1932

Abstract

Atmospheric aerosol, particulate matter suspended in the air we breathe, exerts a strong impact on our health and the environment. Controlling the amount of particulate matter in air is difficult, as there are many ways particles can form by both natural and anthropogenic processes. We gain insight into the sources of particulate matter through chemical composition measurements. A substantial portion of atmospheric aerosol is organic, and this organic matter is exceedingly complex on a molecular scale, encompassing hundreds to thousands of individual compounds that distribute between the gas and particle phases. Because of this complexity, no single analytical technique is sufficient. However, mass spectrometry plays a crucial role owing to its combination of high sensitivity and molecular specificity. This review surveys the various ways mass spectrometry is used to characterize atmospheric organic aerosol at a molecular level, tracing these methods from inception to current practice, with emphasis on current and emerging areas of research. Both offline and online approaches are covered, and molecular measurements with them are discussed in the context of identifying sources and elucidating the underlying chemical mechanisms of particle formation. There is an ongoing need to improve existing techniques and develop new ones if we are to further advance our knowledge of how to mitigate the unwanted health and environmental impacts of particles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061516-045135
2019-06-12
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061516-045135.html?itemId=/content/journals/10.1146/annurev-anchem-061516-045135&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Thompson JE. 2018. Airborne particulate matter: human exposure and health effects. J. Occup. Environ. Med. 60:5392–423
    [Google Scholar]
  2. 2.
    Shrivastava M, Cappa CD, Fan J, Goldstein AH, Guenther AB et al. 2017. Recent advances in understanding secondary organic aerosol: implications for global climate forcing. Rev. Geophys. 55:2509–59
    [Google Scholar]
  3. 3.
    Bell ML, Davis DL, Fletcher T 2004. A retrospective assessment of mortality from the London smog episode of 1952: the role of influenza and pollution. Environ. Health Perspect. 112:16–8
    [Google Scholar]
  4. 4.
    Mukherjee A, Agrawal M. 2017. World air particulate matter: sources, distribution and health effects. Environ. Chem. Lett. 15:2283–309
    [Google Scholar]
  5. 5.
    Mousavi A, Sowlat MH, Hasheminassab S, Polidori A, Sioutas C 2018. Spatio-temporal trends and source apportionment of fossil fuel and biomass burning black carbon (BC) in the Los Angeles Basin. Sci. Total Environ. 640–641:1231–40
    [Google Scholar]
  6. 6.
    Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D et al. 2009. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 9:145155–236
    [Google Scholar]
  7. 7.
    Glasius M, Goldstein AH. 2016. Recent discoveries and future challenges in atmospheric organic chemistry. Environ. Sci. Technol. 50:62754–64
    [Google Scholar]
  8. 8.
    Gentner DR, Jathar SH, Gordon TD, Bahreini R, Day DA et al. 2017. Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions. Environ. Sci. Technol. 51:31074–93
    [Google Scholar]
  9. 9.
    Pankow JF. 1994. An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 28:2185–88
    [Google Scholar]
  10. 10.
    Pankow JF. 1994. An absorption-model of the gas aerosol partitioning involved in the formation of secondary organic aerosol. Atmos. Environ. 28:2189–93
    [Google Scholar]
  11. 11.
    Pratt KA, Prather KA. 2012. Mass spectrometry of atmospheric aerosols—recent developments and applications. Part I: off-line mass spectrometry techniques. Mass Spectrom. Rev. 31:11–16
    [Google Scholar]
  12. 12.
    Pratt KA, Prather KA. 2012. Mass spectrometry of atmospheric aerosols—Recent developments and applications. Part II: on-line mass spectrometry techniques. Mass Spectrom. Rev. 31:117–48
    [Google Scholar]
  13. 13.
    Rogge WF, Mazurek MA, Hildemann LM, Cass GR, Simoneit BRT 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmos. Environ. A 27:81309–30
    [Google Scholar]
  14. 14.
    Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT 1993. Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ. Sci. Technol. 27:4636–51
    [Google Scholar]
  15. 15.
    Simoneit BRT, Rogge WF, Mazurek MA, Standley LJ, Hildemann LM, Cass GR 1993. Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environ. Sci. Technol. 27:122533–41
    [Google Scholar]
  16. 16.
    Rogge WF, Cass GR, Hildemann LM, Mazurek MA, Simoneit BRT 1991. Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations. Environ. Sci. Technol. 25:61112–25
    [Google Scholar]
  17. 17.
    Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT 1994. Sources of fine organic aerosol. 6. Cigarette smoke in the urban atmosphere. Environ. Sci. Technol. 28:71375–88
    [Google Scholar]
  18. 18.
    Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO et al. 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos. Environ. 33:2173–82
    [Google Scholar]
  19. 19.
    Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT 1999. Measurement of emissions from air pollution sources. 1. C1 through C29 organic compounds from meat charbroiling. Environ. Sci. Technol. 33:101566–77
    [Google Scholar]
  20. 20.
    Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT 1999. Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks. Environ. Sci. Technol. 33:101578–87
    [Google Scholar]
  21. 21.
    Drozd GT, Zhao Y, Saliba G, Frodin B, Maddox C et al. 2018. Detailed speciation of intermediate volatility and semivolatile organic compound emissions from gasoline vehicles: effects of cold starts and implications for secondary organic aerosol formation. Environ. Sci. Technol. 53:31706–14
    [Google Scholar]
  22. 22.
    Schauer JJ, Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT 1996. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos. Environ. 30:223837–55
    [Google Scholar]
  23. 23.
    Watson JG, Chen LWA, Chow JC, Doraiswamy P, Lowenthal DH 2008. Source apportionment: findings from the U.S. supersites program. J. Air Waste Manag. Assoc. 58:2265–88
    [Google Scholar]
  24. 24.
    Robinson AL, Subramanian R, Donahue NM, Rogge WF 2006. Source apportionment of molecular markers and organic aerosol. 1. Polycyclic aromatic hydrocarbons and methodology for data visualization. Environ. Sci. Technol. 40:247803–10
    [Google Scholar]
  25. 25.
    Robinson AL, Subramanian R, Donahue NM, Bernardo-Bricker A, Rogge WF 2006. Source apportionment of molecular markers and organic aerosol. 2. Biomass smoke. Environ. Sci. Technol. 40:247811–19
    [Google Scholar]
  26. 26.
    Robinson AL, Subramanian R, Donahue NM, Bernardo-Bricker A, Rogge WF 2006. Source apportionment of molecular markers and organic aerosol. 3. Food cooking emissions. Environ. Sci. Technol. 40:247820–27
    [Google Scholar]
  27. 27.
    Chafe ZA, Brauer M, Klimont Z, Van Dingenen R, Mehta S et al. 2014. Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease. Environ. Health Perspect. 122:121314–20
    [Google Scholar]
  28. 28.
    Nolte CG, Schauer JJ, Cass GR, Simoneit BRT 1999. Highly polar organic compounds present in meat smoke. Environ. Sci. Technol. 33:193313–16
    [Google Scholar]
  29. 29.
    Sheesley RJ, Mieritz M, DeMinter JT, Shelton BR, Schauer JJ 2015. Development of an in situ derivatization technique for rapid analysis of levoglucosan and polar compounds in atmospheric organic aerosol. Atmos. Environ. 123:251–55
    [Google Scholar]
  30. 30.
    Sheesley RJ, Deminter JT, Meiritz M, Snyder DC, Schauer JJ 2010. Temporal trends in motor vehicle and secondary organic tracers using in situ methylation thermal desorption GCMS. Environ. Sci. Technol. 44:249398–404
    [Google Scholar]
  31. 31.
    Mologousi AI, Bakeas EB. 2016. Multivariate optimization of a simple and sensitive method for the determination of secondary biogenic organic compounds in airborne particles. Anal. Methods 8:204047–55
    [Google Scholar]
  32. 32.
    Rodigast M, Mutzel A, Iinuma Y, Haferkorn S, Herrmann H 2015. Characterisation and optimisation of a sample preparation method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium. Atmos. Meas. Tech. 8:62409–16
    [Google Scholar]
  33. 33.
    Yu R, Duan L, Jiang J, Hao J 2017. An optimized two-step derivatization method for analyzing diethylene glycol ozonation products using gas chromatography and mass spectrometry. J. Environ. Sci. 53:313–21
    [Google Scholar]
  34. 34.
    Claeys M, Graham B, Vas G, Wang W, Vermeylen R et al. 2004. Formation of secondary organic aerosols through photooxidation of isoprene. Science 303:56611173–76
    [Google Scholar]
  35. 35.
    Wan X, Kang S, Li Q, Rupakheti D, Zhang Q et al. 2017. Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning. Atmos. Chem. Phys. 17:148867–85
    [Google Scholar]
  36. 36.
    Hamilton JF. 2010. Using comprehensive two-dimensional gas chromatography to study the atmosphere. J. Chromatogr. Sci. 48:4274–82
    [Google Scholar]
  37. 37.
    Liu Z, Phillips JB. 1991. Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. J. Chromatogr. Sci. 29:5227–31
    [Google Scholar]
  38. 38.
    Welthagen W, Schnelle-Kreis J, Zimmermann R 2003. Search criteria and rules for comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry analysis of airborne particulate matter. J. Chromatogr. A 1019:1–2233–49
    [Google Scholar]
  39. 39.
    Kallio M, Hyötyläinen T, Lehtonen M, Jussila M, Hartonen K et al. 2003. Comprehensive two-dimensional gas chromatography in the analysis of urban aerosols. J. Chromatogr. A 1019:1–2251–60
    [Google Scholar]
  40. 40.
    Hamilton JF, Webb PJ, Lewis AC, Hopkins JR, Smith S, Davy P 2004. Partially oxidised organic components in urban aerosol using GCXGC-TOF/MS. Atmos. Chem. Phys. 4:51279–90
    [Google Scholar]
  41. 41.
    Ho SSH, Yu JZ, Chow JC, Zielinska B, Watson JG et al. 2008. Evaluation of an in-injection port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in ambient aerosol samples. J. Chromatogr. A 1200:2217–27
    [Google Scholar]
  42. 42.
    Goldstein AH, Worton DR, Williams BJ, Hering SV, Kreisberg NM et al. 2008. Thermal desorption comprehensive two-dimensional gas chromatography for in-situ measurements of organic aerosols. J. Chromatogr. A 1186:1–2340–47
    [Google Scholar]
  43. 43.
    Rogge WF, Ondov JM, Bernardo-Bricker A, Sevimoglu O 2011. Baltimore PM2.5 Supersite: highly time-resolved organic compounds-sampling duration and phase distribution-implications for health effects studies. Anal. Bioanal. Chem. 401:103069–82
    [Google Scholar]
  44. 44.
    Williams B, Goldstein A, Kreisberg N, Hering S 2006. An in-situ instrument for speciated organic composition of atmospheric aerosols: thermal desorption aerosol GC/MS-FID (TAG). Aerosol Sci. Technol. 40:8627–38
    [Google Scholar]
  45. 45.
    Williams BJ, Goldstein AH, Millet DB, Holzinger R, Kreisberg NM et al. 2007. Chemical speciation of organic aerosol during the International Consortium for Atmospheric Research on Transport and Transformation 2004: Results from in situ measurements. J. Geophys. Res. Atmos. 112:10D10S26
    [Google Scholar]
  46. 46.
    Worton DR, Kreisberg NM, Isaacman G, Teng AP, McNeish C et al. 2012. Thermal desorption comprehensive two-dimensional gas chromatography: an improved instrument for in-situ speciated measurements of organic aerosols. Aerosol Sci. Technol. 46:4380–93
    [Google Scholar]
  47. 47.
    Zhao Y, Kreisberg NM, Worton DR, Teng AP, Hering SV, Goldstein AH 2013. Development of an in situ thermal desorption gas chromatography instrument for quantifying atmospheric semi-volatile organic compounds. Aerosol Sci. Technol. 47:3258–66
    [Google Scholar]
  48. 48.
    Lambe AT, Chacon-Madrid HJ, Nguyen NT, Weitkamp EA, Kreisberg NM et al. 2010. Organic aerosol speciation: intercomparison of thermal desorption aerosol GC/MS (TAG) and filter-based techniques. Aerosol Sci. Technol. 44:2141–51
    [Google Scholar]
  49. 49.
    Zhang Y, Williams BJ, Goldstein AH, Docherty K, Ulbrich IM, Jimenez JL 2014. A technique for rapid gas chromatography analysis applied to ambient organic aerosol measurements from the thermal desorption aerosol gas chromatograph (TAG). Aerosol Sci. Technol. 48:111166–82
    [Google Scholar]
  50. 50.
    Lucattini L, Poma G, Covaci A, de Boer J, Lamoree MH, Leonards PEG 2018. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chemosphere 201:466–82
    [Google Scholar]
  51. 51.
    Manzano CA, Dodder NG, Hoh E, Morales RGE 2019. Patterns of personal exposure to urban pollutants using personal passive samplers and GC × GC/ToF-MS. Environ. Sci. Technol. 53:614–24
    [Google Scholar]
  52. 52.
    Hearn JD, Smith GD. 2004. A chemical ionization mass spectrometry method for the online analysis of organic aerosols. Anal. Chem. 76:102820–26
    [Google Scholar]
  53. 53.
    Yatavelli RLN, Thornton JA. 2010. Particulate organic matter detection using a micro-orifice volatilization impactor coupled to a chemical ionization mass spectrometer (MOVI-CIMS). Aerosol Sci. Technol. 44:161–74
    [Google Scholar]
  54. 54.
    Aljawhary D, Lee AKY, Abbatt JPD 2013. High-resolution chemical ionization mass spectrometry (ToF-CIMS): application to study SOA composition and processing. Atmos. Meas. Tech. 6:113211–24
    [Google Scholar]
  55. 55.
    Thornberry T, Murphy DM, Thomson DS, De Gouw J, Warneke C et al. 2009. Measurement of aerosol organic compounds using a novel collection/thermal-desorption PTR-ITMS instrument. Aerosol Sci. Technol. 43:5486–501
    [Google Scholar]
  56. 56.
    Holzinger R, Williams J, Herrmann F, Lelieveld J, Donahue NM, Röckmann T 2010. Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS): a new approach to study processing of organic aerosols. Atmos. Chem. Phys. 10:52257–67
    [Google Scholar]
  57. 57.
    Smith JN, Moore KF, McMurry PH, Eisele FL 2004. Atmospheric measurements of sub-20 nm diameter particle chemical composition by thermal desorption chemical ionization mass spectrometry. Aerosol Sci. Technol. 38:2100–10
    [Google Scholar]
  58. 58.
    Öktem B, Tolocka MP, Johnston MV 2004. On-line analysis of organic components in fine and ultrafine particles by photoionization aerosol mass spectrometry. Anal. Chem. 76:2253–61
    [Google Scholar]
  59. 59.
    LaFranchi BW, Petrucci GA. 2006. A comprehensive characterization of photoelectron resonance capture ionization aerosol mass spectrometry for the quantitative and qualitative analysis of organic particulate matter. Int. J. Mass Spectrom. 258:1–3120–33
    [Google Scholar]
  60. 60.
    Holzinger R, Kasper-Giebl A, Staudinger M, Schauer G, Röckmann T 2010. Analysis of the chemical composition of organic aerosol at the Mt. Sonnblick observatory using a novel high mass resolution thermal-desorption proton-transfer-reaction mass-spectrometer (hr-TD-PTR-MS). Atmos. Chem. Phys. 10:2010111–28
    [Google Scholar]
  61. 61.
    Yatavelli RLN, Lopez-Hilfiker F, Wargo JD, Kimmel JR, Cubison MJ et al. 2012. A chemical ionization high-resolution time-of-flight mass spectrometer coupled to a micro orifice volatilization impactor (MOVI-HRToF-CIMS) for analysis of gas and particle-phase organic species. Aerosol Sci. Technol. 46:121313–27
    [Google Scholar]
  62. 62.
    Dreyfus MA, Johnston MV. 2008. Rapid sampling of individual organic aerosol species in ambient air with the photoionization aerosol mass spectrometer. Aerosol Sci. Technol. 42:118–27
    [Google Scholar]
  63. 63.
    Dreyfus MA, Adou K, Zucker SM, Johnston MV 2009. Organic aerosol source apportionment from highly time-resolved molecular composition measurements. Atmos. Environ. 43:182901–10
    [Google Scholar]
  64. 64.
    Chattopadhyay S, Ziemann PJ. 2005. Vapor pressures of substituted and unsubstituted monocarboxylic and dicarboxylic acids measured using an improved thermal desorption particle beam mass spectrometry method. Aerosol Sci. Technol. 39:111085–100
    [Google Scholar]
  65. 65.
    Lopez-Hilfiker FD, Mohr C, Ehn M, Rubach F, Kleist E et al. 2014. A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmos. Meas. Tech. 7:4983–1001
    [Google Scholar]
  66. 66.
    Timkovsky J, Chan AWH, Dorst T, Goldstein AH, Oyama B, Holzinger R 2015. Comparison of advanced offline and in situ techniques of organic aerosol composition measurement during the CalNex campaign. Atmos. Meas. Tech. 8:125177–87
    [Google Scholar]
  67. 67.
    Wexler AS, Johnston MV. 2008. What have we learned from highly time-resolved measurements during EPA's supersites program and related studies. J. Air Waste Manag. Assoc. 58:2303–19
    [Google Scholar]
  68. 68.
    Canagaratna MR, Jayne JT, Jimenez JL, Allan JD, Alfarra MR et al. 2007. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 26:2185–222
    [Google Scholar]
  69. 69.
    Fröhlich R, Crenn V, Setyan A, Belis CA, Canonaco F et al. 2015. ACTRIS ACSM intercomparison—Part 2: intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers. Atmos. Meas. Tech. 8:62555–76
    [Google Scholar]
  70. 70.
    Aiken AC, DeCarlo PF, Kroll JH, Worsnop DR, Huffman JA et al. 2008. O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high resolution time-of-flight aerosol mass spectrometry. Environ. Sci. Technol. 42:124478–85
    [Google Scholar]
  71. 71.
    Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q et al. 2009. Evolution of organic aerosols in the atmosphere. Science 326:59591525–29
    [Google Scholar]
  72. 72.
    Canonaco F, Crippa M, Slowik JG, Baltensperger U, Prévôt ASH 2013. SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data. Atmos. Meas. Tech. 6:123649–61
    [Google Scholar]
  73. 73.
    Gao S, Surratt JD, Knipping EM, Edgerton ES, Shahgholi M, Seinfeld JH 2006. Characterization of polar organic components in fine aerosols in the southeastern United States: identity, origin, and evolution. J. Geophys. Res. Atmos. 111:14D14314
    [Google Scholar]
  74. 74.
    Surratt JD, Kroll JH, Kleindienst TE, Edney EO, Claeys M et al. 2007. Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 41:2517–27
    [Google Scholar]
  75. 75.
    Lukács H, Gelencsér A, Hoffer A, Kiss G, Horváth K, Hartyáni Z 2009. Quantitative assessment of organosulfates in size-segregated rural fine aerosol. Atmos. Chem. Phys. 9:231–38
    [Google Scholar]
  76. 76.
    Hettiyadura APS, Jayarathne T, Baumann K, Goldstein AH, De Gouw JA et al. 2017. Qualitative and quantitative analysis of atmospheric organosulfates in Centreville, Alabama. Atmos. Chem. Phys. 17:21343–59
    [Google Scholar]
  77. 77.
    Spolnik G, Wach P, Rudzinski KJ, Skotak K, Danikiewicz W, Szmigielski R 2018. Improved UHPLC-MS/MS methods for analysis of isoprene-derived organosulfates. Anal. Chem. 90:53416–23
    [Google Scholar]
  78. 78.
    Gómez-González Y, Wang W, Vermeylen R, Chi X, Neirynck J et al. 2012. Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes of biogenic secondary organic aerosol. Atmos. Chem. Phys. 12:1125–38
    [Google Scholar]
  79. 79.
    Feltracco M, Barbaro E, Contini D, Zangrando R, Toscano G et al. 2018. Photo-oxidation products of α-pinene in coarse, fine and ultrafine aerosol: a new high sensitive HPLC-MS/MS method. Atmos. Environ. 180:149–55
    [Google Scholar]
  80. 80.
    Zhang YY, Müller L, Winterhalter R, Moortgat GK, Hoffmann T, Pöschl U 2010. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter. Atmos. Chem. Phys. 10:167859–73
    [Google Scholar]
  81. 81.
    Laskin A, Laskin J, Nizkorodov SA 2015. Chemistry of atmospheric brown carbon. Chem. Rev. 115:104335–82Detailed review of recent applications of mass spectrometry to atmospheric measurements, focusing on the years 2015 to 2017.
    [Google Scholar]
  82. 82.
    Kitanovski Z, Grgić I, Yasmeen F, Claeys M, Čusak A 2012. Development of a liquid chromatographic method based on ultraviolet-visible and electrospray ionization mass spectrometric detection for the identification of nitrocatechols and related tracers in biomass burning atmospheric organic aerosol. Rapid Commun. Mass Spectrom. 26:7793–804
    [Google Scholar]
  83. 83.
    Claeys M, Vermeylen R, Yasmeen F, Gómez-González Y, Chi X et al. 2012. Chemical characterisation of humic-like substances from urban, rural and tropical biomass burning environments using liquid chromatography with UV/vis photodiode array detection and electrospray ionisation mass spectrometry. Environ. Chem. 9:3273–84
    [Google Scholar]
  84. 84.
    Nguyen TB, Laskin A, Laskin J, Nizkorodov SA 2013. Brown carbon formation from ketoaldehydes of biogenic monoterpenes. Faraday Discuss 165:473–94
    [Google Scholar]
  85. 85.
    Kalafut-Pettibone AJ, McGivern WS. 2013. Analytical methodology for determination of organic aerosol functional group distributions. Anal. Chem. 85:73553–60
    [Google Scholar]
  86. 86.
    Ranney AP, Ziemann PJ. 2017. Identification and quantification of oxidized organic aerosol compounds using derivatization, liquid chromatography, and chemical ionization mass spectrometry. Aerosol Sci. Technol. 51:3342–53
    [Google Scholar]
  87. 87.
    Nozière B, Kalberer M, Claeys M, Allan J, D'Anna B et al. 2015. The molecular identification of organic compounds in the atmosphere: state of the art and challenges. Chem. Rev. 115:103919–83Review includes detailed discussion of best practices for molecular characterization of organic compounds in the atmosphere.
    [Google Scholar]
  88. 88.
    Chen H, Venter A, Cooks RG 2006. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem. Commun. 2006:192042–44
    [Google Scholar]
  89. 89.
    Wu C, Dill AL, Eberlin LS, Cooks RG, Ifa DR 2013. Mass spectrometry imaging under ambient conditions. Mass Spectrom. Rev. 32:3218–43
    [Google Scholar]
  90. 90.
    Doezema LA, Longin T, Cody W, Perraud V, Dawson ML et al. 2012. Analysis of secondary organic aerosols in air using extractive electrospray ionization mass spectrometry (EESI-MS). RSC Adv 2:72930–38
    [Google Scholar]
  91. 91.
    Gallimore PJ, Kalberer M. 2013. Characterizing an extractive electrospray ionization (EESI) source for the online mass spectrometry analysis of organic aerosols. Environ. Sci. Technol. 47:137324–31
    [Google Scholar]
  92. 92.
    Horan AJ, Gao Y, Hall WA, Johnston MV 2012. Online characterization of particles and gases with an ambient electrospray ionization source. Anal. Chem. 84:219253–58
    [Google Scholar]
  93. 93.
    Swanson KD, Worth AL, Glish GL 2017. A coaxial extractive electrospray ionization source. Anal. Methods 9:344997–5002
    [Google Scholar]
  94. 94.
    Gallimore PJ, Giorio C, Mahon BM, Kalberer M 2017. Online molecular characterisation of organic aerosols in an atmospheric chamber using extractive electrospray ionisation mass spectrometry. Atmos. Chem. Phys. 17:2314485–500
    [Google Scholar]
  95. 95.
    Swanson KD, Spencer SE, Glish GL 2017. Metal cationization extractive electrospray ionization mass spectrometry of compounds containing multiple oxygens. J. Am. Soc. Mass Spectrom. 28:61030–35
    [Google Scholar]
  96. 96.
    Brüggemann M, Karu E, Stelzer T, Hoffmann T 2015. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS). Environ. Sci. Technol. 49:95571–78
    [Google Scholar]
  97. 97.
    Chan MN, Nah T, Wilson KR 2013. Real time in situ chemical characterization of sub-micron organic aerosols using Direct Analysis in Real Time mass spectrometry (DART-MS): the effect of aerosol size and volatility. Analyst 138:133749–57
    [Google Scholar]
  98. 98.
    Zhao Y, Fairhurst MC, Wingen LM, Perraud V, Ezell MJ, Finlayson-Pitts BJ 2017. New insights into atmospherically relevant reaction systems using direct analysis in real-time mass spectrometry (DART-MS). Atmos. Meas. Tech. 10:41373–86
    [Google Scholar]
  99. 99.
    Blair SL, Ng NL, Zambrzycki SC, Li A, Fernández FM 2018. Aerosol vacuum-assisted plasma ionization (aero-VaPI) coupled to ion mobility-mass spectrometry. J. Am. Soc. Mass Spectrom. 29:4635–39
    [Google Scholar]
  100. 100.
    Takáts Z, Wiseman JM, Cooks RG 2005. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J. Mass Spectrom. 40:101261–75
    [Google Scholar]
  101. 101.
    Roach PJ, Laskin J, Laskin A 2010. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135:92233–36
    [Google Scholar]
  102. 102.
    Laskin J, Laskin A, Roach PJ, Slysz GW, Anderson GA et al. 2010. High-resolution desorption electrospray ionization mass spectrometry for chemical characterization of organic aerosols. Anal. Chem. 82:52048–58
    [Google Scholar]
  103. 103.
    Roach P, Laskin J, Laskin A 2010. Molecular characterization of organic aerosols using nanospray-desorption/electrospray ionization-mass spectrometry. Anal. Chem. 82:197979–86
    [Google Scholar]
  104. 104.
    O'Brien RE, Laskin A, Laskin J, Liu S, Weber R et al. 2013. Molecular characterization of organic aerosol using nanospray desorption/electrospray ionization mass spectrometry: CalNex 2010 field study. Atmos. Environ. 68:265–72
    [Google Scholar]
  105. 105.
    O'Brien RE, Laskin A, Laskin J, Rubitschun CL, Surratt JD, Goldstein AH 2014. Molecular characterization of S- and N-containing organic constituents in ambient aerosols by negative ion mode high-resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study. J. Geophys. Res. Atmos. 119:2212706–20
    [Google Scholar]
  106. 106.
    Tao S, Lu X, Levac N, Bateman AP, Nguyen TB et al. 2014. Molecular characterization of organosulfates in organic aerosols from Shanghai and Los Angeles urban areas by nanospray-desorption electrospray ionization high-resolution mass spectrometry. Environ. Sci. Technol. 48:1810993–1001
    [Google Scholar]
  107. 107.
    Orsini DA, Ma Y, Sullivan A, Sierau B, Baumann K, Weber RJ 2003. Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition. Atmos. Environ. 37:9–101243–59
    [Google Scholar]
  108. 108.
    Clark CH, Nakao S, Asa-Awuku A, Sato K, Cocker DR 2013. Real-time study of particle-phase products from α-pinene ozonolysis and isoprene photooxidation using particle into liquid sampling directly coupled to a time-of-flight mass spectrometer (PILS-ToF). Aerosol Sci. Technol. 47:121374–82
    [Google Scholar]
  109. 109.
    Li Y, Zhang H, Zhao Z, Tian Y, Liu K et al. 2018. Mass spectral chemical fingerprints reveal the molecular dependence of exhaust particulate matters on engine speeds. J. Environ. Sci. 67:287–93
    [Google Scholar]
  110. 110.
    Zuth C, Vogel AL, Ockenfeld S, Huesmann R, Hoffmann T 2018. Ultrahigh-resolution mass spectrometry in real time: atmospheric pressure chemical ionization Orbitrap mass spectrometry of atmospheric organic aerosol. Anal. Chem. 90:158816–23
    [Google Scholar]
  111. 111.
    Kroll JH, Donahue NM, Jimenez JL, Kessler SH, Canagaratna MR et al. 2011. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem. 3:2133–39
    [Google Scholar]
  112. 112.
    Yuan B, Koss AR, Warneke C, Coggon M, Sekimoto K, De Gouw JA 2017. Proton-transfer-reaction mass spectrometry: applications in atmospheric sciences. Chem. Rev. 117:2113187–229
    [Google Scholar]
  113. 113.
    Dewulf J, Van Langenhove H, Wittmann G 2002. Analysis of volatile organic compounds using gas chromatography. Trends Anal. Chem. 21:9–10637–46
    [Google Scholar]
  114. 114.
    Melymuk L, Bohlin P, Sáňka O, Pozo K, Klánová J 2014. Current challenges in air sampling of semivolatile organic contaminants: sampling artifacts and their influence on data comparability. Environ. Sci. Technol. 48:2414077–91
    [Google Scholar]
  115. 115.
    Junninen H, Ehn M, Petäjä T, Luosujärvi L, Kotiaho T et al. 2010. A high-resolution mass spectrometer to measure atmospheric ion composition. Atmos. Meas. Tech. 3:41039–53
    [Google Scholar]
  116. 116.
    Bertram TH, Kimmel JR, Crisp TA, Ryder OS, Yatavelli RLN et al. 2011. A field-deployable, chemical ionization time-of-flight mass spectrometer. Atmos. Meas. Tech. 4:71471–79
    [Google Scholar]
  117. 117.
    Jokinen T, Sipilä M, Junninen H, Ehn M, Lönn G et al. 2012. Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF. Atmos. Chem. Phys. 12:94117–25
    [Google Scholar]
  118. 118.
    Breitenlechner M, Fischer L, Hainer M, Heinritzi M, Curtius J, Hansel A 2017. PTR3: an instrument for studying the lifecycle of reactive organic carbon in the atmosphere. Anal. Chem. 89:115824–31
    [Google Scholar]
  119. 119.
    Ehn M, Kleist E, Junninen H, Petäjä T, Lönn G et al. 2012. Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air. Atmos. Chem. Phys. 12:115113–27
    [Google Scholar]
  120. 120.
    Lee BH, Lopez-Hilfiker FD, Mohr C, Kurtén T, Worsnop DR, Thornton JA 2014. An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: application to atmospheric inorganic and organic compounds. Environ. Sci. Technol. 48:116309–17
    [Google Scholar]
  121. 121.
    Zhao Y, Chan J, Lopez-Hilfiker FD, Riffell J, Thornton J 2017. An electrospray chemical ionization source for real-time measurement of atmospheric organic and inorganic vapors. Atmos. Meas. Tech. 10:3609–25
    [Google Scholar]
  122. 122.
    Ehn M, Thornton JA, Kleist E, Sipilä M, Junninen H et al. 2014. A large source of low-volatility secondary organic aerosol. Nature 506:7489476–79
    [Google Scholar]
  123. 123.
    Ehn M, Berndt T, Wildt J, Mentel T 2017. Highly oxygenated molecules from atmospheric autoxidation of hydrocarbons: a prominent challenge for chemical kinetics studies. Int. J. Chem. Kinet. 49:11821–31
    [Google Scholar]
  124. 124.
    Crounse JD, Nielsen LB, Jørgensen S, Kjaergaard HG, Wennberg PO 2013. Autoxidation of organic compounds in the atmosphere. J. Phys. Chem. Lett. 4:203513–20
    [Google Scholar]
  125. 125.
    Wang Z, Popolan-Vaida DM, Chen B, Moshammer K, Mohamed SY et al. 2017. Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds. PNAS 114:5013102–7
    [Google Scholar]
  126. 126.
    Krapf M, El Haddad I, Bruns EA, Molteni U, Daellenbach KR et al. 2016. Labile peroxides in secondary organic aerosol. Chemistry 1:4603–16
    [Google Scholar]
  127. 127.
    Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM et al. 2007. Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315:1259–62
    [Google Scholar]
  128. 128.
    Donahue NM, Epstein SA, Pandis SN, Robinson AL 2011. A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics. Atmos. Chem. Phys. 11:73303–18
    [Google Scholar]
  129. 129.
    Apsokardu MJ, Johnston MV. 2018. Nanoparticle growth by particle-phase chemistry. Atmos. Chem. Phys. 18:31895–1907
    [Google Scholar]
  130. 130.
    Harrison AG. 1992. Chemical Ionization Mass Spectrometry Boca Raton: CRC Press, 2nd ed..
  131. 131.
    Zhao R. 2018. The recent development and application of chemical ionization mass spectrometry in atmospheric chemistry. Encyclopedia of Analytical Chemistry1–33 Chichester, UK: John Wiley & Sons, Ltd.
    [Google Scholar]
  132. 132.
    Berndt T, Richters S, Jokinen T, Hyttinen N, Kurtén T et al. 2016. Hydroxyl radical-induced formation of highly oxidized organic compounds. Nat. Commun. 7:713677
    [Google Scholar]
  133. 133.
    Chhabra PS, Lambe AT, Canagaratna MR, Stark H, Jayne JT et al. 2015. Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products. Atmos. Meas. Tech. 8:11–18
    [Google Scholar]
  134. 134.
    Bilde M, Barsanti K, Booth M, Cappa CD, Donahue NM et al. 2015. Saturation vapor pressures and transition enthalpies of low-volatility organic molecules of atmospheric relevance: from dicarboxylic acids to complex mixtures. Chem. Rev. 115:104115–56
    [Google Scholar]
  135. 135.
    Tröstl J, Chuang WK, Gordon H, Heinritzi M, Yan C et al. 2016. The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature 533:7604527–31
    [Google Scholar]
  136. 136.
    Lee BH, Lopez-Hilfiker FD, Ambro EL, Zhou P, Boy M et al. 2018. Semi-volatile and highly oxygenated gaseous and particulate organic compounds observed above a boreal forest canopy. Atmos. Chem. Phys. 18:11547–62
    [Google Scholar]
  137. 137.
    Tu P, Hall WA, Johnston MV 2016. Characterization of highly oxidized molecules in fresh and aged biogenic secondary organic aerosol. Anal. Chem. 88:84495–501
    [Google Scholar]
  138. 138.
    Zhang X, Lambe AT, Upshur MA, Brooks WA, AG et al. 2017. Highly oxygenated multifunctional compounds in α-pinene secondary organic aerosol. Environ. Sci. Technol. 51:115932–40
    [Google Scholar]
  139. 139.
    Mutzel A, Poulain L, Berndt T, Iinuma Y, Rodigast M et al. 2015. Highly oxidized multifunctional organic compounds observed in tropospheric particles: a field and laboratory study. Environ. Sci. Technol. 49:137754–61
    [Google Scholar]
  140. 140.
    Kristensen K, Watne ÅK, Hammes J, Lutz A, Petäjä T et al. 2016. High-molecular weight dimer esters are major products in aerosols from α-pinene ozonolysis and the boreal forest. Environ. Sci. Technol. Lett. 3:8280–85
    [Google Scholar]
  141. 141.
    Kourtchev I, Giorio C, Manninen A, Wilson E, Mahon B et al. 2016. Enhanced volatile organic compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols. Sci. Rep. 6:35038:
    [Google Scholar]
  142. 142.
    Kahnt A, Vermeylen R, Iinuma Y, Safi Shalamzari M, Maenhaut W, Claeys M 2018. High-molecular-weight esters in α-pinene ozonolysis secondary organic aerosol: structural characterization and mechanistic proposal for their formation from highly oxygenated molecules. Atmos. Chem. Phys. 18:118453–67
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061516-045135
Loading
/content/journals/10.1146/annurev-anchem-061516-045135
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error