1932

Abstract

As our ability to synthesize and modify nanoobjects has improved, efforts to explore nanotechnology for diagnostic purposes have gained momentum. The variety of nanoobjects, especially those with polyvalent properties, displays a wide range of practical and unique properties well suited for applications in various diagnostics. This review briefly covers the broad scope of multivalent nanoobjects and their use in diagnostics, ranging from ex vivo assays and biosensors to in vivo imaging. The nanoobjects discussed here include silica nanoparticles, gold nanoparticles, quantum dots, carbon dots, fullerenes, polymers, dendrimers, liposomes, nanowires, and nanotubes. In this review, we describe recent reports of novel applications of these various nanoobjects, particularly as polyvalent entities designed for diagnostics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-114938
2019-06-12
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061318-114938.html?itemId=/content/journals/10.1146/annurev-anchem-061318-114938&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Arap W, Pasqualini R, Montalti M, Petrizza L, Prodi L et al. 2013. Luminescent silica nanoparticles for cancer diagnosis. Curr. Med. Chem. 20:2195–211
    [Google Scholar]
  2. 2.
    Harianja DH. 2015. Cornell C′ dots, the cancer hunters Cornell Res., Cornell Univ Ithaca, NY: https://research.cornell.edu/news-features/cornell-c-dots-cancer-hunters
  3. 3.
    Wu SQ, Li Z, Han JH, Han SF 2011. Dual colored mesoporous silica nanoparticles with pH activable rhodamine-lactam for ratiometric sensing of lysosomal acidity. Chem. Commun. 47:11276–78
    [Google Scholar]
  4. 4.
    Zhou ZJ, Zhang CL, Qian QR, Ma JB, Huang P et al. 2013. Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging. J. Nanobiotechnol. 11:17
    [Google Scholar]
  5. 5.
    Xie XJ, Xu W, Liu XG 2012. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification. Acc. Chem. Res. 45:1511–20
    [Google Scholar]
  6. 6.
    Zhou W, Gao X, Liu DB, Chen XY 2015. Gold nanoparticles for in vitro diagnostics. Chem. Rev. 115:10575–636
    [Google Scholar]
  7. 7.
    Zhang RP, Cheng K, Antaris AL, Ma XW, Yang M et al. 2016. Hybrid anisotropic nanostructures for dual-modal cancer imaging and image-guided chemo-thermo therapies. Biomaterials 103:265–77
    [Google Scholar]
  8. 8.
    Millipore Sigma 2018. Gold nanoparticles: properties and applications Millipore Sigma Burlington, MA: https://www.sigmaaldrich.com/technical-documents/articles/materials-science/nanomaterials/gold-nanoparticles.html
  9. 9.
    Perrault SD, Chan WCW. 2010. In vivo assembly of nanoparticle components to improve targeted cancer imaging. PNAS 107:11194–99
    [Google Scholar]
  10. 10.
    Zhou F, Yuan L, Wang HW, Li D, Chen H 2011. Gold nanoparticle layer: a promising platform for ultra-sensitive cancer detection. Langmuir 27:2155–58
    [Google Scholar]
  11. 11.
    Zhu Y, Chandra P, Shim YB 2013. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine–Au nanoparticle–aptamer bioconjugate. Anal. Chem. 85:1058–64
    [Google Scholar]
  12. 12.
    Mira TA, Yoon JH, Gurudatt NG, Won MS, Shim YB 2015. Ultrasensitive cytosensing based on an aptamer modified nanobiosensor with a bioconjugate: detection of human non-small-cell lung cancer cells. Biosens. Bioelectron. 74:594–600
    [Google Scholar]
  13. 13.
    Pan YL, Shan WQ, Fang HT, Guo ML, Nie Z et al. 2014. Sensitive and visible detection of apoptotic cells on Annexin-V modified substrate using aminophenylboronic acid modified gold nanoparticles (APSA-GNPs) labeling. Biosens. Bioelectron. 52:62–68
    [Google Scholar]
  14. 14.
    Wang HB, Xu W, Zhang H, Li DW, Yang ZQ et al. 2011. EcoRI-modified gold nanoparticles for dual-mode colorimetric detection of magnesium and pyrophosphate ions. Small 7:1987–92
    [Google Scholar]
  15. 15.
    Marczak S, Senapati S, Slouka Z, Chang HC 2016. Induced nanoparticle aggregation for short nucleic acid quantification by depletion isotachophoresis. Biosens. Bioelectron. 86:840–48
    [Google Scholar]
  16. 16.
    Li L, Liang Y, Zhao Y, Chen ZB 2018. Target binding and DNA hybridization-induced gold nanoparticle aggregation for colorimetric detection of thrombin. Sens. Actuators B 262:733–38
    [Google Scholar]
  17. 17.
    Mustafaoglu N, Kiziltepe T, Bilgicer B 2017. Site-specific conjugation of an antibody on a gold nanoparticle surface for one-step diagnosis of prostate specific antigen with dynamic light scattering. Nanoscale 9:8684–94
    [Google Scholar]
  18. 18.
    Mahajan KD, Fan QR, Dorcena J, Ruan G, Winter JO 2013. Magnetic quantum dots in biotechnology—synthesis and applications. Biotechnol. J. 8:1424–34
    [Google Scholar]
  19. 19.
    Wang Y, Fry HC, Skinner GE, Schill KM, Duncan TV 2017. Detection and quantification of biologically active botulinum neurotoxin serotypes A and B using a Förster resonance energy transfer-based quantum dot nanobiosensor. ACS Appl. Mater. Interfaces 9:31446–57
    [Google Scholar]
  20. 20.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S et al. 2005. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–44
    [Google Scholar]
  21. 21.
    Du Y, Rajamanickam K, Stumpf TR, Qin YB, McCulloch H et al. 2018. Paramagnetic quantum dots as multimodal probes for potential applications in nervous system imaging. J. Inorg. Organomet. Polym. Mater. 28:711–20
    [Google Scholar]
  22. 22.
    Tsuboi S, Sasaki A, Sakata T, Yasuda H, Jin T 2017. Immunoglobulin binding (B1) domain mediated antibody conjugation to quantum dots for in vitro and in vivo molecular imaging. Chem. Commun. 53:9450–53
    [Google Scholar]
  23. 23.
    Li SL, Yang J, Lei XF, Zhang JN, Yang HL et al. 2016. Peptide-conjugated quantum dots act as the target marker for human pancreatic carcinoma cells. Cell. Physiol. Biochem. 38:1121–28
    [Google Scholar]
  24. 24.
    Kim C, Hoffmann G, Searson PC 2017. Integrated magnetic bead quantum dot immunoassay for malaria detection. ACS Sens 2:766–72
    [Google Scholar]
  25. 25.
    Yang ST, Wang X, Wang HF, Lu FS, Luo PG et al. 2009. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C 113:18110–14
    [Google Scholar]
  26. 26.
    Xu XY, Ray R, Gu YL, Ploehn HJ, Gearheart L et al. 2004. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126:12736–37
    [Google Scholar]
  27. 27.
    Baker SN, Baker GA. 2010. Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 49:6726–44
    [Google Scholar]
  28. 28.
    Hamd-Ghadareh S, Salimi A, Fathi F, Bahrami S 2017. An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosens. Bioelectron. 96:308–16
    [Google Scholar]
  29. 29.
    Das P, Ganguly S, Mondal S, Bose M, Das AK et al. 2018. Heteroatom doped photoluminescent carbon dots for sensitive detection of acetone in human fluids. Sens. Actuators B 266:583–93
    [Google Scholar]
  30. 30.
    Liang XC, Chen SQ, Gao JM, Zhang HY, Wang Y et al. 2018. A versatile fluorimetric chemosensor for mercury (II) assay based on carbon nanodots. Sens. Actuators B 265:293–301
    [Google Scholar]
  31. 31.
    Lee HN, Ryu JS, Shin C, Chung HJ 2017. A carbon-dot-based fluorescent nanosensor for simple visualization of bacterial nucleic acids. Macromol. Biosci. 17:1700086
    [Google Scholar]
  32. 32.
    Demir B, Lemberger MM, Panagiotopoulou M, Rangel PXM, Timur S et al. 2018. Tracking hyaluronan: molecularly imprinted polymer coated carbon dots for cancer cell targeting and imaging. ACS Appl. Mater. Interfaces 10:3305–13
    [Google Scholar]
  33. 33.
    Biju V. 2014. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 43:744–64
    [Google Scholar]
  34. 34.
    Afreen S, Muthoosamy K, Manickam S, Hashim U 2015. Functionalized fullerene (C60) as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosens. Bioelectron. 63:354–64
    [Google Scholar]
  35. 35.
    Bai LJ, Chen YH, Bai Y, Chen YJ, Zhou J, Huang AL 2017. Fullerene-doped polyaniline as new redox nanoprobe and catalyst in electrochemical aptasensor for ultrasensitive detection of Mycobacterium tuberculosis MPT64 antigen in human serum. Biomaterials 133:11–19
    [Google Scholar]
  36. 36.
    Wang LR, Zhu XL, Tang XY, Wu CQ, Zhou ZJ et al. 2015. A multiple gadolinium complex decorated fullerene as a highly sensitive T1 contrast agent. Chem. Commun. 51:4390–93
    [Google Scholar]
  37. 37.
    Shi JJ, Wang L, Gao J, Liu Y, Zhang J et al. 2014. A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials 35:5771–84
    [Google Scholar]
  38. 38.
    Thakor AS, Jokerst JV, Ghanouni P, Campbell JL, Mittra E, Gambhir SS 2016. Clinically approved nanoparticle imaging agents. J. Nuclear Med. 57:1833–37
    [Google Scholar]
  39. 39.
    Ruiz JAR, Sanjuán AM, Vallejos S, García FC, García JM 2018. Smart polymers in micro and nano sensory devices. Chemosensors 6:12
    [Google Scholar]
  40. 40.
    Kim SH, Kim B, Yadavalli VK, Pishko MV 2005. Encapsulation of enzymes within polymer spheres to create optical nanosensors for oxidative stress. Anal. Chem. 77:6828–33
    [Google Scholar]
  41. 41.
    Oh WK, Jeong YS, Kim S, Jang J 2012. Fluorescent polymer nanoparticle for selective sensing of intracellular hydrogen peroxide. ACS Nano 6:8516–24
    [Google Scholar]
  42. 42.
    Liu QM, Chen S, Chen J, Du JZ 2015. An asymmetrical polymer vesicle strategy for significantly improving T1 MRI sensitivity and cancer-targeted drug delivery. Macromolecules 48:739–49
    [Google Scholar]
  43. 43.
    Guo L, Niu GG, Zheng XL, Ge JC, Liu WM et al. 2017. Single near-infrared emissive polymer nanoparticles as versatile phototheranostics. Adv. Sci. 4:1700085
    [Google Scholar]
  44. 44.
    Marszalek T, Li MM, Pisula W 2016. Design directed self-assembly of donor-acceptor polymers. Chem. Commun. 52:10938–47
    [Google Scholar]
  45. 45.
    Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT et al. 2014. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett. 9:247
    [Google Scholar]
  46. 46.
    Abd-El-Aziz AS, Agatemor C. 2018. Emerging opportunities in the biomedical applications of dendrimers. J. Inorg. Organomet. Polym. Mater. 28:369–82
    [Google Scholar]
  47. 47.
    Sharma A, Kakkar A. 2015. Designing dendrimer and miktoarm polymer based multi-tasking nanocarriers for efficient medical therapy. Molecules 20:16987–7015
    [Google Scholar]
  48. 48.
    Soler M, Mesa-Antunez P, Estevez MC, Ruiz-Sanchez AJ, Otte MA et al. 2015. Highly sensitive dendrimer-based nanoplasmonic biosensor for drug allergy diagnosis. Biosens. Bioelectron. 66:115–23
    [Google Scholar]
  49. 49.
    Sun AL. 2018. A potentiometric immunosensor for enterovirus 71 based on bis-MPA-COOH dendrimer-doped AgCl nanospheres with a silver ion-selective electrode. Analyst 143:487–92
    [Google Scholar]
  50. 50.
    Yeh PY, Chen YR, Wang CF, Chang YC 2018. Promoting multivalent antibody-antigen interactions by tethering antibody molecules on a PEGylated dendrimer-supported lipid bilayer. Biomacromolecules 19:426–37
    [Google Scholar]
  51. 51.
    Langer R. 1998. Drug delivery and targeting. Nature 392:5–10
    [Google Scholar]
  52. 52.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R 2007. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2:751–60
    [Google Scholar]
  53. 53.
    Langereis S, Keupp J, van Velthoven JLJ, de Roos IHC, Burdinski D et al. 2009. A temperature-sensitive liposomal 1H CEST and 19F contrast agent for MR image-guided drug delivery. J. Am. Chem. Soc. 131:1380–81
    [Google Scholar]
  54. 54.
    Ting G, Chang CH, Wang HE, Lee TW 2010. Nanotargeted radionuclides for cancer nuclear imaging and internal radiotherapy. J. Biomed. Biotechnol. 2010:953537
    [Google Scholar]
  55. 55.
    Seleci M, Seleci DA, Scheper T, Stahl F 2017. Theranostic liposome-nanoparticle hybrids for drug delivery and bioimaging. Int. J. Mol. Sci. 18:1415
    [Google Scholar]
  56. 56.
    Deak PE, Vrabel MR, Pizzuti VJ, Kiziltepe T, Bilgicer B 2016. Nanoallergens: a multivalent platform for studying and evaluating potency of allergen epitopes in cellular degranulation. Exp. Biol. Med. 241:996–1006
    [Google Scholar]
  57. 57.
    Deak PE, Vrabel MR, Kiziltepe T, Bilgicer B 2017. Determination of crucial immunogenic epitopes in major peanut allergy protein, Ara h2, via novel nanoallergen platform. Sci. Rep. 7:3981
    [Google Scholar]
  58. 58.
    Handlogten MW, Serezani AP, Sinn AL, Pollok KE, Kaplan MH, Bilgicer B 2014. A heterobivalent ligand inhibits mast cell degranulation via selective inhibition of allergen–IgE interactions in vivo. J. Immunol. 192:2035–41
    [Google Scholar]
  59. 59.
    Gao ZQ, Agarwal A, Trigg AD, Singh N, Fang C et al. 2007. Silicon nanowire arrays for label-free detection of DNA. Anal. Chem. 79:3291–97
    [Google Scholar]
  60. 60.
    Dorvel BR, Reddy B, Go J, Guevara CD, Salm E et al. 2012. Silicon nanowires with high-k hafnium oxide dielectrics for sensitive detection of small nucleic acid oligomers. ACS Nano 6:6150–64
    [Google Scholar]
  61. 61.
    Nuzaihan MNM, Hashim U, Arshad MKM, Kasjoo SR, Rahman SFA et al. 2016. Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control. Biosens. Bioelectron. 83:106–14
    [Google Scholar]
  62. 62.
    Ivanov YD, Pleshakova TO, Malsagova KA, Kozlov AF, Kaysheva AL et al. 2018. Detection of marker miRNAs in plasma using SOI-NW biosensor. Sens. Actuators B 261:566–71
    [Google Scholar]
  63. 63.
    Chua JH, Chee RE, Agarwal A, Wong SM, Zhang GJ 2009. Label-free electrical detection of cardiac biomarker with complementary metal-oxide semiconductor-compatible silicon nanowire sensor arrays. Anal. Chem. 81:6266–71
    [Google Scholar]
  64. 64.
    Kim K, Park C, Kwon D, Kim D, Meyyappan M et al. 2016. Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosens. Bioelectron. 77:695–701
    [Google Scholar]
  65. 65.
    Lu N, Dai PF, Gao AR, Valiaho J, Kallio P et al. 2014. Label-free and rapid electrical detection of hTSH with CMOS-compatible silicon nanowire transistor arrays. ACS Appl. Mater. Interfaces 6:20378–84
    [Google Scholar]
  66. 66.
    Yum K, Wang N, Yu MF 2010. Nanoneedle: a multifunctional tool for biological studies in living cells. Nanoscale 2:363–72
    [Google Scholar]
  67. 67.
    Chiappini C, Campagnolo P, Almeida CS, Abbassi-Ghadi N, Chow LW et al. 2015. Mapping local cytosolic enzymatic activity in human esophageal mucosa with porous silicon nanoneedles. Adv. Mater. 27:5147–52
    [Google Scholar]
  68. 68.
    Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A 2013. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv. Drug Deliv. Rev. 65:1899–920
    [Google Scholar]
  69. 69.
    Ly SY, Cho NS. 2009. Diagnosis of human hepatitis B virus in non-treated blood by the bovine IgG DNA-linked carbon nanotube biosensor. J. Clin. Virol. 44:43–47
    [Google Scholar]
  70. 70.
    Kim JP, Lee BY, Lee J, Hong S, Sim SJ 2009. Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosens. Bioelectron. 24:3372–78
    [Google Scholar]
  71. 71.
    Oh J, Yoo G, Chang YW, Kim HJ, Jose J et al. 2013. A carbon nanotube metal semiconductor field effect transistor-based biosensor for detection of amyloid-beta in human serum. Biosens. Bioelectron. 50:345–50
    [Google Scholar]
  72. 72.
    Li DY, Wang CM, Sun GC, Senapati S, Chang HC 2017. A shear-enhanced CNT-assembly nanosensor platform for ultra-sensitive and selective protein detection. Biosens. Bioelectron. 97:143–49
    [Google Scholar]
  73. 73.
    Zhang M, Wang WT, Cui YJ, Zhou NL, Shen J 2018. Magnetofluorescent carbon quantum dot decorated multiwalled carbon nanotubes for dual-modal targeted imaging in chemo-photothermal synergistic therapy. ACS Biomater. Sci. Eng. 4:151–62
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-114938
Loading
/content/journals/10.1146/annurev-anchem-061318-114938
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error