1932

Abstract

Lasers with pulse lengths from nanoseconds to femtoseconds and wavelengths from the mid-infrared to extreme ultraviolet (UV) have been used for desorption or ablation in mass spectrometry. Such laser sampling can often benefit from the addition of a second laser for postionization of neutrals. The advantages offered by laser postionization include the ability to forego matrix application, high lateral resolution, decoupling of ionization from desorption, improved analysis of electrically insulating samples, and potential for high sensitivity and depth profiling while minimizing differential detection. A description of postionization by vacuum UV radiation is followed by a consideration of multiphoton, short pulse, and other postionization strategies. The impacts of laser pulse length and wavelength are considered for laser desorption or laser ablation at low pressures. Atomic and molecular analysis via direct laser desorption/ionization using near-infrared ultrashort pulses is described. Finally, the postionization of clusters, the role of gaseous collisions, sampling at ambient pressure, atmospheric pressure photoionization, and the addition of UV postionization to MALDI are considered.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-115447
2019-06-12
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061318-115447.html?itemId=/content/journals/10.1146/annurev-anchem-061318-115447&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Burnum KE, Frappier SL, Caprioli RM 2008. Matrix-assisted laser desorption/ionization imaging mass spectrometry for the investigation of proteins and peptides. Annu. Rev. Anal. Chem. 1:689–705
    [Google Scholar]
  2. 2.
    Bae YJ, Kim MS. 2015. A thermal mechanism of ion formation in MALDI. Annu. Rev. Anal. Chem. 8:41–60
    [Google Scholar]
  3. 3.
    Lu I-C, Lee C, Lee Y-T, Ni C-K 2015. Ionization mechanism of matrix-assisted laser desorption/ionization. Annu. Rev. Anal. Chem. 8:21–39
    [Google Scholar]
  4. 4.
    Knochenmuss R. 2016. The coupled chemical and physical dynamics model of MALDI. Annu. Rev. Anal. Chem. 9:365–85
    [Google Scholar]
  5. 5.
    Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2:151–53
    [Google Scholar]
  6. 6.
    Karas M, Bachmann D, Bahr U, Hillenkamp F 1987. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process. 78:53–68
    [Google Scholar]
  7. 7.
    Dreisewerd K. 2014. Recent methodological advances in MALDI mass spectrometry. Anal. Bioanal. Chem. 406:2261–78
    [Google Scholar]
  8. 8.
    Caprioli RM. 2014. Imaging mass spectrometry: molecular microscopy for enabling a new age of discovery. Proteomics 14:807–9
    [Google Scholar]
  9. 9.
    Spengler B. 2015. Mass spectrometry imaging of biomolecular information. Anal. Chem. 87:64–82
    [Google Scholar]
  10. 10.
    Murray KK, Seneviratne CA, Ghorai S 2016. High resolution laser mass spectrometry bioimaging. Methods 104:118–26
    [Google Scholar]
  11. 11.
    Palmer A, Trede D, Alexandrov T 2016. Where imaging mass spectrometry stands: here are the numbers. Metabolomics 12:107
    [Google Scholar]
  12. 12.
    Demirev PA, Fenselau C. 2008. Mass spectrometry for rapid characterization of microorganisms. Annu. Rev. Anal. Chem. 1:71–93
    [Google Scholar]
  13. 13.
    Buchberger A, Yu Q, Li L 2015. Advances in mass spectrometric tools for probing neuropeptides. Annu. Rev. Anal. Chem. 8:485–509
    [Google Scholar]
  14. 14.
    Gurard-Levin ZA, Mrksich M. 2008. Combining self-assembled monolayers and mass spectrometry for applications in biochips. Annu. Rev. Anal. Chem. 1:767–800
    [Google Scholar]
  15. 15.
    Greving MP, Patti GJ, Siuzdak G 2011. Nanostructure-initiator mass spectrometry metabolite analysis and imaging. Anal. Chem. 83:2–7
    [Google Scholar]
  16. 16.
    Stolee JA, Walker BN, Zorba V, Russo RE, Vertes A 2012. Laser-nanostructure interactions for ion production. Phys. Chem. Chem. Phys. 14:8453–71
    [Google Scholar]
  17. 17.
    Rzagalinski I, Volmer DA. 2017. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry—a tutorial review. Biochim. Biophys. Acta Proteins Proteom. 1865:726–39
    [Google Scholar]
  18. 18.
    Taylor AJ, Dexter A, Bunch J 2018. Exploring ion suppression in mass spectrometry imaging of a heterogeneous tissue. Anal. Chem. 90:5637–45
    [Google Scholar]
  19. 19.
    Nemes P, Barton AA, Li Y, Vertes A 2008. Ambient molecular imaging and depth profiling of live tissue by infrared laser ablation electrospray ionization mass spectrometry. Anal. Chem. 80:4575–82
    [Google Scholar]
  20. 20.
    Cui Y, Bhardwaj C, Milasinovic S, Carlson RP, Gordon RJ, Hanley L 2013. Molecular imaging and depth profiling of biomaterials interfaces by femtosecond laser desorption postionization mass spectrometry. ACS Appl. Mater. Interfaces 5:9269–75
    [Google Scholar]
  21. 21.
    Cui Y, Veryovkin IV, Majeski MW, Cavazos DR, Hanley L 2015. High lateral resolution versus molecular preservation in near-IR fs-laser desorption postionization mass spectrometry. Anal. Chem. 87:367–71
    [Google Scholar]
  22. 22.
    Flanigan P, Levis R. 2014. Ambient femtosecond laser vaporization and nanosecond laser desorption electrospray ionization mass spectrometry. Annu. Rev. Anal. Chem. 7:229–56
    [Google Scholar]
  23. 23.
    Zou J, Talbot F, Tata A, Ermini L, Franjic K et al. 2015. Ambient mass spectrometry imaging with picosecond infrared laser ablation electrospray ionization (PIR-LAESI). Anal. Chem. 87:12071–79
    [Google Scholar]
  24. 24.
    Akhmetov A, Moore JF, Gasper GL, Koin PJ, Hanley L 2010. Laser desorption postionization for imaging MS of biological material. J. Mass Spectrom. 45:137–45
    [Google Scholar]
  25. 25.
    Akhmetov A, Bhardwaj C, Hanley L 2015. Laser desorption postionization mass spectrometry imaging of biological targets. Mass Spectrometry Imaging of Small Molecules 1203 L He 185–94 New York: Springer Sci. Bus. Media
    [Google Scholar]
  26. 26.
    Soltwisch J, Kettling H, Vens-Cappell S, Wiegelmann M, Müthing J, Dreisewerd K 2015. Mass spectrometry imaging with laser-induced postionization. Science 348:211–15
    [Google Scholar]
  27. 27.
    Hanley L, Kornienko O, Ada ET, Fuoco E, Trevor JL 1999. Surface mass spectrometry of molecular species. J. Mass Spectrom. 34:705–23
    [Google Scholar]
  28. 28.
    Gilmore IS, Heiles S, Pieterse CL 2019. Metabolic imaging at the single-cell scale: recent advances in mass spectrometry imaging. Annu. Rev. Anal. Chem. 12: In press. https://doi.org/10.1146/annurev-anchem-061318-115516
    [Crossref] [Google Scholar]
  29. 29.
    Huang M-Z, Yuan C-H, Cheng S-C, Cho Y-T, Shiea J 2010. Ambient ionization mass spectrometry. Annu. Rev. Anal. Chem. 3:43–65
    [Google Scholar]
  30. 30.
    Cheng S-C, Shiea C, Huang Y-L, Wang C-H, Cho Y-T, Shiea J 2017. Laser-based ambient mass spectrometry. Anal. Methods 9:4924–35
    [Google Scholar]
  31. 31.
    Kauppila TJ, Syage JA, Benter T 2017. Recent developments in atmospheric pressure photoionization-mass spectrometry. Mass Spectrom. Rev. 36:423–49
    [Google Scholar]
  32. 32.
    Wilson KR, Jimenez-Cruz M, Nicolas C, Belau L, Leone SR, Ahmed M 2006. Thermal vaporization of biological nanoparticles: fragment-free vacuum ultraviolet photoionization mass spectra of tryptophan, phenylalanine-glycine-glycine, and b-carotene. J. Phys. Chem. A 110:2106–13
    [Google Scholar]
  33. 33.
    Hanley L, Zimmermann R. 2009. Light and molecular ions: the emergence of vacuum UV single-photon ionization in MS. Anal. Chem. 81:4174–82
    [Google Scholar]
  34. 34.
    Blaze MTM, Takahashi LK, Zhou J, Ahmed M, Gasper GL et al. 2011. Brominated tyrosine and polyelectrolyte multilayer analysis by laser desorption VUV postionization and secondary ion mass spectrometry. Anal. Chem. 83:4962–69
    [Google Scholar]
  35. 35.
    Gasper GL, Takahashi LK, Zhou J, Ahmed M, Moore JF, Hanley L 2010. Laser desorption postionization mass spectrometry of antibiotic-treated bacterial biofilms using tunable vacuum ultraviolet radiation. Anal. Chem. 82:7472–78
    [Google Scholar]
  36. 36.
    Van Bramer SE, Johnston MV 1990. 10.5 eV photoionization mass spectrometry of aliphatic compounds. J. Am. Soc. Mass Spectrom. 1:419–26
    [Google Scholar]
  37. 37.
    Finch JW, Toerne KA, Schram KH, Denton MB 2005. Evaluation of a hydrogen laser vacuum ultraviolet source for photoionization mass spectrometry of pharmaceuticals. Rapid Commun. Mass Spectrom. 19:15–22
    [Google Scholar]
  38. 38.
    Blaze MTM, Akhmetov A, Aydin B, Edirisinghe PD, Uygur G, Hanley L 2012. Quantification of antibiotic in biofilm-inhibiting multilayers by 7.87 eV laser desorption postionization MS imaging. Anal. Chem. 84:9410–15
    [Google Scholar]
  39. 39.
    Heinbuch S, Grisham M, Martz D, Rocca JJ 2005. Demonstration of a desk-top size high repetition rate soft X-ray laser. Opt. Express 13:4050–55
    [Google Scholar]
  40. 40.
    Dong F, Heinbuch S, Xie Y, Bernstein ER, Rocca JJ et al. 2009. C=C bond cleavage on neutral VO3(V2O5)n clusters. J. Am. Chem. Soc. 131:1057–66
    [Google Scholar]
  41. 41.
    Gasper GL, Takahashi LK, Zhou J, Ahmed M, Moore JF, Hanley L 2011. Comparing vacuum and extreme ultraviolet radiation for postionization of laser desorbed neutrals from bacterial biofilms and organic fullerenes. Nuclear Instrum. Methods Phys. Res. A 649:222–24
    [Google Scholar]
  42. 42.
    Heimann PA, Koike M, Hsu CW, Blank D, Yang XM et al. 1997. Performance of the vacuum ultraviolet high-resolution and high-flux beamline for chemical dynamics studies at the Advanced Light Source. Rev. Sci. Instrum. 68:1945–51
    [Google Scholar]
  43. 43.
    Li Y, Qi F. 2009. Recent applications of synchrotron VUV photoionization mass spectrometry: insight into combustion chemistry. Acc. Chem. Res. 43:68–78
    [Google Scholar]
  44. 44.
    Zhou J, Takahashi LK, Wilson KR, Leone SR, Ahmed M 2010. Internal energies of ion-sputtered neutral tryptophan and thymine molecules determined by vacuum ultraviolet photoionization. Anal. Chem. 82:3905–13
    [Google Scholar]
  45. 45.
    Kostko O, Takahashi LK, Ahmed M 2011. Desorption dynamics, internal energies and imaging of organic molecules from surfaces with laser desorption and vacuum ultraviolet (VUV) photoionization. Chem. Asian J. 6:3066–76
    [Google Scholar]
  46. 46.
    Hanna SJ, Campuzano-Jost P, Simpson EA, Robb DB, Burak I et al. 2009. A new broadly tunable (7.4–10.2 eV) laser based VUV light source and its first application to aerosol mass spectrometry. Int. J. Mass Spectrom. 279:134–46
    [Google Scholar]
  47. 47.
    Todt MA, Albert DR, Davis HF 2016. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media. Rev. Sci. Instrum. 87:063106
    [Google Scholar]
  48. 48.
    Trevor JL, Mencer DE, Lykke KR, Pellin MJ, Hanley L 1997. Surface mass spectrometry of biotinylated self-assembled monolayers. Anal. Chem. 69:4331–38
    [Google Scholar]
  49. 49.
    Levis RJ. 1994. Laser desorption and ejection of biomolecules from the condensed phase into the gas phase. Annu. Rev. Phys. Chem. 45:483–518
    [Google Scholar]
  50. 50.
    Dreisewerd K. 2003. The desorption process in MALDI. Chem. Rev. 103:395–425
    [Google Scholar]
  51. 51.
    Ready JF. 1971. Effects of High-Power Laser Radiation New York: Academic
  52. 52.
    Land DP, Wang DTS, Tai T-L, Sherman MG, Hemminger JC, McIver RT Jr. 1990. Postionization of laser-desorbed neutrals for the analysis of molecular adsorbates on surfaces. Lasers and Mass Spectrometry DM Lubman 157–78 New York: Oxford Univ. Press
    [Google Scholar]
  53. 53.
    Siegel MM, Tabei K, Tsao R, Pastel MJ, Pandey RK et al. 1999. Comparative mass spectrometric analyses of photofrin oligomers by fast atom bombardment mass spectrometry, UV and IR matrix-assisted laser desorption/ionization mass spectrometry, electrospray ionization mass spectrometry, and laser desorption/jet-cooling photoionization mass spectrometry. J. Mass Spectrom. 34:661–69
    [Google Scholar]
  54. 54.
    Marksteiner M, Haslinger P, Sclafani M, Ulbricht H, Arndt M 2009. UV and VUV ionization of organic molecules, clusters, and complexes. J. Phys. Chem. A 113:9952–57
    [Google Scholar]
  55. 55.
    Sezer U, Schmid P, Felix L, Mayor M, Arndt M 2015. Stability of high-mass molecular libraries: the role of the oligoporphyrin core. J. Mass Spectrom. 50:235–39
    [Google Scholar]
  56. 56.
    Tatra S, Vázquez RG, Stiglbrunner C, Otto A 2016. Numerical simulation of laser ablation with short and ultra-short pulses for metals and semiconductors. Phys. Proc. 83:1339–46
    [Google Scholar]
  57. 57.
    Yagnik GB, Hansen RL, Korte AR, Reichert MD, Vela J, Lee YJ 2016. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry. Anal. Chem. 88:8926–30
    [Google Scholar]
  58. 58.
    Zinovev AV, Veryovkin IV, Moore JF, Pellin MJ 2007. Laser-driven acoustic desorption of organic molecules from back-irradiated solid foils. Anal. Chem. 79:8232–41
    [Google Scholar]
  59. 59.
    Huang Z, Ossenbrüggen T, Rubinsky I, Schust M, Horke DA, Küpper J 2018. Development and characterization of a laser-induced acoustic desorption source. Anal. Chem. 90:3920–27
    [Google Scholar]
  60. 60.
    Ellis SR, Soltwisch J, Paine MRL, Dreisewerd K, Heeren RMA 2017. Laser post-ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced MALDI-MS imaging of lipids. Chem. Commun. 53:7246–49
    [Google Scholar]
  61. 61.
    Deleted in proof
  62. 62.
    Pleticha FD, Lee D, Sinnott SB, Bolotin IL, Majeski MW, Hanley L 2012. Acetylene ion-enhanced bonding of PbS nanoparticles to quaterthiophene in thin films. J. Phys. Chem. C 116:21693–98
    [Google Scholar]
  63. 63.
    Pan Y, Yin H, Zhang T, Guo H, Sheng L, Qi F 2008. The characterization of selected drugs with infrared laser desorption/tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Rapid Commun. Mass Spectrom. 22:2515–20
    [Google Scholar]
  64. 64.
    Pomerantz AE, Hammond MR, Morrow AL, Mullins OC, Zare RN 2008. Two-step laser mass spectrometry of asphaltenes. J. Am. Chem. Soc. 130:7216–17
    [Google Scholar]
  65. 65.
    Sabbah H, Morrow AL, Pomerantz AE, Zare RN 2011. Evidence for island structures as the dominant architecture of asphaltenes. Energy Fuels 25:1597–604
    [Google Scholar]
  66. 66.
    Wang W, Taylor C, Hu H, Humphries KL, Jaini A et al. 2017. Nanoaggregates of diverse asphaltenes by mass spectrometry and molecular dynamics. Energy Fuels 31:9140–51
    [Google Scholar]
  67. 67.
    Yang Q, Hu Y, Wei Y, Wang H, Guan J et al. 2013. In situ detection of methylene blue in tissues by laser desorption vacuum ultraviolet single photon postionization mass spectrometry. Int. J. Mass Spectrom. 353:12–18
    [Google Scholar]
  68. 68.
    Lu Q, Hu Y, Chen J, Jin S 2017. Laser desorption postionization mass spectrometry imaging of folic acid molecules in tumor tissue. Anal. Chem. 89:8238–43
    [Google Scholar]
  69. 69.
    Liu R, Yin Z, Cheng X, Meng Y, Hang W, Huang B 2018. Confirmatory surface analysis of equivocal documents with pigment-based gel inks via laser desorption laser postionization mass spectrometry imaging. Anal. Bioanal. Chem. 410:1445–52
    [Google Scholar]
  70. 70.
    Fichou D 1999. Handbook of Oligo- and Polythiophenes Weinheim, Ger.: Wiley-VCH
  71. 71.
    Hall-Stoodley L, Costerton JW, Stoodley P 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2:95–108
    [Google Scholar]
  72. 72.
    Kostakioti M, Hadjifrangiskou M, Hultgren SJ 2013. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Biol. 3:a010306
    [Google Scholar]
  73. 73.
    Bhardwaj C, Cui Y, Hofstetter T, Liu SY, Bernstein HC et al. 2013. Differentiation of microbial species and strains in coculture biofilms by multivariate analysis of laser desorption postionization mass spectra. Analyst 138:6844–51
    [Google Scholar]
  74. 74.
    Boesl U. 1991. Multiphoton excitation and mass-selective ion detection for neutral and ion spectroscopy. J. Phys. Chem. 95:2949–62
    [Google Scholar]
  75. 75.
    Boesl U. 2000. Laser mass spectrometry for environmental and industrial chemical trace analysis. J. Mass Spectrom. 35:289–304
    [Google Scholar]
  76. 76.
    Streibel T, Zimmermann R. 2014. Resonance-enhanced multiphoton ionization mass spectrometry (REMPI-MS): applications for process analysis. Annu. Rev. Anal. Chem. 7:361–81
    [Google Scholar]
  77. 77.
    Boesl U, Kartouzian A. 2016. Mass-selective chiral analysis. Annu. Rev. Anal. Chem. 9:343–64
    [Google Scholar]
  78. 78.
    Getty SA, Brinckerhoff WB, Cornish T, Ecelberger S, Floyd M 2012. Compact two-step laser time-of-flight mass spectrometer for in situ analyses of aromatic organics on planetary missions. Rapid Commun. Mass Spectrom. 26:2786–90
    [Google Scholar]
  79. 79.
    Henderson BL, Gudipati MS. 2014. Plume composition and evolution in multicomponent ices using resonant two-step laser ablation and ionization mass spectrometry. J. Phys. Chem. A 118:5454–63
    [Google Scholar]
  80. 80.
    Strickland D, Mourou G. 1985. Compression of amplified chirped optical pulses. Opt. Commun. 56:219–21
    [Google Scholar]
  81. 81.
    Cui Y. 2015. The application of ultrafast laser pulses to laser desorption mass spectrometry PhD Thesis Univ. Ill. Chicago:
  82. 82.
    Lockyer NP, Vickerman JC. 1998. Multiphoton ionization mass spectrometry of small biomolecules with nanosecond and femtosecond laser pulses. Int. J. Mass Spectrom. Ion Process. 176:77–86
    [Google Scholar]
  83. 83.
    Lockyer NP, Vickerman JC. 2000. Single photon and femtosecond multiphoton ionisation of the dipeptide valyl-valine. Int. J. Mass Spectrom. Ion Process. 197:197–209
    [Google Scholar]
  84. 84.
    Kouno H, Imasaka T. 2016. The efficiencies of resonant and nonresonant multiphoton ionization in the femtosecond region. Analyst 141:5274–80
    [Google Scholar]
  85. 85.
    Kucher A, Jackson LM, Lerach JO, Bloom AN, Popczun NJ et al. 2014. Near infrared (NIR) strong field ionization and imaging of C60 sputtered molecules: overcoming matrix effects and improving sensitivity. Anal. Chem. 86:8613–20
    [Google Scholar]
  86. 86.
    Breuer L, Kucher A, Herder M, Wucher A, Winograd N 2014. Formation of neutral InmCn clusters under C60 ion bombardment of indium. J. Phys. Chem. A 118:8542–52
    [Google Scholar]
  87. 87.
    Chen Z, Vertes A. 2008. Early plume expansion in atmospheric pressure midinfrared laser ablation of water-rich targets. Phys. Rev. E 77:036316
    [Google Scholar]
  88. 88.
    Nemes P, Barton AA, Vertes A 2009. Three-dimensional imaging of metabolites in tissues under ambient conditions by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 81:6668–75
    [Google Scholar]
  89. 89.
    Zou J, Wu C, Robertson WD, Zhigilei LV, Miller RJ 2016. Molecular dynamics investigation of desorption and ion separation following picosecond infrared laser (PIRL) ablation of an ionic aqueous protein solution. J. Chem. Phys. 145:204202
    [Google Scholar]
  90. 90.
    Petersen H, Tavakoli F, Kruber S, Münscher A, Gliese A et al. 2016. Comparative study of wound healing in rat skin following incision with a novel picosecond infrared laser (PIRL) and different surgical modalities. Lasers Surg. Med. 48:385–91
    [Google Scholar]
  91. 91.
    Lu Y, Pieterse CL, Robertson WD, Miller RJD 2018. Soft picosecond infrared laser extraction of highly charged proteins and peptides from bulk liquid water for mass spectrometry. Anal. Chem. 90:4422–28
    [Google Scholar]
  92. 92.
    Russo RE, Mao X, Mao SS 2002. The physics of laser ablation in microchemical analysis. Anal. Chem. 74:70A–77A
    [Google Scholar]
  93. 93.
    Vogel A, Venugopalan V. 2003. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103:577–644
    [Google Scholar]
  94. 94.
    Gattass RF, Mazur E. 2008. Femtosecond laser micromaching in transparent materials. Nat. Photon. 2:219–25
    [Google Scholar]
  95. 95.
    Vogel A, Noack J, Huttman G, Paltauf G 2005. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81:1015–45
    [Google Scholar]
  96. 96.
    Masuhara H. 2013. Time-resolved spectroscopic and imaging studies on laser ablation of molecular systems: from mechanistic study to bio/nano applications. Bull. Chem. Soc. Jpn. 86:755–83
    [Google Scholar]
  97. 97.
    Maxwell S, Mazur E. 2005. Nanoprocessing of subcellular targets using femtosecond laser pulses. Med. Laser Appl. 20:193–200
    [Google Scholar]
  98. 98.
    Liu Y, Sun S, Singha S, Cho MR, Gordon RJ 2005. 3D femtosecond laser patterning of collagen for directed cell attachment. Biomaterials 26:4597–605
    [Google Scholar]
  99. 99.
    Cui Y, Moore JF, Milasinovic S, Liu Y, Gordon RJ, Hanley L 2012. Depth profiling and imaging capabilities of an ultrashort pulse laser ablation time of flight mass spectrometer. Rev. Sci. Instrum. 83:093702
    [Google Scholar]
  100. 100.
    Milasinovic S, Cui Y, Gordon RJ, Hanley L 2014. Internal energy of thermometer ions formed by femtosecond laser desorption: implications for mass spectrometric imaging. J. Phys. Chem. C 118:28938–47
    [Google Scholar]
  101. 101.
    Milasinovic S, Liu Y, Bhardwaj C, Blaze MTM, Gordon RJ, Hanley L 2012. Feasibility of depth profiling of animal tissue by ultrashort pulse laser ablation. Anal. Chem. 84:3945–51
    [Google Scholar]
  102. 102.
    Milasinovic S, Liu Y, Gasper GL, Zhao Y, Johnston JL et al. 2010. Ultrashort pulse laser ablation for depth profiling of bacterial biofilms. J. Vac. Sci. Technol. A 28:647–51
    [Google Scholar]
  103. 103.
    Zhang B, He M, Hang W, Huang B 2013. Minimizing matrix effect by femtosecond laser ablation and ionization in elemental determination. Anal. Chem. 85:4507–11
    [Google Scholar]
  104. 104.
    Moreno-García P, Grimaudo V, Riedo A, Tulej M, Wurz P, Broekmann P 2016. Towards matrix-free femtosecond-laser desorption mass spectrometry for in situ space research. Rapid Commun. Mass Spectrom. 30:1031–36
    [Google Scholar]
  105. 105.
    Grimaudo V, Moreno-García P, Riedo A, Meyer S, Tulej M et al. 2017. Toward three-dimensional chemical imaging of ternary Cu–Sn–Pb alloys using femtosecond laser ablation/ionization mass spectrometry. Anal. Chem. 89:1632–41
    [Google Scholar]
  106. 106.
    Grimaudo V, Moreno-García P, Riedo A, Neuland MB, Tulej M et al. 2015. High-resolution chemical depth profiling of solid material using a miniature laser ablation/ionization mass spectrometer. Anal. Chem. 87:2037–41
    [Google Scholar]
  107. 107.
    Neuland MB, Grimaudo V, Mezger K, Moreno-García P, Riedo A et al. 2016. Quantitative measurement of the chemical composition of geological standards with a miniature laser ablation/ionization mass spectrometer designed for in situ application in space research. Meas. Sci. Technol. 27:035904
    [Google Scholar]
  108. 108.
    Griffiths RL, Sarsby J, Guggenheim EJ, Race AM, Steven RT et al. 2013. Formal lithium fixation improves direct analysis of lipids in tissue by mass spectrometry. Anal. Chem. 85:7146–53
    [Google Scholar]
  109. 109.
    Walker AV, Gelb LD, Barry GE, Subanajouy P, Poudel A et al. 2018. Femtosecond laser desorption ionization mass spectrometry imaging and multivariate analysis of lipids in pancreatic tissue. Biointerphases 13:03B416
    [Google Scholar]
  110. 110.
    Kuznetsov I, Filevich J, Dong F, Woolston M, Chao W et al. 2015. Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry. Nat. Commun. 6:6944
    [Google Scholar]
  111. 111.
    Wang J, Liu F, Mo Y, Wang Z, Zhang S, Zhang X 2017. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation. Rev. Sci. Instrum. 88:114102
    [Google Scholar]
  112. 112.
    Wang J, Wang Z, Liu F, Cai L, Pan J-B et al. 2018. Vacuum ultraviolet laser desorption/ionization mass spectrometry imaging of single cells with submicron craters. Anal. Chem. 90:10009–15
    [Google Scholar]
  113. 113.
    Müller R, Kuznetsov I, Arbelo Y, Trottmann M, Menoni CS et al. 2018. Depth-profiling microanalysis of CoNCN water-oxidation catalyst using a λ = 46.9 nm plasma laser for nano-ionization mass spectrometry. Anal. Chem. 90:9234–40
    [Google Scholar]
  114. 114.
    Vekey K. 1996. Internal energy effects in mass spectrometry. J. Mass Spectrom. 31:445–63
    [Google Scholar]
  115. 115.
    Luo G, Marginean I, Vertes A 2002. Internal energy of ions generated by matrix-assisted laser desorption/ionization. Anal. Chem. 74:6185–90
    [Google Scholar]
  116. 116.
    Gabelica V, Schulz E, Karas M 2004. Internal energy build-up in matrix-assisted laser desorption/ionization. J. Mass Spectrom. 39:579–93
    [Google Scholar]
  117. 117.
    Kostko O, Bandyopadhyay B, Ahmed M 2016. Vacuum ultraviolet photoionization of complex chemical systems. Annu. Rev. Phys. Chem. 67:19–40
    [Google Scholar]
  118. 118.
    Niehaus M, Soltwisch J. 2018. New insights into mechanisms of material ejection in MALDI mass spectrometry for a wide range of spot sizes. Sci. Rep. 8:7755
    [Google Scholar]
  119. 119.
    Trimpin S. 2016. “Magic” ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 27:4–21
    [Google Scholar]
  120. 120.
    Schneider BB, Lock C, Covey TR 2005. AP and vacuum MALDI on a QqLIT instrument. J. Am. Soc. Mass Spectrom. 16:176–82
    [Google Scholar]
  121. 121.
    Wu C, Dill AL, Eberlin LS, Cooks RG, Ifa DR 2013. Mass spectrometry imaging under ambient conditions. Mass Spectrom. Rev. 32:218–43
    [Google Scholar]
  122. 122.
    Ehlert S, Hölzer J, Rittgen J, Pütz M, Schulte-Ladbeck R, Zimmermann R 2013. Rapid on-site detection of explosives on surfaces by ambient pressure laser desorption and direct inlet single photon ionization or chemical ionization mass spectrometry. Anal. Bioanal. Chem. 405:6979–93
    [Google Scholar]
  123. 123.
    Flanigan PM, Shi F, Perez J, Karki S, Pfeiffer C et al. 2014. Determination of internal energy distributions of laser electrospray mass spectrometry using thermometer ions and other biomolecules. J. Am. Soc. Mass Spectrom. 25:1572–82
    [Google Scholar]
  124. 124.
    Nemes P, Huang H, Vertes A 2012. Internal energy deposition and ion fragmentation in atmospheric-pressure mid-infrared laser ablation electrospray ionization. Phys. Chem. Chem. Phys. 14:2501–7
    [Google Scholar]
  125. 125.
    Bhardwaj C, Hanley L. 2014. Ion sources for mass spectrometric identification and imaging of molecular species. Nat. Prod. Rep. 31:756–67
    [Google Scholar]
  126. 126.
    Vaikkinen A, Shrestha B, Kauppila TJ, Vertes A, Kostiainen R 2012. Infrared laser ablation atmospheric pressure photoionization mass spectrometry. Anal. Chem. 84:1630–36
    [Google Scholar]
  127. 127.
    Wu Q, Zare RN. 2015. Laser desorption lamp ionization source for ion trap mass spectrometry. J. Mass Spectrom. 50:160–64
    [Google Scholar]
  128. 128.
    Benham K, Hodyss R, Fernández FM, Orlando TM 2016. Laser-induced acoustic desorption atmospheric pressure photoionization via VUV-generating microplasmas. J. Am. Soc. Mass Spectrom. 27:1805–12
    [Google Scholar]
  129. 129.
    Yung YP, Wickramasinghe R, Vaikkinen A, Kauppila TJ, Veryovkin IV, Hanley L 2017. Solid sampling with a diode laser for portable ambient mass spectrometry. Anal. Chem. 89:7297–301
    [Google Scholar]
  130. 130.
    Laiko VV, Moyer SC, Cotter RJ 2000. Atmospheric pressure MALDI/ion trap mass spectrometry. Anal. Chem. 72:5239–43
    [Google Scholar]
  131. 131.
    Kompauer M, Heiles S, Spengler B 2016. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat. Methods 14:90–96
    [Google Scholar]
  132. 132.
    Diologent L, Bolbach G, Focsa C, Ziskind M, Fournier I 2017. Laser induced post-desolvation of MALDI clusters. Int. J. Mass Spectrom. 416:29–36
    [Google Scholar]
  133. 133.
    Shi F, Flanigan PM, Archer JJ, Levis RJ 2015. Ambient molecular analysis of biological tissue using low-energy, femtosecond laser vaporization and nanospray postionization mass spectrometry. J. Am. Soc. Mass Spectrom. 27:542–51
    [Google Scholar]
  134. 134.
    Isinger M, Squibb RJ, Busto D, Zhong S, Harth A et al. 2017. Photoionization in the time and frequency domain. Science 358:893–96
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-115447
Loading
/content/journals/10.1146/annurev-anchem-061318-115447
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error