells by carbon-electrode dielectrophoresis. Electrophoresis 31:2921–28
    [Google Scholar]
  56. 56.
    Srivastava SK, Baylon-Cardiel JL, Lapizco-Encinas BH, Minerick AR 2011. A continuous DC-insulator dielectrophoretic sorter of microparticles. J. Chromatogr. A 1218:1780–89
    [Google Scholar]
  57. 57.
    Gallo-Villanueva RC, Pérez-González VH, Davalos RV, Lapizco-Encinas BH 2011. Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis. Electrophoresis 32:2456–65
    [Google Scholar]
  58. 58.
    Gencoglu A, Olney D, LaLonde A, Koppula KS, Lapizco-Encinas BH 2014. Dynamic microparticle manipulation with an electroosmotic flow gradient in low-frequency alternating current dielectrophoresis. Electrophoresis 35:362–73
    [Google Scholar]
  59. 59.
    LaLonde A, Romero-Creel MF, Saucedo-Espinosa MA, Lapizco-Encinas BH 2015. Isolation and enrichment of low abundant particles with insulator-based dielectrophoresis. Biomicrofluidics 9:064113
    [Google Scholar]
  60. 60.
    Saucedo-Espinosa MA, LaLonde A, Gencoglu A, Romero-Creel MF, Dolas JR, Lapizco-Encinas BH 2016. Dielectrophoretic manipulation of particle mixtures employing asymmetric insulating posts. Electrophoresis 37:282–90
    [Google Scholar]
  61. 61.
    Hawkins BG, Smith AE, Syed YA, Kirby BJ 2007. Continuous-flow particle separation by 3D insulative dielectrophoresis using coherently shaped, DC-biased, AC electric fields. Anal. Chem. 79:7291–300
    [Google Scholar]
  62. 62.
    Zhu J, Xuan X 2011. Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels. Biomicrofluidics 5:24111
    [Google Scholar]
  63. 63.
    Gascoyne PR, Vykoukal JV 2004. Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc. IEEE Inst. Electr. Electron. Eng. 92:22–42
    [Google Scholar]
  64. 64.
    Kang KH, Kang Y, Xuan X, Li D 2006. Continuous separation of microparticles by size with direct current-dialectrophoresis. Electrophoresis 27:694–702
    [Google Scholar]
  65. 65.
    Kang Y, Li D, Kalams SA, Eid JE 2008. DC-dielectrophoretic separation of biological cells by size. Biomed. Microdevices 10:243–49
    [Google Scholar]
  66. 66.
    Kang Y, Cetin B, Wu Z, Li D 2009. Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochim. Acta 54:1715–20
    [Google Scholar]
  67. 67.
    Srivastava SK, Daggolu PR, Burgess SC, Minerick AR 2008. Dielectrophoretic characterization of erythrocytes: positive ABO blood types. Electrophoresis 29:5033–46
    [Google Scholar]
  68. 68.
    Moon HS, Kwon K, Kim SI, Han H, Sohn J et al. 2011. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11:1118–25
    [Google Scholar]
  69. 69.
    Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y 2004. Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal. Chem. 76:1571–79
    [Google Scholar]
  70. 70.
    Moncada-Hernández H, Lapizco-Encinas BH. 2010. Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach. Anal. Bioanal. Chem. 396:1805–16
    [Google Scholar]
  71. 71.
    Gallo-Villanueva RC, Jesús-Pérez NM, Martínez-López JI, Pacheco A, Lapizco-Encinas BH 2011. Assessment of microalgae viability employing insulator-based dielectrophoresis. Microfluid. Nanofluid. 10:1305–15
    [Google Scholar]
  72. 72.
    Parikesit GOF, Markesteijn AP, Piciu OM, Bossche A, Westerweel J et al. 2008. Size-dependent trajectories of DNA macromolecules due to insulative dielectrophoresis in submicrometer-deep fluidic channels. Biomicrofluidics 2:024103
    [Google Scholar]
  73. 73.
    Viefhues M, Regtmeier J, Anselmetti D 2013. Fast and continuous-flow separation of DNA-complexes and topological DNA variants in microfluidic chip format. Analyst 138:186–96
    [Google Scholar]
  74. 74.
    Viefhues M, Wegener S, Rischmüller A, Schleef M, Anselmetti D 2013. Dielectrophoresis based continuous-flow nano sorter: fast quality control of gene vaccines. Lab Chip 13:3111–18
    [Google Scholar]
  75. 75.
    Jones PV, Salmon GL, Ros A 2017. Continuous separation of DNA molecules by size using insulator-based dielectrophoresis. Anal. Chem. 89:1531–39
    [Google Scholar]
  76. 76.
    Regtmeier J, Thanh TD, Eichhorn R, Anselmetti D, Ros A 2007. Dielectrophoretic manipulation of DNA: separation and polarizability. Anal. Chem. 79:3925–32
    [Google Scholar]
  77. 77.
    Regtmeier J, Eichhorn R, Bogunovic L, Ros A, Anselmetti D 2010. Dielectrophoretic trapping and polarizability of DNA: the role of spatial conformation. Anal. Chem. 82:7141–49
    [Google Scholar]
  78. 78.
    Kawabata T, Washizu M. 2001. Dielectrophoretic detection of molecular bindings. IEEE Trans. Ind. Appl. 37:1625–33
    [Google Scholar]
  79. 79.
    Nakano A, Chao TC, Camacho-Alanis F, Ros A 2011. Immunoglobulin G and bovine serum albumin streaming dielectrophoresis in a microfluidic device. Electrophoresis 32:2314–22
    [Google Scholar]
  80. 80.
    Nakano A, Camacho-Alanis F, Ros A 2015. Insulator-based dielectrophoresis with β-galactosidase in nanostructured devices. Analyst 140:860–68
    [Google Scholar]
  81. 81.
    Abdallah BG, Zatsepin NA, Roy-Chowdhury S, Coe J, Conrad CE et al. 2015. Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction. Struct. Dyn. 2:041719
    [Google Scholar]
  82. 82.
    Abdallah BG, Chao TC, Kupitz C, Fromme P, Ros A 2013. Dielectrophoretic sorting of membrane protein nanocrystals. ACS Nano 7:9129–37
    [Google Scholar]
  83. 83.
    Abdallah BG, Roy-Chowdhury S, Coe J, Fromme P, Ros A 2015. High throughput protein nanocrystal fractionation in a microfluidic sorter. Anal. Chem. 87:4159–67
    [Google Scholar]
  84. 84.
    Garza-Garcia LD, Lapizco-Encinas B 2010. State of the art on protein manipulation employing dielectrophoresis. Rev. Mex. Ing. Quím. 9:125–37
    [Google Scholar]
  85. 85.
    Shafiee H, Sano MB, Henslee EA, Caldwell JL, Davalos RV 2010. Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10:438–45
    [Google Scholar]
  86. 86.
    Sano MB, Caldwell JL, Davalos RV 2011. Modeling and development of a low frequency contactless dielectrophoresis (cDEP) platform to sort cancer cells from dilute whole blood samples. Biosens. Bioelectron. 30:13–20
    [Google Scholar]
  87. 87.
    Salmanzadeh A, Romero L, Shafiee H, Gallo-Villanueva RC, Stremler MA et al. 2011. Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature. Lab Chip 12:182–89
    [Google Scholar]
  88. 88.
    Salmanzadeh A, Kittur H, Sano MB, Roberts PC, Schmelz EM, Davalos RV 2012. Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresis. Biomicrofluidics 6:024104
    [Google Scholar]
  89. 89.
    Monnig CA, Kennedy R, T 1994. Capillary electrophoresis. Anal. Chem. 66:280–314
    [Google Scholar]
  90. 90.
    Breadmore MC 2012. Capillary and microchip electrophoresis: challenging the common conceptions. J. Chromatogr. A 1221:42–55
    [Google Scholar]
  91. 91.
    Baldessari F, Santiago JG 2006. Electrophoresis in nanochannels: brief review and speculation. J. Nanobiotechnol. 4:12
    [Google Scholar]
  92. 92.
    Henry CS 2006. Microchip capillary electrophoresis. Microchip Capillary Electrophoresis: Methods and Protocols CS Henry 1–9 Totowa, NJ: Humana Press
    [Google Scholar]
  93. 93.
    Fernández‐Abedul MT, Álvarez‐Martos I, Francisco JGA, Costa‐García A 2013. Improving the separation in microchip electrophoresis by surface modification. Capillary Electrophoresis and Microchip Capillary Electrophoresis CD García, KY Chumbimuni‐Torres, E Carrilho 95–120 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  94. 94.
    Sonker M 2017. Electrokinetically operated integrated microfluidic devices for preterm birth biomarker analysis PhD Thesis Brigham Young Univ. Provo, UT:
    [Google Scholar]
  95. 95.
    Dolnik V, Liu S, Jovanovich S 2000. Capillary electrophoresis on microchip. Electrophoresis 21:41–54
    [Google Scholar]
  96. 96.
    Lacher NA, Garrison KE, Martin RS, Lunte SM 2001. Microchip capillary electrophoresis/electrochemistry. Electrophoresis 22:2526–36
    [Google Scholar]
  97. 97.
    Sonker M, Sahore V, Woolley AT 2017. Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: a critical review. Anal. Chim. Acta 986:1–11
    [Google Scholar]
  98. 98.
    Pagaduan JV, Sahore V, Woolley AT 2015. Applications of microfluidics and microchip electrophoresis for potential clinical biomarker analysis. Anal. Bioanal. Chem. 407:6911–22
    [Google Scholar]
  99. 99.
    Dolnik V, Liu S 2005. Applications of capillary electrophoresis on microchip. J. Sep. Sci. 28:1994–2009
    [Google Scholar]
  100. 100.
    Wuethrich A, Quirino JP 2018. A decade of microchip electrophoresis for clinical diagnostics—a review of 2008–2017. Anal. Chim. Acta 1045:42–66
    [Google Scholar]
  101. 101.
    Doyle PS, Bibette J, Bancaud A, Viovy JL 2002. Self-assembled magnetic matrices for DNA separation chips. Science 295:2237
    [Google Scholar]
  102. 102.
    Nazemifard N, Wang L, Ye W, Bhattacharjee S, Masliyah JH, Harrison DJ 2012. A systematic evaluation of the role of crystalline order in nanoporous materials on DNA separation. Lab Chip 12:146–52
    [Google Scholar]
  103. 103.
    Bakajin O, Duke TAJ, Tegenfeldt J, Chou C-F, Chan S et al. 2001. Separation of 100-kilobase DNA molecules in 10 seconds. Anal. Chem. 73:6053–56
    [Google Scholar]
  104. 104.
    Ou J, Cho J, Olson DW, Dorfman KD 2009. DNA electrophoresis in a sparse ordered post array. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79:061904
    [Google Scholar]
  105. 105.
    Ou J, Joswiak MN, Carpenter SJ, Dorfman KD 2011. Plasma thinned nanopost arrays for DNA electrophoresis. J. Vac. Sci. Technol. A 29:011025
    [Google Scholar]
  106. 106.
    Thomas JD, Dorfman KD 2014. Tilted post arrays for separating long DNA. Biomicrofluidics 8:034115
    [Google Scholar]
  107. 107.
    Shi J, Fang AP, Malaquin L, Pépin A, Decanini D et al. 2007. Highly parallel mix-and-match fabrication of nanopillar arrays integrated in microfluidic channels for long DNA molecule separation. Appl. Phys. Lett. 91:153114
    [Google Scholar]
  108. 108.
    Huang LR, Tegenfeldt JO, Kraeft JJ, Sturm JC, Austin RH, Cox EC 2002. A DNA prism for high-speed continuous fractionation of large DNA molecules. Nat. Biotechnol. 20:1048–51
    [Google Scholar]
  109. 109.
    Duong TT, Kim G, Ros R, Streek M, Schmid F et al. 2003. Size-dependent free solution DNA electrophoresis in structured microfluidic systems. Microelectron. Eng. 67–68:905–12
    [Google Scholar]
  110. 110.
    Fu J, Mao P, Han J 2005. A nanofilter array chip for fast gel-free biomolecule separation. Appl. Phys. Lett. 87:263902
    [Google Scholar]
  111. 111.
    Ogston AG 1958. The spaces in a uniform random suspension of fibres. Trans. Faraday Soc. 54:1754–57
    [Google Scholar]
  112. 112.
    Park S-G, Olson DW, Dorfman KD 2012. DNA electrophoresis in a nanofence array. Lab Chip 12:1463–70
    [Google Scholar]
  113. 113.
    Yasui T, Kaji N, Ogawa R, Hashioka S, Tokeshi M et al. 2011. DNA separation in nanowall array chips. Anal. Chem. 83:6635–40
    [Google Scholar]
  114. 114.
    Yasui T, Rahong S, Motoyama K, Yanagida T, Wu Q et al. 2013. DNA manipulation and separation in sublithographic-scale nanowire array. ACS Nano 7:3029–35
    [Google Scholar]
  115. 115.
    Rahong S, Yasui T, Yanagida T, Nagashima K, Kanai M et al. 2015. Three-dimensional nanowire structures for ultra-fast separation of DNA, protein and RNA molecules. Sci. Rep. 5:10584
    [Google Scholar]
  116. 116.
    McGrath J, Jimenez M, Bridle H 2014. Deterministic lateral displacement for particle separation: a review. Lab Chip 14:4139–58
    [Google Scholar]
  117. 117.
    D'Avino G 2013. Non-Newtonian deterministic lateral displacement separator: theory and simulations. Rheol. Acta 52:221–36
    [Google Scholar]
  118. 118.
    Sturm JC, Cox EC, Comella B, Austin RH 2014. Ratchets in hydrodynamic flow: more than waterwheels. Interface Focus 4:20140054
    [Google Scholar]
  119. 119.
    Inglis DW, Davis JA, Austin RH, Sturm JC 2006. Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:655–58
    [Google Scholar]
  120. 120.
    Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR et al. 2006. Deterministic hydrodynamics: taking blood apart. PNAS 103:14779–84
    [Google Scholar]
  121. 121.
    Zeming KK, Salafi T, Shikha S, Zhang Y 2018. Fluorescent label-free quantitative detection of nano-sized bioparticles using a pillar array. Nat. Commun. 9:1254
    [Google Scholar]
  122. 122.
    Huang LR, Cox EC, Austin RH, Sturm JC 2004. Continuous particle separation through deterministic lateral displacement. Science 304:987–90
    [Google Scholar]
  123. 123.
    Holm SH, Beech JP, Barrett MP, Tegenfeldt JO 2011. Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11:1326–32
    [Google Scholar]
  124. 124.
    Green JV, Radisic M, Murthy SK 2009. Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal. Chem. 81:9178–82
    [Google Scholar]
  125. 125.
    Morton KJ, Loutherback K, Inglis DW, Tsui OK, Sturm JC et al. 2008. Hydrodynamic metamaterials: microfabricated arrays to steer, refract, and focus streams of biomaterials. PNAS 105:7434–38
    [Google Scholar]
  126. 126.
    Loutherback K, Chou KS, Newman J, Puchalla J, Austin RH, Sturm JC 2010. Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid. Nanofluid. 9:1143–49
    [Google Scholar]
  127. 127.
    Loutherback K, Silva JD, Liu L, Wu A, Austin RH, Sturm JC 2012. Deterministic separation of cancer cells from blood at 10 mL/min. AIP Adv 2:042107
    [Google Scholar]
  128. 128.
    Zeming KK, Ranjan S, Zhang Y 2013. Rotational separation of non-spherical bioparticles using I-shaped pillar arrays in a microfluidic device. Nat. Commun. 4:1625–28
    [Google Scholar]
  129. 129.
    Zeming KK, Salafi T, Chen CH, Zhang Y 2016. Asymmetrical deterministic lateral displacement gaps for dual functions of enhanced separation and throughput of red blood cells. Sci. Rep. 6:22934
    [Google Scholar]
  130. 130.
    Dincau BM, Aghilinejad A, Hammersley T, Chen X, Kim J-H 2018. Deterministic lateral displacement (DLD) in the high Reynolds number regime: high-throughput and dynamic separation characteristics. Microfluid. Nanofluid. 22:59
    [Google Scholar]
  131. 131.
    Wunsch BH, Smith JT, Gifford SM, Wang C, Brink M et al. 2016. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat. Nanotechnol. 11:936–40
    [Google Scholar]
  132. 132.
    Hanasoge S, Devendra R, Diez FJ, Drazer G 2015. Electrokinetically driven deterministic lateral displacement for particle separation in microfluidic devices. Microfluid. Nanofluid. 18:1195–200
    [Google Scholar]
  133. 133.
    Duke TAJ, Austin RH 1998. Microfabricated sieve for the continuous sorting of macromolecules. Phys. Rev. Lett. 80:1552–55
    [Google Scholar]
  134. 134.
    Hänggi P, Marchesoni F 2009. Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81:387–442
    [Google Scholar]
  135. 135.
    Lau B, Kedem O, Schwabacher J, Kwasnieski D, Weiss EA 2017. An introduction to ratchets in chemistry and biology. Mater. Horiz. 4:310–18
    [Google Scholar]
  136. 136.
    Lenshof A, Laurell T 2010. Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39:1203–17
    [Google Scholar]
  137. 137.
    Kettner C, Reimann P, Hänggi P, Müller F 2000. Drift ratchet. Phys. Rev. E 61:312–23
    [Google Scholar]
  138. 138.
    Huang LR, Silberzan P, Tegenfeldt JO, Cox EC, Sturm JC et al. 2002. Role of molecular size in ratchet fractionation. Phys. Rev. Lett. 89:178301
    [Google Scholar]
  139. 139.
    Huang LR, Cox EC, Austin RH, Sturm JC 2003. Tilted Brownian ratchet for DNA analysis. Anal. Chem. 75:6963–67
    [Google Scholar]
  140. 140.
    Mitra A, Ignatovich F, Novotny L 2012. Nanofluidic preconcentration and detection of nanoparticles. J. Appl. Phys. 112:14304
    [Google Scholar]
  141. 141.
    Motegi T, Nabika H, Murakoshi K 2012. Enhanced Brownian ratchet molecular separation using a self-spreading lipid bilayer. Langmuir 28:6656–61
    [Google Scholar]
  142. 142.
    Motegi T, Nabika H, Fu Y, Chen L, Sun Y et al. 2014. Effective Brownian ratchet separation by a combination of molecular filtering and a self-spreading lipid bilayer system. Langmuir 30:7496–501
    [Google Scholar]
  143. 143.
    Cabodi M, Chen Y-F, Turner SWP, Craighead HG, Austin RH 2002. Continuous separation of biomolecules by the laterally asymmetric diffusion array with out-of-plane sample injection. Electrophoresis 23:3496–503
    [Google Scholar]
  144. 144.
    Rousselet J, Salome L, Ajdari A, Prostt J 1994. Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature 370:446–47
    [Google Scholar]
  145. 145.
    Bader JS, Hammond RW, Henck SA, Deem MW, McDermott GA et al. 1999. DNA transport by a micromachined Brownian ratchet device. PNAS 96:13165
    [Google Scholar]
  146. 146.
    Astumian RD, Moss F 1998. Overview: the constructive role of noise in fluctuation driven transport and stochastic resonance. Chaos 8:533
    [Google Scholar]
  147. 147.
    Bogunovic L, Eichhorn R, Regtmeier J, Anselmetti D, Reimann P 2012. Particle sorting by a structured microfluidic ratchet device with tunable selectivity: theory and experiment. Soft Matter 8:3900
    [Google Scholar]
  148. 148.
    Loutherback K, Puchalla J, Austin RH, Sturm JC 2009. Deterministic microfluidic ratchet. Phys. Rev. Lett. 102:045301
    [Google Scholar]
  149. 149.
    Park ES, Jin C, Guo Q, Ang RR, Duffy SP et al. 2016. Continuous flow deformability-based separation of circulating tumor cells using microfluidic ratchets. Small 12:1909–19
    [Google Scholar]
  150. 150.
    McFaul SM, Lin BK, Ma H 2012. Cell separation based on size and deformability using microfluidic funnel ratchets. Lab Chip 12:2369–76
    [Google Scholar]
  151. 151.
    Bernate JA, Liu C, Lagae L, Konstantopoulos K, Drazer G 2013. Vector separation of particles and cells using an array of slanted open cavities. Lab Chip 13:1086–92
    [Google Scholar]
  152. 152.
    Kowalik M, Bishop KJM 2016. Ratcheted electrophoresis of Brownian particles. Appl. Phys. Lett. 108:203103
    [Google Scholar]
  153. 153.
    Kim D, Luo J, Arriaga EA, Ros A 2018. Deterministic ratchet for sub-micrometer (bio)particle separation. Anal. Chem. 90:4370–79
    [Google Scholar]
  154. 154.
    Eichhorn R, Reimann P, Hänggi P 2003. Absolute negative mobility and current reversals of a meandering Brownian particle. Physics A Stat. Mech. Appl. 325:101–9
    [Google Scholar]
  155. 155.
    Eichhorn R, Reimann P, Hänggi P 2002. Brownian motion exhibiting absolute negative mobility. Phys. Rev. Lett. 88:190601
    [Google Scholar]
  156. 156.
    Eichhorn R, Reimann P, Hänggi P 2002. Paradoxical motion of a single Brownian particle: absolute negative mobility. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 66:066132
    [Google Scholar]
  157. 157.
    Ros A, Eichhorn R, Regtmeier J, Duong TT, Reimann P, Anselmetti D 2005. Absolute negative particle mobility. Nature 436:928
    [Google Scholar]
  158. 158.
    Eichhorn R, Ros A, Regtmeier J, Duong TT, Reimann P, Anselmetti D 2007. Paradoxical Brownian motion in a microfluidic device: absolute negative mobility. Eur. Phys. J. Spec. Top. 143:159–64
    [Google Scholar]
  159. 159.
    Regtmeier J, Eichhorn R, Duong TT, Reimann P, Anselmetti D, Ros A 2007. Pulsed-field separation of particles in a microfluidic device. Eur. Phys. J. E Soft Matter Biol. Phys. 22:335–40
    [Google Scholar]
  160. 160.
    Regtmeier J, Grauwin S, Eichhorn R, Reimann P, Anselmetti D, Ros A 2007. Acceleration of absolute negative mobility. J. Sep. Sci. 30:1461–67
    [Google Scholar]
  161. 161.
    Luo J, Muratore KA, Arriaga EA, Ros A 2016. Deterministic absolute negative mobility for micro- and submicrometer particles induced in a microfluidic device. Anal. Chem. 88:5920–27
    [Google Scholar]
  162. 162.
    Smyda MR, Harvey SC 2012. The entropic cost of polymer confinement. J. Phys. Chem. B 116:10928–34
    [Google Scholar]
  163. 163.
    Salieb-Beugelaar GB, Dorfman KD, van den Berg A, Eijkel JCT 2009. Electrophoretic separation of DNA in gels and nanostructures. Lab Chip 9:2508–23
    [Google Scholar]
  164. 164.
    Turner SWP, Cabodi M, Craighead HG 2002. Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure. Phys. Rev. Lett. 88:128103
    [Google Scholar]
  165. 165.
    Han J, Turner SW, Craighead HG 1999. Entropic trapping and escape of long DNA molecules at submicron size constriction. Phys. Rev. Lett. 83:1688–91
    [Google Scholar]
  166. 166.
    Han J, Craighead HG 2000. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288:1026–29
    [Google Scholar]
  167. 167.
    Cabodi M, Turner SW, Craighead HG 2002. Entropic recoil separation of long DNA molecules. Anal. Chem. 74:5169–74
    [Google Scholar]
  168. 168.
    Streek M, Schmid F, Duong TT, Ros A 2004. Mechanisms of DNA separation in entropic trap arrays: a Brownian dynamics simulation. J. Biotechnol. 112:79–89
    [Google Scholar]
  169. 169.
    Streek M, Duong T, Ros A, Schmid F 2003. DNA mobility in entropic trap arrays: a computer simulation study. J. Biotechnol. 112:79–89
    [Google Scholar]
  170. 170.
    Laachi N, Declet C, Matson C, Dorfman KD 2007. Nonequilibrium transport of rigid macromolecules in periodically constricted geometries. Phys. Rev. Lett. 98:098106
    [Google Scholar]
  171. 171.
    Duan L, Cao Z, Yobas L 2017. Continuous-flow electrophoresis of DNA and proteins in a two-dimensional capillary-well sieve. Anal. Chem. 89:10022–28
    [Google Scholar]
  172. 172.
    Fu J, Schoch RB, Stevens AL, Tannenbaum SR, Han J 2007. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat. Nanotechnol. 2:121–28
    [Google Scholar]
  173. 173.
    Wu Q, Kaji N, Yasui T, Rahong S, Yanagida T et al. 2017. A millisecond micro-RNA separation technique by a hybrid structure of nanopillars and nanoslits. Sci Rep 7:43877
    [Google Scholar]
  174. 174.
    Agrawal P, Bognár Z, Dorfman KD 2018. Entropic trap purification of long DNA. Lab Chip 18:955–64
    [Google Scholar]
  175. 175.
    Smith CL, Thilsted AH, Pedersen JN, Youngman TH, Dyrnum JC et al. 2017. Photothermal transport of DNA in entropy-landscape plasmonic waveguides. ACS Nano 11:4553–63
    [Google Scholar]
  176. 176.
    Anscombe N 2010. Direct laser writing. Nat. Photonics 4:22–23
    [Google Scholar]
  177. 177.
    Beauchamp MJ, Nordin GP, Woolley AT 2017. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Anal. Bioanal. Chem. 409:4311–19
    [Google Scholar]
  178. 178.
    Yeo LY, Friend JR 2014. Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46:379–406
    [Google Scholar]
  179. 179.
    Alnaimat F, Dagher S, Mathew B, Hilal‐Alnqbi A, Khashan S 2018. Microfluidics based magnetophoresis: a review. Chem. Rec 18:1596–1612
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125758
Loading
/content/journals/10.1146/annurev-anchem-061417-125758
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error