1932

Abstract

Electrochemiluminescence (ECL) is a widely used analytical technique with the advantages of high sensitivity and low background signal. The recent and rapid development of electrochemical materials, luminophores, and optical elements significantly increases the ECL signals and, thus, ECL imaging with enhanced spatial and temporal resolutions is realized. Currently, ECL imaging is successfully applied to high-throughput bioanalysis and to visualize the distribution of molecules at single cells. Compared with other optical bioassays, no optical excitation is involved in imaging, so the approach avoids a background signal from illumination and increases the detection sensitivity. This review highlights some of the most exciting developments in this field, including the mechanisms, electrode designs, and the applications of ECL imaging in bioanalysis and at single cells and particles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-115226
2019-06-12
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061318-115226.html?itemId=/content/journals/10.1146/annurev-anchem-061318-115226&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Richter MM. 2004. Electrochemiluminescence (ECL). Chem. Rev. 104:3003–6
    [Google Scholar]
  2. 2.
    Miao WJ. 2008. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 108:2506–53
    [Google Scholar]
  3. 3.
    Santhanam KSV, Bard AJ. 1965. Chemiluminescence of electrogenerated 9,10- diphenylanthracene anion radical. J. Am. Chem. Soc. 87:139–40
    [Google Scholar]
  4. 4.
    Short GD, Hercules DM. 1965. Electroluminescence of organic compounds. The role of gaseous discharge in the excitation process. J. Am. Chem. Soc. 87:1439–42
    [Google Scholar]
  5. 5.
    Bard AJ. 2004. Electrogenerated Chemiluminescence New York: Marcel Dekker
  6. 6.
    Bard AJ. 2014. A life in electrochemistry. Annu. Rev. Anal. Chem. 7:1–21
    [Google Scholar]
  7. 7.
    Forster RJ, Bertoncello P, Keyes TE 2009. Electrogenerated chemiluminescence. Annu. Rev. Anal. Chem. 2:359–85
    [Google Scholar]
  8. 8.
    Valenti G, Fiorani A, Li H, Sojic N, Paolucci F 2016. Essential role of electrode materials in electrochemiluminescence applications. ChemElectroChem 3:1990–97
    [Google Scholar]
  9. 9.
    Engstrom RC, Johnson KW, DesJarlais S 1987. Characterization of electrode heterogeneity with electrogenerated chemiluminescence. Anal. Chem. 59:670–73
    [Google Scholar]
  10. 10.
    Engstrom RC, Pharr CM, Koppang MD 1987. Visualization of the edge effect with electrogenerated chemiluminescence. J. Electroanal. Chem. 221:251–55
    [Google Scholar]
  11. 11.
    Bowling RJ, McCreery RL, Pharr CM, Engstrom RC 1989. Observation of kinetic heterogeneity on highly ordered pyrolytic graphite using electrogenerated chemiluminescence. Anal. Chem. 61:2763–66
    [Google Scholar]
  12. 12.
    Pharr CM, Engstrom RC, Klancke J, Unzelman PL 1990. Determination of microscopic electrode kinetics with electrogenerated chemiluminescence imaging. Electroanalysis 2:217–221
    [Google Scholar]
  13. 13.
    Amatore C, Pebay C, Servant L, Sojic N, Szunerits S et al. 2006. Mapping electrochemiluminescence as generated at double-band microelectrodes by confocal microscopy under steady state. Chem. Phys. Chem. 7:1322–27
    [Google Scholar]
  14. 14.
    Szunerits S, Tam JM, Thouin L, Amatore C, Walt DR 2003. Spatially resolved electrochemiluminescence on an array of electrode tips. Anal. Chem. 75:4382–88
    [Google Scholar]
  15. 15.
    Chovin A, Garrigue P, Vinatier P, Sojic N 2004. Development of an ordered array of optoelectrochemical individually readable sensors with submicrometer dimensions: application to remote electrochemiluminescence imaging. Anal. Chem. 76:357–64
    [Google Scholar]
  16. 16.
    Chovin A, Garrigue P, Sojic N 2006. Remote NADH imaging through an ordered array of electrochemiluminescent nanoapertures. Bioelectrochemistry 69:25–33
    [Google Scholar]
  17. 17.
    Bard AJ, Fan FRF, Kwak J, Lev O 1989. Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 61:132–38
    [Google Scholar]
  18. 18.
    Amemiya S, Bard AJ, Fan FRF, Mirkin MV, Unwin PR 2008. Scanning electrochemical microscopy. Annu. Rev. Anal. Chem. 1:95–131
    [Google Scholar]
  19. 19.
    Hansma PK, Drake B, Marti O, Gould SAC, Prater CB 1989. The scanning ion-conductance microscope. Science 243:641–43
    [Google Scholar]
  20. 20.
    Chen CC, Zhou Y, Baker LA 2012. Scanning ion conductance microscopy. Annu. Rev. Anal. Chem. 5:207–28
    [Google Scholar]
  21. 21.
    Hercules DM. 1964. Chemiluminescence resulting from electrochemically generated species. Science 145:808–9
    [Google Scholar]
  22. 22.
    Visco RE, Chandross EA. 1964. Electroluminescence in solutions of aromatic hydrocarbons. J. Am. Chem. Soc. 86:5350–51
    [Google Scholar]
  23. 23.
    Santhanam KSV, Bard AJ. 1965. Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radical. J. Am. Chem. Soc. 87:139–40
    [Google Scholar]
  24. 24.
    Rubinstein I, Bard AJ. 1981. Electrogenerated chemiluminescence. 37. Aqueous Ecl systems based on Ru(2,2′-bipyridine)32+ and oxalate or organic acids. J. Am. Chem. Soc. 103:512–16
    [Google Scholar]
  25. 25.
    Noddsinger JB, Danielson N. 1987. Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2′-bipyridine)ruthenium(III). Anal. Chem. 59:865–68
    [Google Scholar]
  26. 26.
    Leland JK, Powell MJ. 1990. Electrogenerated chemiluminescence: an oxidative-reduction type ECL reaction sequence using tripropyl amine. J. Electrochem. Soc. 137:3127–31
    [Google Scholar]
  27. 27.
    Deiss F, LaFratta CN, Symer M, Blicharz TM, Sojic N, Walt DR 2009. Multiplexed sandwich immunoassays using electrochemiluminescence imaging resolved at the single bead level. J. Am. Chem. Soc. 131:6088–89
    [Google Scholar]
  28. 28.
    Miao WJ, Choi J, Bard AJ 2002. Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II),(Ru(bpy)32+)/tri-n-propylamine (TPrA) system revisited—a new route involving TPrA•+ cation radicals. J. Am. Chem. Soc. 12:14478–85
    [Google Scholar]
  29. 29.
    Sentic M, Milutinovic M, Kanoufi F, Manojlovic D, Arbault S et al. 2014. Mapping electrogenerated chemiluminescence reactivity in space: mechanistic insight into model systems used in immunoassays. Chem. Sci. 5:2568–72
    [Google Scholar]
  30. 30.
    Sakura S. 1992. Electrochemiluminescence of hydrogen peroxide-luminol at a carbon electrode. Anal. Chim. Acta 262:49–57
    [Google Scholar]
  31. 31.
    Lin XQ, Sun YG, Cui H 1999. Potential-resolved electrochemiluminescence of luminol in alkaline solutions at glassy carbon and platinum electrodes. Chin. J. Anal. Chem. 27:502–3
    [Google Scholar]
  32. 32.
    Cui H, Xu Y, Zhang ZF 2004. Multi-channel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Anal. Chem. 76:4002–10
    [Google Scholar]
  33. 33.
    Zhou JY, Ma GZ, Chen Y, Fang DJ, Jiang DC et al. 2015. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol. Anal. Chem. 87:8138–43
    [Google Scholar]
  34. 34.
    Ming L, Peng YY, Tu YF 2014. A new strategy for exciting the electrochemiluminescence of luminol by double-static potential. Electrochem. Commun. 46:107–10
    [Google Scholar]
  35. 35.
    Eßmann V, Clausmeyer J, Schuhmann W 2017. Alternating current-bipolar electrochemistry. Electrochem. Commun. 75:82–85
    [Google Scholar]
  36. 36.
    Hao N, Xiong M, Zhang JD, Xu JJ, Chen HY 2013. Portable thermo-powered high-throughput visual electrochemiluminescence sensor. Anal. Chem. 85:11715–19
    [Google Scholar]
  37. 37.
    Delaney JL, Hogan CF, Tian JF, Shen W 2011. Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal. Chem. 83:1300–6
    [Google Scholar]
  38. 38.
    Doeven EH, Barbante GJ, Kerr E, Hogan CF, Endler JA et al. 2014. Red-green-blue electrogenerated chemiluminescence utilizing a digital camera as detector. Anal. Chem. 86:2727–32
    [Google Scholar]
  39. 39.
    Fosdick SE, Knust KN, Scida K, Crooks RM 2013. Bipolar electrochemistry. Angew. Chem. Int. Ed. 52:10438–56
    [Google Scholar]
  40. 40.
    Loget G, Kuhn A. 2011. Shaping and exploring the micro-and nanoworld using bipolar electrochemistry. Anal. Bioanal. Chem. 400:1691–704
    [Google Scholar]
  41. 41.
    Fleischmann M, Ghoroghchian J, Rolison D, Pons S 1986. Electrochemical behavior of dispersions of spherical ultramicroelectrodes. J. Phys. Chem. 90:6392–400
    [Google Scholar]
  42. 42.
    Chen XM, Su BY, Song XH, Chen QA, Chen X, Wang XR 2011. Recent advances in electrochemiluminescent enzyme biosensors. Trend Anal. Chem. 30:665–676
    [Google Scholar]
  43. 43.
    Zhou ZY, Xu LR, Wu SZ, Su B 2014. A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging. Analyst 139:4934–39
    [Google Scholar]
  44. 44.
    Marquette CA, Degiuli A, Blum LJ 2003. Electrochemiluminescent biosensors array for the concomitant detection of choline, glucose, glutamate, lactate, lysine and urate. Biosens. Bioelectron. 19:433–39
    [Google Scholar]
  45. 45.
    Sentic M, Virgilio F, Zanut A, Manojlovic D, Arbault S et al. 2016. Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays. Anal. Bioanal. Chem. 408:7085–94
    [Google Scholar]
  46. 46.
    Zhang JJ, Zhou JY, Tian CX, Yang S, Jiang DC et al. 2017. Localized electrochemiluminescence from nanoneedle electrodes for very-high-density electrochemical sensing. Anal. Chem. 89:11399–404
    [Google Scholar]
  47. 47.
    Sardesai NP, Barron JC, Rusling JF 2011. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal. Chem. 83:6698–703
    [Google Scholar]
  48. 48.
    Kadimisetty K, Malla S, Sardesai NP, Joshi AA, Faria RC et al. 2015. Automated multiplexed ECL immunoarrays for cancer biomarker proteins. Anal. Chem. 87:4472–78
    [Google Scholar]
  49. 49.
    Xu LR, Li Y, Wu SZ, Liu XH, Su B 2012. Imaging latent fingerprints by electrochemiluminescence. Angew. Chem. Int. Ed. 51:8068–72
    [Google Scholar]
  50. 50.
    Xu LR, Zhou ZY, Zhang CZ, He YY, Su B 2014. Electrochemiluminescence imaging of latent fingermarks through the immunodetection of secretions in human perspiration. Chem. Commun. 50:9097–100
    [Google Scholar]
  51. 51.
    Hvastkovs EG, So M, Krishnan S, Bajrami B, Tarun M et al. 2007. Electrochemiluminescent arrays for cytochrome P450-activated genotoxicity screening. DNA damage from benzo[a]pyrene metabolites. Anal. Chem. 79:1897–906
    [Google Scholar]
  52. 52.
    Wang NN, Feng YQ, Wang YW, Ju HX, Yan F 2018. Electrochemiluminescent imaging for multi-immunoassay sensitized by dual DNA amplification of polymer dot signal. Anal. Chem. 90:7708–14
    [Google Scholar]
  53. 53.
    Arora A, Eijkel JC, Morf WE, Manz A 2001. A wireless electrochemiluminescence detector applied to direct and indirect detection for electrophoresis on a microfabricated glass device. Anal. Chem 73:3282–88
    [Google Scholar]
  54. 54.
    Zhan W, Alvarez J, Crooks RM 2002. Electrochemical sensing in microfluidic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions. J. Am. Chem. Soc. 124:13265–70
    [Google Scholar]
  55. 55.
    Chow KF, Mavré F, Crooks RM 2008. Wireless electrochemical DNA microarray sensor. J. Am. Chem. Soc. 130:7544–45
    [Google Scholar]
  56. 56.
    Khoshfetrat SM, Ranjbari M, Shayan M, Mehrgardi MA, Kiani A 2015. Wireless electrochemiluminescence bipolar electrode array for visualized genotyping of single nucleotide polymorphism. Anal. Chem. 87:8123–31
    [Google Scholar]
  57. 57.
    Chow KF, Mavré F, Crooks JA, Chang BY, Crooks RM 2009. A large-scale, wireless electrochemical bipolar electrode microarray. J. Am. Chem. Soc. 131:8364–65
    [Google Scholar]
  58. 58.
    Chang BY, Chow KF, Crooks JA, Mavré F, Crooks RM 2012. Two-channel microelectrochemical bipolar electrode sensor array. Analyst 137:2827–33
    [Google Scholar]
  59. 59.
    Zhang XW, Li J, Jia XF, Li DY, Wang EK 2014. Full-featured electrochemiluminescence sensing platform based on the multichannel closed bipolar system. Anal. Chem. 86:5595–99
    [Google Scholar]
  60. 60.
    Wu MS, Liu Z, Shi HW, Chen HY, Xu JJ 2014. Visual electrochemiluminescence detection of cancer biomarkers on a closed bipolar electrode array chip. Anal. Chem. 87:530–37
    [Google Scholar]
  61. 61.
    Wu MS, Yuan DJ, Xu JJ, Chen HY 2013. Electrochemiluminescence on bipolar electrodes for visual bioanalysis. Chem. Sci. 4:1182–88
    [Google Scholar]
  62. 62.
    Doeven EH, Zammit EM, Barbante GJ, Hogan CF, Barnett NW, Francis PS 2012. Selective excitation of concomitant electrochemiluminophores: tuning emission color by electrode potential. Angew. Chem. Int. Ed. 124:4430–33
    [Google Scholar]
  63. 63.
    Kerr E, Doeven EH, Barbante GJ, Hogan CF, David J et al. 2015. Annihilation electrogenerated chemiluminescence of mixed metal chelates in solution: modulating emission colour by manipulating the energetics. Chem. Sci. 6:472–79
    [Google Scholar]
  64. 64.
    Wang YZ, Xu CH, Zhao W, Guan QY, Chen HY et al. 2017. Bipolar electrode based multi-color electrochemiluminescence biosensor. Anal. Chem. 89:8050–56
    [Google Scholar]
  65. 65.
    Li HD, Bouffier L, Arbault S, Kuhn A, Hogan C et al. 2017. Spatially-resolved multicolor bipolar electrochemiluminescence. Electrochem. Commun. 77:10–13
    [Google Scholar]
  66. 66.
    Wang YZ, Ji SY, Xu HY, Zhao W, Xu JJ et al. 2018. Bidirectional electrochemiluminescence color switch: an application in detecting multimarkers of prostate cancer. Anal. Chem. 90:3570–75
    [Google Scholar]
  67. 67.
    Sentic M, Loget G, Manojlovic D, Kuhn A, Sojic N 2012. Light-emitting electrochemical “swimmers.”. Angew. Chem. Int. Ed. 51:11284–88
    [Google Scholar]
  68. 68.
    Bouffier L, Zigah D, Adam C, Sentic M, Fattah Z et al. 2014. Lighting up redox propulsion with luminol electrogenerated chemiluminescence. ChemElectroChem 1:95–98
    [Google Scholar]
  69. 69.
    Sentic M, Arbault S, Goudeau B, Manojlovic D, Kuhn A et al. 2014. Electrochemiluminescent swimmers for dynamic enzymatic sensing. Chem. Commun. 50:10202–5
    [Google Scholar]
  70. 70.
    Sentic M, Arbault S, Bouffier L, Manojlovic D, Kuhn A et al. 2015. 3D electrogenerated chemiluminescence: from surface-confined reactions to bulk emission. Chem. Sci. 6:4433–37
    [Google Scholar]
  71. 71.
    de Poulpiquet A, Diez-Buitrago B, Milutinovic MD, Sentic M, Arbault S et al. 2016. Dual enzymatic detection by bulk electrogenerated chemiluminescence. Anal. Chem. 88:6585–92
    [Google Scholar]
  72. 72.
    Ma GZ, Zhou JY, Tian CX, Jiang DC, Fang DJ et al. 2013. Luminol electrochemiluminescence for the analysis of active cholesterol at the plasma membrane in single mammalian cells. Anal. Chem. 85:3912–17
    [Google Scholar]
  73. 73.
    Tian CX, Zhou JY, Wu ZQ, Fang DJ, Jiang DC 2014. Fast serial analysis of active cholesterol at the plasma membrane in single cells. Anal. Chem 86:678–84
    [Google Scholar]
  74. 74.
    Hesari M, Ding ZF. 2016. Review-electrogenerated chemiluminescence: light years ahead. J. Electro. Soc. 163:H3116–31
    [Google Scholar]
  75. 75.
    Xu JJ, Jiang DP, Qin YL, Xia J, Jiang DC et al. 2017. C3N4 nanosheet modified microwell array with enhanced electrochemiluminescence for total analysis of cholesterol at single cells. Anal. Chem. 89:2216–20
    [Google Scholar]
  76. 76.
    Xu JJ, Huang PY, Qin YL, Jiang DC, Chen HY 2016. Analysis of intracellular glucose at single cells using electrochemiluminescence imaging. Anal. Chem. 88:4609–12
    [Google Scholar]
  77. 77.
    Zuo HZ, Wang R, Jiang DC, Fang DJ 2017. Determining the composition of active cholesterol in the plasma membrane of single cells by using electrochemiluminescence. ChemElectroChem 4:1677–80
    [Google Scholar]
  78. 78.
    Xia J, Zhou JY, Zhang RG, Jiang DC, Jiang DP 2018. Gold-coated polydimethylsiloxane microwells for high-throughput electrochemiluminescence analysis of intracellular glucose at single cells. Anal. Bioanal. Chem. 410:4787–92
    [Google Scholar]
  79. 79.
    Liu G, Ma C, Jin BK, Chen Z, Zhu JJ 2018. Direct electrochemiluminescence imaging of a single cell on a chitosan film modified electrode. Anal. Chem. 90:4801–6
    [Google Scholar]
  80. 80.
    Zhang JJ, Ding H, Zhao SY, Jiang DC, Chen HY 2019. Confined electrochemiluminescence in vertically ordered silica mesochannels for the imaging of hydrogen peroxide released from single cells. Electrochem. Commun 98:38–42
    [Google Scholar]
  81. 81.
    He RQ, Tang HF, Jiang DC, Chen HY 2016. Electrochemical visualization of intracellular hydrogen peroxide at single cells. Anal. Chem. 88:2006–9
    [Google Scholar]
  82. 82.
    Valenti G, Scarabino S, Goudeau B, Lesch A, Jović M et al. 2017. Single cell electrochemiluminescence imaging: from the proof-of-concept to disposable device-based analysis. J. Am. Chem. Soc. 139:16830–37
    [Google Scholar]
  83. 83.
    Voci S, Goudeau B, Valenti G, Lesch A, Jović M et al. 2018. Surface-confined electrochemiluminescence microscopy of cell membranes. J. Am. Chem. Soc. 140:14753–60
    [Google Scholar]
  84. 84.
    Cao JT, Wang YL, Zhang JJ, Dong YX, Liu FR et al. 2018. Immuno-electrochemiluminescent imaging of single cell based on functional nanoprobes of heterogeneous Ru(bpy)32+@SiO2/Au nanoparticles. Anal. Chem. 90:10334–39
    [Google Scholar]
  85. 85.
    Anderson TJ, Zhang B. 2016. Single-nanoparticle electrochemistry through immobilization and collision. Acc. Chem. Res. 49:2625–31
    [Google Scholar]
  86. 86.
    Mirkin MV, Sun T, Yu Y, Zhou M 2016. Electrochemistry at one nanoparticle. Acc. Chem. Res. 49:2328–35
    [Google Scholar]
  87. 87.
    Chang YL, Palacios RE, Fan FR, Bard AJ, Barbara PF 2008. Electrogenerated chemiluminescence of single conjugated polymer nanoparticles. J. Am. Chem. Soc. 130:8906–7
    [Google Scholar]
  88. 88.
    Fan FR, Park S, Zhu Y, Ruoff RS, Bard AJ 2009. Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles. J. Am. Chem. Soc. 131:937–39
    [Google Scholar]
  89. 89.
    Dolci LS, Zanarini S, Della Ciana L, Paolucci F, Roda A 2009. Development of a new device for ultrasensitive electrochemiluminescence microscopy imaging. Anal. Chem. 81:6234–41
    [Google Scholar]
  90. 90.
    Chen Y, Fu JJ, Cui C, Jiang DC, Chen ZX et al. 2018. In situ visualization of electrocatalytic reaction activity at quantum dots for water oxidation. Anal. Chem. 90:8635–41
    [Google Scholar]
  91. 91.
    Pan SL, Liu J, Hill CM 2015. Observation of local redox events at individual Au nanoparticles using electrogenerated chemiluminescence microscopy. J. Phys. Chem. C 119:27095–103
    [Google Scholar]
  92. 92.
    Wilson AJ, Marchuk K, Willets KA 2015. Imaging electrogenerated chemiluminescence at single gold nanowire electrodes. Nano Lett 15:6110–15
    [Google Scholar]
  93. 93.
    Zhu MJ, Pan JB, Wu ZQ, Gao XY, Zhao W et al. 2018. Electrogenerated chemiluminescence imaging of electrocatalysis at a single Au-Pt Janus nanoparticle. Angew. Chem. Int. Ed. 57:4010–14
    [Google Scholar]
  94. 94.
    Ma C, Wu WW, Li LL, Wu SJ, Zhang JR et al. 2018. Dynamically imaging collision electro-chemistry of single electrochemiluminescence nano-emitters. Chem. Sci. 9:6167–75
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-115226
Loading
/content/journals/10.1146/annurev-anchem-061318-115226
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error