1932

Abstract

Solid-state nanopores and nanopipettes are an exciting class of single-molecule sensors that has grown enormously over the last two decades. They offer a platform for testing fundamental concepts of stochasticity and transport at the nanoscale, for studying single-molecule biophysics and, increasingly, also for new analytical applications and in biomedical sensing. This review covers some fundamental aspects underpinning sensor operation and transport and, at the same time, it aims to put these into context as an analytical technique. It highlights new and recent developments and discusses some of the challenges lying ahead.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125903
2019-06-12
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061417-125903.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125903&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Chansin GAT, Mulero R, Hong J, Kim MJ, DeMello AJ, Edel JB 2007. Single-molecule spectroscopy using nanoporous membranes. Nano Lett 7:2901–6
    [Google Scholar]
  2. 2.
    Pitchford WH, Kim HJ, Ivanov AP, Kim HM, Yu JS et al. 2015. Synchronized optical and electronic detection of biomolecules using a low noise nanopore platform. ACS Nano 9:1740–48
    [Google Scholar]
  3. 3.
    Anderson BN, Assad ON, Gilboa T, Squires AH, Bar D, Meller A 2014. Probing solid-state nanopores with light for the detection of unlabeled analytes. ACS Nano 8:11836–45
    [Google Scholar]
  4. 4.
    Cecchini MP, Wiener A, Turek VA, Chon H, Lee S et al. 2013. Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores. Nano Lett 10:4602–9
    [Google Scholar]
  5. 5.
    Ivanov AP, Instuli E, McGilvery CM, Baldwin G, McComb DW et al. 2011. DNA tunneling detector embedded in a nanopore. Nano Lett 11:279–85
    [Google Scholar]
  6. 6.
    Ivanov AP, Freedman KJ, Kim MJ, Albrecht T, Edel JB 2014. High precision fabrication and positioning of nanoelectrodes in a nanopore. ACS Nano 8:1940–48
    [Google Scholar]
  7. 7.
    ASTM Int 2016. ASTM F2149-16: standard test method for automated analyses of cells—the electrical sensing zone method of enumerating and sizing single cell suspensions ASTM Int Conshohocken, PA: http://www.astm.org/cgi-bin/resolver.cgi?F2149-16
  8. 8.
    Firnkes M, Pedone D, Knezevic J, Doblinger M, Rant U 2010. Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Lett 10:2162–67
    [Google Scholar]
  9. 9.
    Bayley H, Luchian T, Shin S-H, Steffensen M 2008. Single-molecule covalent chemistry in a protein nanoreactor. Single Molecules and Nanotechnology R Rigler, H Vogel 251–77 Berlin: Springer
    [Google Scholar]
  10. 10.
    Lu S, Li WW, Rotem D, Mikhailova E, Bayley H 2010. A primary hydrogen-deuterium isotope effect observed at the single-molecule level. Nat. Chem. 2:921–28
    [Google Scholar]
  11. 11.
    Steffensen MB, Rotem D, Bayley H 2014. Single-molecule analysis of chirality in a multicomponent reaction network. Nat. Chem. 6:603–7
    [Google Scholar]
  12. 12.
    Howorka S. 2017. Building membrane nanopores. Nat. Nanotechnol. 12:619–30
    [Google Scholar]
  13. 13.
    Deamer D, Akeson M, Branton D 2016. Three decades of nanopore sequencing. Nat. Biotechnol. 34:518–24
    [Google Scholar]
  14. 14.
    Arjmandi-Tash H, Belyaeva LA, Schneider GF 2016. Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond. Chem. Soc. Rev. 45:476–93
    [Google Scholar]
  15. 15.
    Deng T, Li M, Wang Y, Liu Z 2015. Development of solid-state nanopore fabrication technologies. Sci. Bull. 60:304–19
    [Google Scholar]
  16. 16.
    Briggs K, Charron M, Kwok H, Le T, Chahal S et al. 2015. Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution. Nanotechnology 26:084004
    [Google Scholar]
  17. 17.
    Steinbock LJ, Otto O, Chimerel C, Gornall J, Keyser UF 2010. Detecting DNA folding with nanocapillaries. Nano Lett 10:2493–97
    [Google Scholar]
  18. 18.
    Hall AR, Scott A, Rotem D, Mehta KK, Bayley H, Dekker C 2010. Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nat. Nanotechnol. 5:874–77
    [Google Scholar]
  19. 19.
    Bell NAW, Engst CR, Ablay M, Divitini G, Ducati C et al. 2012. DNA origami nanopores. Nano Lett 12:512–17
    [Google Scholar]
  20. 20.
    Wei RS, Martin TG, Rant U, Dietz H 2012. DNA origami gatekeepers for solid-state nanopores. Angew. Chem. 51:4864–67
    [Google Scholar]
  21. 21.
    Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E et al. 2016. Real-time, portable genome sequencing for Ebola surveillance. Nature 530:228–32
    [Google Scholar]
  22. 22.
    Tyler AD, Mataseje L, Urfano CJ, Schmidt L, Antonation KS et al. 2018. Evaluation of Oxford Nanopore's MinION sequencing device for microbial whole genome sequencing applications. Sci. Rep. 8:10931
    [Google Scholar]
  23. 23.
    Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA 2001. Ion-beam sculpting at nanometre length scales. Nature 412:166–69
    [Google Scholar]
  24. 24.
    Li J, Gershow M, Stein D, Brandin E, Golovchenko JA 2003. DNA molecules and configurations in a solid state nanopore microscope. Nat. Mater. 2:611–15
    [Google Scholar]
  25. 25.
    Chen P, Gu J, Brandin E, Kim YR, Wang Q, Branton D 2004. Probing single DNA molecule transport using fabricated nanopores. Nano Lett 4:2293–98
    [Google Scholar]
  26. 26.
    Storm AJ, Storm C, Chen J, Zandbergen H, Joanny JF, Dekker C 2005. Fast DNA translocation through a solid-state nanopore. Nano Lett 5:1193–97
    [Google Scholar]
  27. 27.
    Peto NL, Nadzeyka A, Bauerdick S, Edel JB, Albrecht T 2012. An introduction to a new ion beam nanopatterning instrument and its application for automatic wafer scale nanopore device production. Nanopores for Bioanalytical Applications: Proceedings of the International Conference T Albrecht, JB Edel 46–47 Cambridge, UK: RSC Publ.
    [Google Scholar]
  28. 28.
    Balan A, Machielse B, Niedzwiecki D, Lin JX, Ong PJ et al. 2014. Improving signal-to-noise performance for DNA trans location in solid-state nanopores at MHz bandwidths. Nano Lett 14:7215–20
    [Google Scholar]
  29. 29.
    Shekar S, Niedzwiecki DJ, Chien CC, Ong P, Fleischer DA et al. 2016. Measurement of DNA translocation dynamics in a solid-state nanopore at 100 ns temporal resolution. Nano Lett 16:4483–89
    [Google Scholar]
  30. 30.
    Park KB, Kim HJ, Kang YH, Yu JS, Chae H et al. 2017. Highly reliable and low-noise solid-state nanopores with an atomic layer deposited ZnO membrane on a quartz substrate. Nanoscale 9:18772–80
    [Google Scholar]
  31. 31.
    Lee MH, Kumar A, Park KB, Cho SY, Kim HM et al. 2014. A low-noise solid-state nanopore platform based on a highly insulating substrate. Sci. Rep. 4:7448
    [Google Scholar]
  32. 32.
    Fraccari RL, Ciccarella P, Bahrami A, Carminati M, Ferrari G, Albrecht T 2016. High-speed detection of DNA translocation in nanopipettes. Nanoscale 8:7604–11
    [Google Scholar]
  33. 33.
    Fraccari RL, Carminati M, Piantanida G, Leontidou T, Ferrari G, Albrecht T 2016. High-bandwidth detection of short DNA in nanopipettes. Faraday Discuss 193:459–70
    [Google Scholar]
  34. 34.
    Sakmann B, Neher E. 1984. Patch clamp techniques for studying ionic channels in excitable membranes. Annu. Rev. Physiol. 46:455–72
    [Google Scholar]
  35. 35.
    Hansma PK, Drake B, Marti O, Gould SA, Prater CB 1989. The scanning ion-conductance microscope. Science 243:641–43
    [Google Scholar]
  36. 36.
    Chen C-C, Zhou Y, Baker LA 2012. Scanning ion conductance microscopy. Annu. Rev. Anal. Chem. 5:207–28
    [Google Scholar]
  37. 37.
    Li W, Bell NAW, Hernández-Ainsa S, Thacker VV, Thackray AM et al. 2013. Single protein molecule detection by glass nanopores. ACS Nano 7:4129–34
    [Google Scholar]
  38. 38.
    Wang Y, Wang D, Mirkin MV 2017. Resistive-pulse and rectification sensing with glass and carbon nanopipettes. Proc. R. Soc. A 473:20160931
    [Google Scholar]
  39. 39.
    King TL, Gatimu EN, Bohn PW 2009. Single nanopore transport of synthetic and biological polyelectrolytes in three-dimensional hybrid microfluidic/nanofluidic devices. Biomicrofluidics 3:012004
    [Google Scholar]
  40. 40.
    Gong X, Patil AV, Ivanov AP, Kong Q, Gibb TR et al. 2013. Label-free in-flow detection of single DNA molecules using glass nanopipettes. Anal. Chem. 86:835–41
    [Google Scholar]
  41. 41.
    Gibb TR, Ivanov AP, Edel JB, Albrecht T 2014. Single molecule ionic current sensing in segmented flow microfluidics. Anal. Chem. 86:1864–71
    [Google Scholar]
  42. 42.
    Jain T, Guerrero RJS, Aguilar CA, Karnik R 2013. Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes. Anal. Chem. 85:3871–78
    [Google Scholar]
  43. 43.
    Tahvildari R, Beamish E, Tabard-Cossa V, Godin M 2015. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown. Lab Chip 15:1407–11
    [Google Scholar]
  44. 44.
    Albrecht T, Gibb T, Nuttall P 2013. Ion transport in nanopores. Engineered Nanopores for Bioanalytical Applications JB Edel, T Albrecht 1–30 Amsterdam: Elsevier
    [Google Scholar]
  45. 45.
    Wanunu M, Morrison W, Rabin Y, Grosberg AY, Meller A 2010. Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 5:160–65
    [Google Scholar]
  46. 46.
    Nkodo AE, Garnier JM, Tinland B, Ren H, Desruisseaux C et al. 2001. Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis 22:2424–32
    [Google Scholar]
  47. 47.
    Hai-Lang Z, Shi-Jun H. 1996. Viscosity and density of water + sodium chloride + potassium chloride solutions at 298.15 K. J. Chem. Eng. Data 41:516–20
    [Google Scholar]
  48. 48.
    Storm AJ, Chen JH, Zandbergen HW, Dekker C 2005. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E 71:051903
    [Google Scholar]
  49. 49.
    Chen P, Gu J, Brandin E, Kim Y-R, Wang Q, Branton D 2004. Probing single DNA molecule transport using fabricated nanopores. Nano Lett 4:2293–98
    [Google Scholar]
  50. 50.
    Mihovilovic M, Hagerty N, Stein D 2013. The statistics of DNA capture by a solid-state nanopore. Phys. Rev. Lett. 110:028102
    [Google Scholar]
  51. 51.
    Firnkes M, Pedone D, Knezevic J, Doblinger M, Rant U 2010. Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Lett 10:2162–67
    [Google Scholar]
  52. 52.
    Holcman D, Schuss Z. 2017. 100 Years after Smoluchowski: stochastic processes in cell biology. J. Phys. A Math. Theor. 50:093002
    [Google Scholar]
  53. 53.
    Li J, Talaga DS. 2010. The distribution of DNA translocation times in solid-state nanopores. J. Phys. Condens. Matter 22:454129
    [Google Scholar]
  54. 54.
    Ling DY, Ling XS. 2013. On the distribution of DNA translocation times in solid-state nanopores: an analysis using Schrödinger's first-passage-time theory. J. Phys. Condens. Matter 25:375102
    [Google Scholar]
  55. 55.
    Wanunu M, Sutin J, McNally B, Chow A, Meller A 2008. DNA translocation governed by interactions with solid-state nanopores. Biophys. J. 95:4716–25
    [Google Scholar]
  56. 56.
    Ghosal S. 2006. Electrophoresis of a polyelectrolyte through a nanopore. Phys. Rev. 74:041901
    [Google Scholar]
  57. 57.
    Ghosal S. 2007. Effect of salt concentration on the electrophoretic speed of a polyelectrolyte through a nanopore. Phys. Rev. Lett. 98:238104
    [Google Scholar]
  58. 58.
    Muthukumar M. 2001. Translocation of a confined polymer through a hole. Phys. Rev. Lett. 86:3188
    [Google Scholar]
  59. 59.
    Liu L, Xie X, Kong J, Wu H, Liu Q 2013. Voltage dependence resistive pulse of lambda-DNA translocation with different size solid-state nanopore sensor. Sci. Adv. Mater. 5:2032–38
    [Google Scholar]
  60. 60.
    Japrung D, Dogan J, Freedman KJ, Nadzeyka A, Bauerdick S et al. 2013. Single-molecule studies of intrinsically disordered proteins using solid-state nanopores. Anal. Chem. 85:2449–56
    [Google Scholar]
  61. 61.
    Plesa C, Kowalczyk SW, Zinsmeester R, Grosberg AY, Rabin Y, Dekker C 2013. Fast translocation of proteins through solid state nanopores. Nano Lett 13:658–63
    [Google Scholar]
  62. 62.
    Fologea D, Gershow M, Ledden B, McNabb DS, Golovchenko JA, Li J 2005. Detecting single stranded DNA with a solid state nanopore. Nano Lett 5:1905–9
    [Google Scholar]
  63. 63.
    Fologea D, Brandin E, Uplinger J, Branton D, Li J 2007. DNA conformation and base number simultaneously determined in a nanopore. Electrophoresis 28:3186–92
    [Google Scholar]
  64. 64.
    Deblois RW, Bean CP. 1970. Counting and sizing of submicron particles by the resistive pulse technique. Rev. Sci. Instrum. 41:909–16
    [Google Scholar]
  65. 65.
    Reiner JE, Kasianowicz JJ, Nablo BJ, Robertson JWF 2010. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. PNAS 107:12080–85
    [Google Scholar]
  66. 66.
    Talaga DS, Li J. 2009. Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc. 131:9287–97
    [Google Scholar]
  67. 67.
    Smeets RMM, Keyser UF, Krapf D, Wu M-Y, Dekker NH, Dekker C 2006. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett 6:89–95
    [Google Scholar]
  68. 68.
    Lan W-J, Kubeil C, Xiong J-W, Bund A, White HS 2014. Effect of surface charge on the resistive pulse waveshape during particle translocation through glass nanopores. J. Phys. Chem. C 118:2726–34
    [Google Scholar]
  69. 69.
    Keyser UF, van der Does J, Dekker C, Dekker NH 2006. Optical tweezers for force measurements on DNA in nanopores. Rev. Sci. Instrum. 77:105105
    [Google Scholar]
  70. 70.
    Keyser UF, Koeleman BN, van Dorp S, Krapf D, Smeets RMM et al. 2006. Direct force measurements on DNA in a solid-state nanopore. Nat. Phys. 2:473–77
    [Google Scholar]
  71. 71.
    Cadinu P, Paulose Nadappuram B, Lee DJ, Sze JYY, Campolo G et al. 2017. Single molecule trapping and sensing using dual nanopores separated by a zeptoliter nanobridge. Nano Lett 17:6376–84
    [Google Scholar]
  72. 72.
    Freedman KJ, Otto LM, Ivanov AP, Barik A, Oh S-H, Edel JB 2017. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping. Nat. Commun. 7:10217
    [Google Scholar]
  73. 73.
    Yusko EC, Johnson JM, Majd S, Prangkio P, Rollings RC et al. 2011. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 6:253–60
    [Google Scholar]
  74. 74.
    Albrecht T. 2011. Nanobiotechnology: a new look for nanopore sensing. Nat. Nanotechnol. 6:195–96
    [Google Scholar]
  75. 75.
    Lu B, Albertorio F, Hoogerheide DP, Golovchenko JA 2001. Origins and consequences of velocity fluctuations during DNA passage through a nanopore. Biophys. J. 101:70–79
    [Google Scholar]
  76. 76.
    Vollmer SC, de Haan HW 2016. Translocation is a nonequilibrium process at all stages: simulating the capture and translocation of a polymer by a nanopore. J. Chem. Phys. 145:154902
    [Google Scholar]
  77. 77.
    Ferris MM, Yan X, Habbersett RC, Shou Y, Lemanski CL et al. 2004. Performance assessment of DNA fragment sizing by high-sensitivity flow cytometry and pulsed-field gel electrophoresis. J. Clin. Microbiol. 42:1965–76
    [Google Scholar]
  78. 78.
    Tabard-Cossa V. 2013. Instrumentation for low-noise high-bandwidth nanopore recording. Engineered Nanopores for Bioanalytical Applications ed. JB Edel, T Albrecht 59–93 Amsterdam: Elsevier
    [Google Scholar]
  79. 79.
    Saleh OA, Sohn LL. 2003. Direct detection of antibody–antigen binding using an on-chip artificial pore. PNAS 100:820–24
    [Google Scholar]
  80. 80.
    Ito T, Sun L, Bevan MA, Crooks RM 2004. Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based Coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir 20:6940–45
    [Google Scholar]
  81. 81.
    Willmott GR, Smith BG. 2012. Comment on ‘Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 23:088001
    [Google Scholar]
  82. 82.
    Kowalczyk SW, Grosberg AY, Rabin Y, Dekker C 2011. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22:315101
    [Google Scholar]
  83. 83.
    Chen P, Mitsui T, Farmer DB, Golovchenko JA, Gordon RG, Branton D 2004. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett 4:1333–37
    [Google Scholar]
  84. 84.
    Robinson M, Pask JA, Fuerstenau DW 1964. Surface charge of alumina and magnesia in aqueous media. J. Am. Ceram. Soc. 47:516–20
    [Google Scholar]
  85. 85.
    Venkatesan BM, Dorvel B, Yemenicioglu S, Watkins N, Petrov I, Bashir R 2009. Highly sensitive, mechanically stable nanopore sensors for DNA analysis. Adv. Mater. 21:2771–76
    [Google Scholar]
  86. 86.
    Loh AYY, Burgess CH, Tanase DA, Ferrari G, McLachlan MA et al. 2018. Electric single-molecule hybridization detector for short DNA fragments. Anal. Chem. 90:14063–71
    [Google Scholar]
  87. 87.
    Potts SE, Schmalz L, Fenker M, Díaz B, Światowska J et al. 2011. Ultra-thin aluminium oxide films deposited by plasma-enhanced atomic layer deposition for corrosion protection. J. Electrochem. Soc. 158:C132–38
    [Google Scholar]
  88. 88.
    Liu M, Jin Y, Zhang C, Leygraf C, Wen L 2015. Corrosion in electrolyte containing chloride ions. Appl. Surf. Sci. 357:2028–38
    [Google Scholar]
  89. 89.
    Natishan PM, O'Grady WE. 2014. Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: a review. J. Electrochem. Soc. 161:C421–32
    [Google Scholar]
  90. 90.
    Díaz B, Härkönen E, Maurice V, Światowska J, Seyeux A et al. 2011. Failure mechanism of thin Al2O3 coatings grown by atomic layer deposition for corrosion protection of carbon steel. Electrochim. Acta 56:9609–18
    [Google Scholar]
  91. 91.
    Venkatesan BM, Bashir R. 2011. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6:615–24
    [Google Scholar]
  92. 92.
    Fologea D, Uplinger J, Thomas B, McNabb DS, Li J 2005. Slowing DNA translocation in a solid state nanopore. Nano Lett 5:1734–37
    [Google Scholar]
  93. 93.
    Uplinger J, Thomas B, Rollings R, Fologea D, McNabb D, Li J 2012. K+, Na+, and Mg2+ on DNA translocation in silicon nitride nanopores. Electrophoresis 33:3448–57
    [Google Scholar]
  94. 94.
    Kowalczyk SW, Wells DB, Aksimentiev A, Dekker C 2012. Slowing down DNA translocation through a nanopore in lithium chloride. Nano Lett 12:1038–44
    [Google Scholar]
  95. 95.
    Modi N, Singh PR, Mahendran KR, Schulz R, Winterhalter M, Kleinekathöfer U 2011. Probing the transport of ionic liquids in aqueous solution through nanopores. J. Phys. Chem. Lett. 2:2331–36
    [Google Scholar]
  96. 96.
    Bell NAW, Muthukumar M, Keyser UF 2016. Translocation frequency of double-stranded DNA through a solid-state nanopore. Phys. Rev. E 93:022401
    [Google Scholar]
  97. 97.
    Albrecht T. 2011. How to understand and interpret current flow in nanopore/electrode devices. ACS Nano 5:6714–25
    [Google Scholar]
  98. 98.
    Rutkowska A, Edel JB, Albrecht T 2012. Mapping the ion current distribution in nanopore/electrode devices. ACS Nano 7:547–55
    [Google Scholar]
  99. 99.
    He Y, Tsutsui M, Fan C, Taniguchi M, Kawai T 2011. Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano 5:5509–18
    [Google Scholar]
  100. 100.
    Melnikov DV, Leburton J-P, Gracheva ME 2012. Slowing down and stretching DNA with an electrically tunable nanopore in a p–n semiconductor membrane. Nanotechnology 23:255501
    [Google Scholar]
  101. 101.
    Liu X, Skanata MM, Stein D 2015. Entropic cages for trapping DNA near a nanopore. Nat. Commun. 6:6222
    [Google Scholar]
  102. 102.
    Bell NAW, Chen K, Ghosal S, Ricci M, Keyser UF 2017. Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore. Nat. Comm. 8:380
    [Google Scholar]
  103. 103.
    Briggs K, Madejski G, Magill M, Kastritis K, de Haan HW et al. 2018. DNA translocations through nanopores under nanoscale preconfinement. Nano Lett 18:660–68
    [Google Scholar]
  104. 104.
    Albrecht T. 2017. Progress in single-biomolecule analysis with solid-state nanopores. Curr. Opin. Electrochem. 4:159–65
    [Google Scholar]
  105. 105.
    Smeets RMM, Kowalczyk SW, Hall AR, Dekker NH, Dekker C 2009. Translocation of RecA-coated double-stranded DNA through solid-state nanopores. Nano Lett 9:3089–96
    [Google Scholar]
  106. 106.
    Wanunu M, Sutin J, Meller A 2009. DNA profiling using solid-state nanopores: detection of DNA-binding molecules. Nano Lett 9:3498–502
    [Google Scholar]
  107. 107.
    Singer A, Wanunu M, Morrison W, Kuhn H, Frank-Kamenetskii M, Meller A 2010. Nanopore based sequence specific detection of duplex DNA for genomic profiling. Nano Lett 10:738–42
    [Google Scholar]
  108. 108.
    Singer A, Rapireddy S, Ly DH, Meller A 2012. Electronic barcoding of a viral gene at the single-molecule level. Nano Lett 12:1722–28
    [Google Scholar]
  109. 109.
    Japrung D, Bahrami A, Nadzeyka A, Peto L, Bauerdick S et al. 2014. SSB binding to single-stranded DNA probed using solid-state nanopore sensors. J. Phys. Chem. B 118:11605–12
    [Google Scholar]
  110. 110.
    Nuttall P, Lee K, Ciccarella P, Carminati M, Ferrari G et al. 2016. Single-molecule studies of unlabeled full-length p53 protein binding to DNA. J. Phys. Chem. B 120:2106–14
    [Google Scholar]
  111. 111.
    Plesa C, Ruitenberg JW, Witteveen MJ, Dekker C 2015. Detection of individual proteins bound along DNA using solid-state nanopores. Nano Lett 15:3153–58
    [Google Scholar]
  112. 112.
    Shim J, Kim Y, Humphreys GI, Nardulli AM, Kosari F et al. 2015. Nanopore-based assay for detection of methylation in double-stranded DNA fragments. ACS 9:290–300
    [Google Scholar]
  113. 113.
    Yu JS, Lim M-C, Ngoc Huynh DT, Kim H-J, Kim H-M et al. 2015. Identifying the location of a single protein along the DNA strand using solid-state nanopores. ACS Nano 9:5289–98
    [Google Scholar]
  114. 114.
    Plesa C, Verschueren D, Pud S, van der Torre J, Ruitenberg JW et al. 2016. Direct observation of DNA knots using a solid-state nanopore. Nat. Nanotechnol. 11:1093–98
    [Google Scholar]
  115. 115.
    Bell NAW, Keyser UF. 2016. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. Nat. Nanotechnol. 11:645–52
    [Google Scholar]
  116. 116.
    Plesa C, van Loo N, Ketterer P, Dietz H, Dekker C 2015. Velocity of DNA during translocation through a solid-state nanopore. Nano Lett 15:732–37
    [Google Scholar]
  117. 117.
    Chen K, Juhasz M, Gularek F, Weinhold E, Tian Y et al. 2017. Ionic current-based mapping of short sequence motifs in single DNA molecules using solid-state nanopores. Nano Lett 17:5199–205
    [Google Scholar]
  118. 118.
    Sze JYY, Ivanov AP, Cass AEG, Edel JB 2017. Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nat. Commun. 8:1552
    [Google Scholar]
  119. 119.
    Burnham P, Dadhania D, Heyang M, Chen F, Westblade LF et al. 2018. Urinary cell-free DNA is a versatile analyte for monitoring infections of the urinary tract. Nat. Commun. 9:2412
    [Google Scholar]
  120. 120.
    Jiang P, Lo YMD. 2016. The long and short of circulating cell-free DNA and the ins and outs of molecular diagnostics. Trends Genet 32:360–71
    [Google Scholar]
  121. 121.
    Gravina S, Sedivy JM, Vijg J 2016. The dark side of circulating nucleic acids. Aging Cell 15:398–99
    [Google Scholar]
  122. 122.
    Yamamoto M, Ushio R, Watanabe H, Tachibana T, Tanaka M et al. 2018. Detection of Mycobacterium tuberculosis-derived DNA in circulating cell-free DNA from a patient with disseminated infection using digital PCR. Int. J. Infect. Dis. 66:80–82
    [Google Scholar]
  123. 123.
    Kong J, Zhu J, Keyser UF 2017. Single molecule based SNP detection using designed DNA carriers and solid-state nanopores. Chem. Commun. 53:436–39
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125903
Loading
/content/journals/10.1146/annurev-anchem-061417-125903
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error