1932

Abstract

Analysis of nanoscale biological particles and organelles (BPOs) at the single-particle level is fundamental to the in-depth study of biosciences. Flow cytometry is a versatile technique that has been well-established for the analysis of eukaryotic cells, yet conventional flow cytometry can hardly meet the sensitivity requirement for nanoscale BPOs. Recent advances in high-sensitivity flow cytometry have made it possible to conduct precise, sensitive, and specific analyses of nanoscale BPOs, with exceptional benefits for bacteria, mitochondria, viruses, and extracellular vesicles (EVs). In this article, we discuss the significance, challenges, and efforts toward sensitivity enhancement, followed by the introduction of flow cytometric analysis of nanoscale BPOs. With the development of the nano-flow cytometer that can detect single viruses and EVs as small as 27 nm and 40 nm, respectively, more exciting applications in nanoscale BPO analysis can be envisioned.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-115042
2019-06-12
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061318-115042.html?itemId=/content/journals/10.1146/annurev-anchem-061318-115042&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Brehm-Stecher BF, Johnson EA. 2004. Single-cell microbiology: tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 68:538–59
    [Google Scholar]
  2. 2.
    Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5:782–91
    [Google Scholar]
  3. 3.
    Norman TM, Lord ND, Paulsson J, Losick R 2015. Stochastic switching of cell fate in microbes. Annu. Rev. Microbiol. 69:381–403
    [Google Scholar]
  4. 4.
    Koskella B, Hall LJ, Metcalf CJE 2017. The microbiome beyond the horizon of ecological and evolutionary theory. Nat. Ecol. Evol. 1:1606–15
    [Google Scholar]
  5. 5.
    Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ 2017. Antibiotic tolerance facilitates the evolution of resistance. Science 355:826–30
    [Google Scholar]
  6. 6.
    Hagen C, Dent KC, Zeev-Ben-Mordehai T, Grange M, Bosse JB et al. 2015. Structural basis of vesicle formation at the inner nuclear membrane. Cell 163:1692–701
    [Google Scholar]
  7. 7.
    Sun N, Malide D, Liu J, Rovira II, Combs CA, Finkel T 2017. A fluorescence-based imaging method to measure in vitro and in vivo mitophagy using mt-Keima. Nat. Protoc. 12:1576–87
    [Google Scholar]
  8. 8.
    Yuana Y, Oosterkamp TH, Bahatyrova S, Ashcroft B, Garcia Rodriguez P et al. 2010. Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J. Thromb. Haemost. 8:315–23
    [Google Scholar]
  9. 9.
    Shpacovitch V, Temchura V, Matrosovich M, Hamacher J, Skolnik J et al. 2015. Application of surface plasmon resonance imaging technique for the detection of single spherical biological submicrometer particles. Anal. Biochem. 486:62–69
    [Google Scholar]
  10. 10.
    Ma L, Zhu S, Tian Y, Zhang W, Wang S et al. 2016. Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry. Angew. Chem. Int. Ed. 55:10239–43
    [Google Scholar]
  11. 11.
    Tian Y, Ma L, Gong M, Su G, Zhu S et al. 2018. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano 12:671–80
    [Google Scholar]
  12. 12.
    Yang L, Zhu S, Hang W, Wu L, Yan X 2009. Development of an ultrasensitive dual-channel flow cytometer for the individual analysis of nanosized particles and biomolecules. Anal. Chem. 81:2555–63
    [Google Scholar]
  13. 13.
    Zhu S, Yang L, Long Y, Gao M, Huang T et al. 2010. Size differentiation and absolute quantification of gold nanoparticles via single particle detection with a laboratory-built high-sensitivity flow cytometer. J. Am. Chem. Soc. 132:12176–78
    [Google Scholar]
  14. 14.
    Zhu S, Ma L, Wang S, Chen C, Zhang W et al. 2014. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano 8:10998–1006
    [Google Scholar]
  15. 15.
    Spitzer MH, Nolan GP. 2016. Mass cytometry: single cells, many features. Cell 165:780–91
    [Google Scholar]
  16. 16.
    Chang Q, Ornatsky OI, Siddiqui I, Loboda A, Baranov VI, Hedley DW 2017. Imaging mass cytometry. Cytometry A 91:160–69
    [Google Scholar]
  17. 17.
    Han Y, Gu Y, Zhang AC, Lo YH 2011. Review: imaging technologies for flow cytometry. Lab Chip 16:4639–47
    [Google Scholar]
  18. 18.
    Doan M, Vorobjev I, Rees P, Filby A, Wolkenhauer O et al. 2018. Diagnostic potential of imaging flow cytometry. Trends Biotechnol 36:649–52
    [Google Scholar]
  19. 19.
    Yang RJ, Fu LM, Hou HH 2018. Review and perspectives on microfluidic flow cytometers. Sens. Actuators B 266:26–45
    [Google Scholar]
  20. 20.
    Crosland-Taylor PJ. 1953. A device for counting small particles suspended in a fluid through a tube. Nature 171:37–38
    [Google Scholar]
  21. 21.
    Fulwyler MJ. 1965. Electronic separation of biological cells by volume. Science 150:910–11
    [Google Scholar]
  22. 22.
    Van Dilla MA, Trujillo TT, Mullaney PF, Coulter JR 1969. Cell microfluorometry: a method for rapid fluorescence measurement. Science 163:1213–14
    [Google Scholar]
  23. 23.
    Shapiro HM. 2003. Practical Flow Cytometry New York: Wiley-Liss
    [Google Scholar]
  24. 24.
    Steen HB. 2004. Flow cytometer for measurement of the light scattering of viral and other submicroscopic particles. Cytometry A 57:94–99
    [Google Scholar]
  25. 25.
    van der Pol E, van Gemert MJ, Sturk A, Nieuwland R, van Leeuwen TG 2012. Single versus swarm detection of microparticles and exosomes by flow cytometry. J. Thromb. Haemost. 10:919–30
    [Google Scholar]
  26. 26.
    Foladori P, Quaranta A, Ziglio G 2008. Use of silica microspheres having refractive index similar to bacteria for conversion of flow cytometric forward light scatter into biovolume. Water Res 42:3757–66
    [Google Scholar]
  27. 27.
    van der Pol E, Coumans FA, Grootemaat AE, Gardiner C, Sargent IL et al. 2014. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 12:1182–92
    [Google Scholar]
  28. 28.
    Chandler WL, Yeung W, Tait JF 2011. A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer. J. Thromb. Haemost. 9:1216–24
    [Google Scholar]
  29. 29.
    Proctor CR, Besmer MD, Langenegger T, Beck K, Walser J-C et al. 2018. Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems. ISME J 12:1344–59
    [Google Scholar]
  30. 30.
    Katz A, Alimova A, Xu M, Rudolph E, Shah MK et al. 2003. Bacteria size determination by elastic light scattering. IEEE J. Sel. Top. Quantum Electron. 9:277–87
    [Google Scholar]
  31. 31.
    Lippé R. 2018. Flow virometry: a powerful tool to functionally characterize viruses. J. Virol. 92:e01765–17
    [Google Scholar]
  32. 32.
    El Andaloussi S, Mäger I, Breakefield XO, Wood MJA 2013. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12:347–57
    [Google Scholar]
  33. 33.
    Bohren CF, Huffman DR. 1983. Absorption and Scattering of Light by Small Particles New York: Wiley-VCH
    [Google Scholar]
  34. 34.
    Nolan JP, Jones JC. 2017. Detection of platelet vesicles by flow cytometry. Platelets 28:256–62
    [Google Scholar]
  35. 35.
    Melamed MR. 2001. A brief history of flow cytometry and sorting. Methods Cell Biol 63:3–17
    [Google Scholar]
  36. 36.
    Shapiro HM. 2004. The evolution of cytometers. Cytometry A 58:13–20
    [Google Scholar]
  37. 37.
    Hercher M, Mueller W, Shapiro HM 1979. Detection and discrimination of individual viruses by flow cytometry. J. Histochem. Cytochem. 27:350–52
    [Google Scholar]
  38. 38.
    Steen HB, Lindmo T. 1979. Flow cytometry: a high-resolution instrument for everyone. Science 204:403–4
    [Google Scholar]
  39. 39.
    Steen HB. 1986. Simultaneous separate detection of low angle and large angle light scattering in an arc lamp-based flow cytometer. Cytometry 7:445–49
    [Google Scholar]
  40. 40.
    Steen HB. 1990. Light scattering measurement in an arc lamp-based flow cytometer. Cytometry 11:223–30
    [Google Scholar]
  41. 41.
    van der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG, Nieuwland R 2010. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J. Thromb. Haemost. 8:2596–607
    [Google Scholar]
  42. 42.
    Poncelet P, Robert S, Bouriche T, Bez J, Lacroix R, Dignat-George F 2016. Standardized counting of circulating platelet microparticles using currently available flow cytometers and scatter-based triggering: Forward or side scatter?. Cytometry A 89:148–58
    [Google Scholar]
  43. 43.
    Nolte-’t Hoen ENM, van der Vlist EJ, Aalberts M, Mertens HC, Bosch BJ et al. 2012. Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 8:712–20
    [Google Scholar]
  44. 44.
    van der Vlist EJ, Nolte-’t Hoen ENM, Stoorvogel W, Arkesteijn GJ, Wauben MH 2012. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat. Protoc. 7:1311–26
    [Google Scholar]
  45. 45.
    Maas SL, de Vrij J, van der Vlist EJ, Geragousian B, van Bloois L et al. 2015. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J. Control. Release 200:87–96
    [Google Scholar]
  46. 46.
    Robert S, Lacroix R, Poncelet P, Harhouri K, Bouriche T et al. 2012. High-sensitivity flow cytometry provides access to standardized measurement of small-size microparticles—brief report. Arterioscler. Thromb. Vasc. Biol. 32:1054–58
    [Google Scholar]
  47. 47.
    Poncelet P, Robert S, Bailly N, Garnache-Ottou F, Bouriche T et al. 2015. Tips and tricks for flow cytometry-based analysis and counting of microparticles. Transfus. Apher. Sci. 53:110–26
    [Google Scholar]
  48. 48.
    Morales-Kastresana A, Telford B, Musich TA, McKinnon K, Clayborne C et al. 2017. Labeling extracellular vesicles for nanoscale flow cytometry. Sci. Rep. 7:1878
    [Google Scholar]
  49. 49.
    Kibria G, Ramos EK, Lee KE, Bedoyan S, Huang S et al. 2016. A rapid, automated surface protein profiling of single circulating exosomes in human blood. Sci. Rep. 6:36502
    [Google Scholar]
  50. 50.
    Foladori P, Bruni L, Tamburini S, Ziglio G 2010. Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry. Water Res 44:3807–18
    [Google Scholar]
  51. 51.
    Bonar MM, Tilton JC. 2017. High sensitivity detection and sorting of infectious human immunodeficiency virus (HIV-1) particles by flow virometry. Virology 505:80–90
    [Google Scholar]
  52. 52.
    Steinkamp JA, Fulwyler MJ, Coulter JR, Hiebert RD, Horney JL, Mullancy PF 1973. A new multiparameter separator for microscopic particles and biological cells. Rev. Sci. Instrum. 44:1301–10
    [Google Scholar]
  53. 53.
    Crissman HA, Tobey RA. 1974. Cell-cycle analysis in 20 minutes. Science 184:1297–98
    [Google Scholar]
  54. 54.
    Steinkamp JA, Wilson JS, Saunders GC, Stewart CC 1982. Phagocytosis: flow cytometric quantitation with fluorescent microspheres. Science 215:64–66
    [Google Scholar]
  55. 55.
    Keller RA, Ambrose WP, Goodwin PM, Jett JH, Martin JC, Wu M 1996. Single molecule fluorescence analysis in solution. Appl. Spectrosc. 50:A12–32
    [Google Scholar]
  56. 56.
    Ambrose WP, Goodwin PM, Jett JH, Van OA, Werner JH, Keller RA 1999. Single molecule fluorescence spectroscopy at ambient temperature. Chem. Rev. 99:2929–56
    [Google Scholar]
  57. 57.
    Keller RA, Ambrose WP, Arias AA, Cai H, Emory SR et al. 2002. Analytical applications of single-molecule detection. Anal. Chem. 74:316A–24A
    [Google Scholar]
  58. 58.
    Dovichi NJ, Martin JC, Jett JH, Keller RA 1983. Attogram detection limit for aqueous dye samples by laser-induced fluorescence. Science 219:845–47
    [Google Scholar]
  59. 59.
    Shera EB, Seitzinger NK, Davis LM, Keller RA, Soper SA 1990. Detection of single fluorescent molecules. Chem. Phys. Lett. 174:553–57
    [Google Scholar]
  60. 60.
    Nguyen DC, Keller RA, Jett JH, Martin JC 1987. Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser-induced fluorescence. Anal. Chem. 59:2158–61
    [Google Scholar]
  61. 61.
    Dovichi NJ, Martin JC, Jett JH, Trkula M, Keller RA 1984. Laser-induced fluorescence of flowing samples as an approach to single-molecule detection in liquids. Anal. Chem. 56:348–54
    [Google Scholar]
  62. 62.
    Zhu S, Wang S, Yang L, Huang T, Yan X 2011. Progress in the development of techniques based on light scattering for single nanoparticle detection. Sci. China Chem. 54:1244–53
    [Google Scholar]
  63. 63.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L et al. 2005. Diversity of the human intestinal microbial flora. Science 308:1635–38
    [Google Scholar]
  64. 64.
    Martinez JL, Baquero F, Andersson DI 2007. Predicting antibiotic resistance. Nat. Rev. Microbiol. 5:958–65
    [Google Scholar]
  65. 65.
    Lu H, Chandran K, Stensel D 2014. Microbial ecology of denitrification in biological wastewater treatment. Water Res 64:237–54
    [Google Scholar]
  66. 66.
    Tamburini S, Shen N, Wu HC, Clemente JC 2016. The microbiome in early life: implications for health outcomes. Nat. Med. 22:713–22
    [Google Scholar]
  67. 67.
    Gagneux S. 2018. Ecology and evolution of Mycobacterium tuberculosis. Nat. Rev. Microbiol 16:202–13
    [Google Scholar]
  68. 68.
    Ambriz-Aviña V, Contreras-Garduño JA, Pedraza-Reyes M 2014. Applications of flow cytometry to characterize bacterial physiological responses. Biomed. Res. Int. 2014:461941
    [Google Scholar]
  69. 69.
    Léonard L, Bouarab Chibane L, Ouled Bouhedda B, Degraeve P, Oulahal N 2016. Recent advances on multi-parameter flow cytometry to characterize antimicrobial treatments. Front Microbiol 7:1225
    [Google Scholar]
  70. 70.
    Wu L, Wang S, Song Y, Wang X, Yan X 2016. Applications and challenges for single-bacteria analysis by flow cytometry. Sci. China Chem. 59:30–39
    [Google Scholar]
  71. 71.
    Kennedy D, Wilkinson MG. 2017. Application of flow cytometry to the detection of pathogenic bacteria. Curr. Issues Mol. Biol. 23:21–38
    [Google Scholar]
  72. 72.
    Van NS, Koetzsch S, Proctor CR, Besmer MD, Prest EI et al. 2017. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Res 113:191–206
    [Google Scholar]
  73. 73.
    Bergquist PL, Hardiman EM, Ferrari BC, Winsley T 2009. Applications of flow cytometry in environmental microbiology and biotechnology. Extremophiles 13:389–401
    [Google Scholar]
  74. 74.
    Wilkinson MG. 2015. Flow Cytometry in Microbiology: Technology and Applications Poole, UK: Caister Acad.
    [Google Scholar]
  75. 75.
    Lee H, Hwang JS, Lee J, Kim JI, Lee DG 2015. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim. Biophys. Acta 1848:634–42
    [Google Scholar]
  76. 76.
    Morishige Y, Fujimori K, Amano F 2015. Use of flow cytometry for quantitative analysis of metabolism of viable but non-culturable (VBNC) Salmonella. Biol. Pharm. Bull. 38:1255–64
    [Google Scholar]
  77. 77.
    Kramer B, Thielmann J. 2016. Monitoring the live to dead transition of bacteria during thermal stress by a multi-method approach. J. Microbiol. Methods 123:24–30
    [Google Scholar]
  78. 78.
    Massicotte R, Mafu AA, Ahmad D, Deshaies F, Pichette G, Belhumeur P 2017. Comparison between flow cytometry and traditional culture methods for efficacy assessment of six disinfectant agents against nosocomial bacterial species. Front. Microbiol. 8:112
    [Google Scholar]
  79. 79.
    Klümper U, Riber L, Dechesne A, Sannazzarro A, Hansen LH et al. 2015. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J 9:934–45
    [Google Scholar]
  80. 80.
    Tejerizo GT, Bañuelos LA, Cervantes L, Gaytán P, Pistorio M et al. 2015. Development of molecular tools to monitor conjugative transfer in rhizobia. J. Microbiol. Methods 117:155–63
    [Google Scholar]
  81. 81.
    Wu L, Wang X, Zhang J, Luan T, Bouveret E, Yan X 2017. Flow cytometric single-cell analysis for quantitative in vivo detection of protein–protein interactions via relative reporter protein expression measurement. Anal. Chem. 89:2782–89
    [Google Scholar]
  82. 82.
    Gasol JM, Giorgio PAD. 2000. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci. Mar. 64:197–224
    [Google Scholar]
  83. 83.
    Vives-Rego J, Lebaron P, Nebe-von Caron G 2000. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol. Rev. 24:429–48
    [Google Scholar]
  84. 84.
    Tamburini S, Foladori P, Ferrentino G, Spilimbergo S, Jousson O 2014. Accurate flow cytometric monitoring of Escherichia coli subpopulations on solid food treated with high pressure carbon dioxide. J. Appl. Microbiol. 117:440–50
    [Google Scholar]
  85. 85.
    Yu M, Wu L, Huang T, Wang S, Yan X 2015. Rapid detection and enumeration of total bacteria in drinking water and tea beverages using a laboratory-built high-sensitivity flow cytometer. Anal. Methods 7:3072–79
    [Google Scholar]
  86. 86.
    He S, Hong X, Huang T, Zhang W, Zhou Y et al. 2017. Rapid quantification of live/dead lactic acid bacteria in probiotic products using high-sensitivity flow cytometry. Methods Appl. Fluoresc. 5:024002
    [Google Scholar]
  87. 87.
    Yang L, Wu L, Zhu S, Long Y, Hang W, Yan X 2010. Rapid, absolute, and simultaneous quantification of specific pathogenic strain and total bacterial cells using an ultrasensitive dual-color flow cytometer. Anal. Chem. 82:1109–16
    [Google Scholar]
  88. 88.
    Yang L, Zhou Y, Zhu S, Huang T, Wu L, Yan X 2012. Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer. Anal. Chem. 84:1526–32
    [Google Scholar]
  89. 89.
    Yang L, Huang T, Zhu S, Zhou Y, Jiang Y et al. 2013. High-throughput single-cell analysis of low copy number β-galactosidase by a laboratory-built high-sensitivity flow cytometer. Biosens. Bioelectron. 48:49–55
    [Google Scholar]
  90. 90.
    Shao Q, Zheng Y, Dong X, Tang K, Yan X, Xing B 2013. A covalent reporter of β-lactamase activity for fluorescent imaging and rapid screening of antibiotic-resistant bacteria. Chem. Eur. J. 19:10903–10
    [Google Scholar]
  91. 91.
    Huang T, Zheng Y, Yan Y, Yang L, Yao Y et al. 2016. Probing minority population of antibiotic-resistant bacteria. Biosens. Bioelectron. 80:323–30
    [Google Scholar]
  92. 92.
    Wagner BK, Kitami T, Gilbert TJ, Peck D, Ramanathan A et al. 2008. Large-scale chemical dissection of mitochondrial function. Nat. Biotechnol. 26:343–51
    [Google Scholar]
  93. 93.
    Friedman JR, Nunnari J. 2014. Mitochondrial form and function. Nature 505:335–43
    [Google Scholar]
  94. 94.
    Kuznetsov AV, Margreiter R. 2009. Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int. J. Mol. Sci. 10:1911–29
    [Google Scholar]
  95. 95.
    Keil VC, Funke F, Zeug A, Schild D, Müller M 2011. Ratiometric high-resolution imaging of JC-1 fluorescence reveals the subcellular heterogeneity of astrocytic mitochondria. Pflügers Arch 462:693–708
    [Google Scholar]
  96. 96.
    Ye X, Wang G, Huang G, Bian X, Qian G, Yu S 2011. Heterogeneity of mitochondrial membrane potential: A novel tool to isolate and identify cancer stem cells from a tumor mass. Stem Cell Rev 7:153–60
    [Google Scholar]
  97. 97.
    Chatre L, Ricchetti M. 2013. Large heterogeneity of mitochondrial DNA transcription and initiation of replication exposed by single-cell imaging. J. Cell Sci. 126:914–26
    [Google Scholar]
  98. 98.
    Nunnari J, Suomalainen A. 2012. Mitochondria: in sickness and in health. Cell 148:1145–59
    [Google Scholar]
  99. 99.
    Aryaman J, Hoitzing H, Burgstaller JP, Johnston IG, Jones NS 2017. Mitochondrial heterogeneity, metabolic scaling and cell death. Bioessays 39:170001
    [Google Scholar]
  100. 100.
    Mattiasson G. 2004. Flow cytometric analysis of isolated liver mitochondria to detect changes relevant to cell death. Cytometry A 60:145–54
    [Google Scholar]
  101. 101.
    Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF 2011. Cytometric assessment of mitochondria using fluorescent probes. Cytometry A 79:405–25
    [Google Scholar]
  102. 102.
    Saunders JE, Beeson CC, Schnellmann RG 2013. Characterization of functionally distinct mitochondrial subpopulations. J. Bioenerg. Biomembr. 45:87–99
    [Google Scholar]
  103. 103.
    Zhang S, Zhu S, Yang L, Zheng Y, Gao M et al. 2012. High-throughput multiparameter analysis of individual mitochondria. Anal. Chem. 84:6421–28
    [Google Scholar]
  104. 104.
    Petit PX, O'Connor JE, Grunwald D, Brown SC 1990. Analysis of the membrane-potential of rat-liver and mouse-liver mitochondria by flow-cytometry and possible applications. Eur. J. Biochem. 194:389–97
    [Google Scholar]
  105. 105.
    Medina JM, López-Mediavilla C, Orfao A 2002. Flow cytometry of isolated mitochondria during development and under some pathological conditions. FEBS Lett 510:127–32
    [Google Scholar]
  106. 106.
    Lee DR, Helps SC, Macardle PJ, Nilsson M, Sims NR 2009. Alterations in membrane potential in mitochondria isolated from brain subregions during focal cerebral ischemia and early reperfusion: evaluation using flow cytometry. Neurochem. Res. 34:1857–66
    [Google Scholar]
  107. 107.
    Pickles S, Arbour N, Vande Velde C 2014. Immunodetection of outer membrane proteins by flow cytometry of isolated mitochondria. J. Vis. Exp. 91:51887
    [Google Scholar]
  108. 108.
    Zhang X, Zhang S, Zhu S, Chen S, Han J et al. 2014. Identification of mitochondria-targeting anticancer compounds by an in vitro strategy. Anal. Chem. 86:5232–37
    [Google Scholar]
  109. 109.
    Chen C, Zhang X, Zhang S, Zhu S, Xu J et al. 2015. Quantification of protein copy number in single mitochondria: the Bcl-2 family proteins. Biosens. Bioelectron. 74:476–82
    [Google Scholar]
  110. 110.
    Zamora JLR, Aguilar HC. 2018. Flow virometry as a tool to study viruses. Methods 134:13587–97
    [Google Scholar]
  111. 111.
    Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D 1999. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl. Environ. Microbiol. 65:45–52
    [Google Scholar]
  112. 112.
    Brussaard CP. 2004. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microbiol. 70:1506–13
    [Google Scholar]
  113. 113.
    Brown MR, Camezuli S, Davenport RJ, Petelenz-Kurdziel E, Ovreas L, Curtis TP 2015. Flow cytometric quantification of viruses in activated sludge. Water Res 68:414–22
    [Google Scholar]
  114. 114.
    Gaudin R, Barteneva NS. 2015. Sorting of small infectious virus particles by flow virometry reveals distinct infectivity profiles. Nat. Commun. 6:6022
    [Google Scholar]
  115. 115.
    Tang VA, Renner TM, Varette O, Le Boeuf F, Wang J et al. 2016. Single-particle characterization of oncolytic vaccinia virus by flow virometry. Vaccine 34:5082–89
    [Google Scholar]
  116. 116.
    Landowski M, Dabundo J, Liu Q, Nicola AV, Aguilar HC 2014. Nipah virion entry kinetics, composition, and conformational changes determined by enzymatic virus-like particles and new flow virometry tools. J. Virol. 88:14197–206
    [Google Scholar]
  117. 117.
    Zicari S, Arakelyan A, Fitzgerald W, Zaitseva E, Chernomordik LV et al. 2016. Evaluation of the maturation of individual Dengue virions with flow virometry. Virology 488:20–27
    [Google Scholar]
  118. 118.
    El Bilali N, Duron J, Gingras D, Lippé R 2017. Quantitative evaluation of protein heterogeneity within herpes simplex virus 1 particles. J. Virol. 91:e00320–17
    [Google Scholar]
  119. 119.
    Arakelyan A, Fitzgerald W, King DF, Rogers P, Cheeseman HM et al. 2017. Flow virometry analysis of envelope glycoprotein conformations on individual HIV virions. Sci. Rep. 7:948
    [Google Scholar]
  120. 120.
    Wargo AR, Kurath G. 2012. Viral fitness: definitions, measurement, and current insights. Curr. Opin. Virol. 2:538–45
    [Google Scholar]
  121. 121.
    Vlasak J, Hoang VM, Christanti S, Peluso R, Li F, Culp TD 2016. Use of flow cytometry for characterization of human cytomegalovirus vaccine particles. Vaccine 34:2321–28
    [Google Scholar]
  122. 122.
    Wu L, Huang T, Yang L, Pan J, Zhu S, Yan X 2011. Sensitive and selective bacterial detection using tetracysteine-tagged phages in conjunction with biarsenical dye. Angew. Chem. Int. Ed. 50:5873–77
    [Google Scholar]
  123. 123.
    Zhang C, Zhou X, Yao T, Tian Z, Zhou D 2018. Precision fluorescent labeling of an adeno-associated virus vector to monitor the viral infection pathway. Biotechnol. J. 13:e1700374
    [Google Scholar]
  124. 124.
    Arraud N, Linares R, Tan S, Gounou C, Pasquet JM et al. 2014. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost. 12:614–27
    [Google Scholar]
  125. 125.
    Arraud N, Gounou C, Turpin D, Brisson AR 2016. Fluorescence triggering: a general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytometry A 89:184–95
    [Google Scholar]
  126. 126.
    Stoner SA, Duggan E, Condello D, Guerrero A, Turk JR et al. 2016. High sensitivity flow cytometry of membrane vesicles. Cytometry A 89:196–206
    [Google Scholar]
  127. 127.
    de Rond L, van der Pol E, Hau CM, Varga Z, Sturk A et al. 2018. Comparison of generic fluorescent markers for detection of extracellular vesicles by flow cytometry. Clin. Chem. 64:680–89
    [Google Scholar]
  128. 128.
    van der Pol E, Sturk A, van Leeuwen T, Nieuwland R, Coumans F 2018. Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J. Thromb. Haemost. 16:1236–45
    [Google Scholar]
  129. 129.
    Valkonen S, van der Pol E, Boing A, Yuana Y, Yliperttula M et al. 2017. Biological reference materials for extracellular vesicle studies. Eur. J. Pharm. Sci. 98:4–16
    [Google Scholar]
  130. 130.
    Varga Z, van der Pol E, Pálmai M, Garcia-Diez R, Gollwitzer C et al. 2018. Hollow organosilica beads as reference particles for optical detection of extracellular vesicles. J. Thromb. Haemost. 16:1646–55
    [Google Scholar]
  131. 131.
    Duda VI, Suzina NE, Polivtseva VN, Boronin AM 2012. Ultramicrobacteria: formation of the concept and contribution of ultramicrobacteria to biology. Microbiology 81:379–90
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-115042
Loading
/content/journals/10.1146/annurev-anchem-061318-115042
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error