1932

Abstract

Although fluorescent reporters and biosensors have become indispensable tools in biological and biomedical fields, fluorescence measurements require external excitation light, thereby limiting their use in thick tissues and live animals. Bioluminescent reporters and biosensors may potentially overcome this hurdle because they use enzyme-catalyzed exothermic biochemical reactions to generate excited-state emitters. This review first introduces the development of bioluminescent reporters, and next, their applications in sensing biological changes in vitro and in vivo as biosensors. Lastly, we discuss chemiluminescent sensors that produce photons in the absence of luciferases. This review aims to explore fundamentals and experimental insights and to emphasize the yet-to-be-reached potential of next-generation luminescent reporters and biosensors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-115027
2019-06-12
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061318-115027.html?itemId=/content/journals/10.1146/annurev-anchem-061318-115027&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Haddock SH, Moline MA, Case JF 2010. Bioluminescence in the sea. Annu. Rev. Mar. Sci. 2:443–93
    [Google Scholar]
  2. 2.
    Pfleger KDG, Seeber RM, Eidne KA 2006. Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions. Nat. Protoc. 1:337–45
    [Google Scholar]
  3. 3.
    Suzuki K, Nagai T. 2017. Recent progress in expanding the chemiluminescent toolbox for bioimaging. Curr. Opin. Biotechnol. 48:135–41
    [Google Scholar]
  4. 4.
    Mezzanotte L, van't Root M, Karatas H, Goun EA, Lowik C 2017. In vivo molecular bioluminescence imaging: new tools and applications. Trends Biotechnol 35:640–52
    [Google Scholar]
  5. 5.
    Sun S, Yang X, Wang Y, Shen X 2016. In vivo analysis of protein-protein interactions with bioluminescence resonance energy transfer (BRET): progress and prospects. Int. J. Mol. Sci. 17:1704
    [Google Scholar]
  6. 6.
    Yao Z, Zhang BS, Prescher JA 2018. Advances in bioluminescence imaging: new probes from old recipes. Curr. Opin. Chem. Biol. 45:148–56
    [Google Scholar]
  7. 7.
    Seliger HH, McElroy WD. 1959. Quantum yield in the oxidation of firefly luciferin. Biochem. Biophys. Res. Commun. 1:21–24
    [Google Scholar]
  8. 8.
    Seliger MM, McElroy WD. 1960. Spectral emission and quantum yield of firefly bioluminescence. Arch. Biochem. Biophys. 88:136–41
    [Google Scholar]
  9. 9.
    White EH, Rapaport E, Hopkins TA, Seliger HH 1969. Chemi- and bioluminescence of firefly luciferin. J. Am. Chem. Soc 91:2178–80
    [Google Scholar]
  10. 10.
    de Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S 1987. Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7:725–37
    [Google Scholar]
  11. 11.
    de Wet JR, Wood KV, Helinski DR, DeLuca M 1986. Cloning firefly luciferase. Methods Enzymol 133:3–14
    [Google Scholar]
  12. 12.
    Vieira J, Pinto da Silva L, Esteves da Silva JC 2012. Advances in the knowledge of light emission by firefly luciferin and oxyluciferin. J. Photochem. Photobiol. B 117:33–39
    [Google Scholar]
  13. 13.
    Halliwell LM, Jathoul AP, Bate JP, Worthy HL, Anderson JC et al. 2018. ΔFlucs: brighter Photinus pyralis firefly luciferases identified by surveying consecutive single amino acid deletion mutations in a thermostable variant. Biotechnol. Bioeng. 115:50–59
    [Google Scholar]
  14. 14.
    Branchini BR, Southworth TL, Fontaine DM, Kohrt D, Talukder M et al. 2015. An enhanced chimeric firefly luciferase-inspired enzyme for ATP detection and bioluminescence reporter and imaging applications. Anal. Biochem. 484:148–53
    [Google Scholar]
  15. 15.
    Kaskova ZM, Tsarkova AS, Yampolsky IV 2016. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem. Soc. Rev. 45:6048–77
    [Google Scholar]
  16. 16.
    Conley NR, Dragulescu-Andrasi A, Rao JH, Moerner WE 2012. A selenium analogue of firefly d-luciferin with red-shifted bioluminescence emission. Angew. Chem. Int. Ed. 51:3350–53
    [Google Scholar]
  17. 17.
    Evans MS, Chaurette JP, Adams ST Jr, Reddy GR, Paley MA et al. 2014. A synthetic luciferin improves bioluminescence imaging in live mice. Nat. Methods 11:393–95
    [Google Scholar]
  18. 18.
    Kuchimaru T, Iwano S, Kiyama M, Mitsumata S, Kadonosono T et al. 2016. A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging. Nat. Commun. 7:11856
    [Google Scholar]
  19. 19.
    Wu W, Su J, Tang C, Bai H, Ma Z et al. 2017. cybLuc: an effective aminoluciferin derivative for deep bioluminescence imaging. Anal. Chem. 89:4808–16
    [Google Scholar]
  20. 20.
    Iwano S, Sugiyama M, Hama H, Watakabe A, Hasegawa N et al. 2018. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359:935–39
    [Google Scholar]
  21. 21.
    Adams ST Jr, Mofford DM, Reddy GS, Miller SC. 2016. Firefly luciferase mutants allow substrate-selective bioluminescence imaging in the mouse brain. Angew. Chem. Int. Ed. 55:4943–46
    [Google Scholar]
  22. 22.
    Mofford DM, Reddy GR, Miller SC 2014. Aminoluciferins extend firefly luciferase bioluminescence into the near-infrared and can be preferred substrates over d-luciferin. J. Am. Chem. Soc. 136:13277–82
    [Google Scholar]
  23. 23.
    Jones KA, Porterfield WB, Rathbun CM, McCutcheon DC, Paley MA, Prescher JA 2017. Orthogonal luciferase-luciferin pairs for bioluminescence imaging. J. Am. Chem. Soc. 139:2351–58
    [Google Scholar]
  24. 24.
    Rathbun CM, Porterfield WB, Jones KA, Sagoe MJ, Reyes MR et al. 2017. Parallel screening for rapid identification of orthogonal bioluminescent tools. ACS Cent. Sci. 3:1254–61
    [Google Scholar]
  25. 25.
    Wood KV, Lam YA, McElroy WD 1989. Introduction to beetle luciferases and their applications. J. Biolumin. Chemilumin. 4:289–301
    [Google Scholar]
  26. 26.
    Nakajima Y, Yamazaki T, Nishii S, Noguchi T, Hoshino H et al. 2010. Enhanced beetle luciferase for high-resolution bioluminescence imaging. PLOS ONE 5:e10011
    [Google Scholar]
  27. 27.
    Michelini E, Cevenini L, Mezzanotte L, Ablamsky D, Southworth T et al. 2008. Spectral-resolved gene technology for multiplexed bioluminescence and high-content screening. Anal. Chem. 80:260–67
    [Google Scholar]
  28. 28.
    Nakajima Y, Kimura T, Sugata K, Enomoto T, Asakawa A et al. 2005. Multicolor luciferase assay system: one-step monitoring of multiple gene expressions with a single substrate. Biotechniques 38:891–94
    [Google Scholar]
  29. 29.
    Hall MP, Woodroofe CC, Wood MG, Que I, Van't Root M et al. 2018. Click beetle luciferase mutant and near infrared naphthyl-luciferins for improved bioluminescence imaging. Nat. Commun. 9:132
    [Google Scholar]
  30. 30.
    Shimomura O, Teranishi K. 2000. Light-emitters involved in the luminescence of coelenterazine. Luminescence 15:51–58
    [Google Scholar]
  31. 31.
    Jiang T, Du L, Li M 2016. Lighting up bioluminescence with coelenterazine: strategies and applications. Photochem. Photobiol. Sci. 15:466–80
    [Google Scholar]
  32. 32.
    Lorenz WW, McCann RO, Longiaru M, Cormier MJ 1991. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. PNAS 88:4438–42
    [Google Scholar]
  33. 33.
    Loening AM, Fenn TD, Wu AM, Gambhir SS 2006. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng. Des. Sel. 19:391–400
    [Google Scholar]
  34. 34.
    Loening AM, Wu AM, Gambhir SS 2007. Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat. Methods 4:641–43
    [Google Scholar]
  35. 35.
    Loening AM, Dragulescu-Andrasi A, Gambhir SS 2010. A red-shifted Renilla luciferase for transient reporter-gene expression. Nat. Methods 7:5–6
    [Google Scholar]
  36. 36.
    Rahnama S, Saffar B, Kahrani ZF, Nazari M, Emamzadeh R 2017. Super RLuc8: a novel engineered Renilla luciferase with a red-shifted spectrum and stable light emission. Enzyme Microb. Technol. 96:60–66
    [Google Scholar]
  37. 37.
    Inouye S, Shimomura O. 1997. The use of Renilla luciferase, Oplophorus luciferase, and apoaequorin as bioluminescent reporter protein in the presence of coelenterazine analogues as substrate. Biochem. Biophys. Res. Commun. 233:349–53
    [Google Scholar]
  38. 38.
    Nishihara R, Suzuki H, Hoshino E, Suganuma S, Sato M et al. 2015. Bioluminescent coelenterazine derivatives with imidazopyrazinone C-6 extended substitution. Chem. Commun. 51:391–94
    [Google Scholar]
  39. 39.
    Rumyantsev KA, Turoverov KK, Verkhusha VV 2016. Near-infrared bioluminescent proteins for two-color multimodal imaging. Sci. Rep. 6:36588
    [Google Scholar]
  40. 40.
    Otto-Duessel M, Khankaldyyan V, Gonzalez-Gomez I, Jensen MC, Laug WE, Rosol M 2006. In vivo testing of Renilla luciferase substrate analogs in an orthotopic murine model of human glioblastoma. Mol. Imaging 5:57–64
    [Google Scholar]
  41. 41.
    Namkung Y, Le Gouill C, Lukashova V, Kobayashi H, Hogue M et al. 2016. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. Nat. Commun. 7:12178
    [Google Scholar]
  42. 42.
    Verhaegent M, Christopoulos TK. 2002. Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal. Chem. 74:4378–85
    [Google Scholar]
  43. 43.
    Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO 2005. Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol. Ther 11:435–43
    [Google Scholar]
  44. 44.
    Degeling MH, Bovenberg MS, Lewandrowski GK, de Gooijer MC, Vleggeert-Lankamp CL et al. 2013. Directed molecular evolution reveals Gaussia luciferase variants with enhanced light output stability. Anal. Chem. 85:3006–12
    [Google Scholar]
  45. 45.
    Kim SB, Suzuki H, Sato M, Tao H 2011. Superluminescent variants of marine luciferases for bioassays. Anal. Chem. 83:8732–40
    [Google Scholar]
  46. 46.
    Gaur S, Bhargava-Shah A, Hori S, Afjei R, Sekar TV et al. 2017. Engineering intracellularly retained Gaussia luciferase reporters for improved biosensing and molecular imaging applications. ACS Chem. Biol. 12:2345–53
    [Google Scholar]
  47. 47.
    Wurdinger T, Badr C, Pike L, de Kleine R, Weissleder R et al. 2008. A secreted luciferase for ex vivo monitoring of in vivo processes. Nat. Methods 5:171–73
    [Google Scholar]
  48. 48.
    Park SY, Song SH, Palmateer B, Pal A, Petersen ED et al. 2017. Novel luciferase–opsin combinations for improved luminopsins. J. Neurosci. Res In press https://doi.org/10.1002/jnr.24152
    [Google Scholar]
  49. 49.
    Berglund K, Clissold K, Li HFE, Wen L, Park SY et al. 2016. Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation. PNAS 113:E358–67
    [Google Scholar]
  50. 50.
    Lindberg E, Mizukami S, Ibata K, Fukano T, Miyawaki A, Kikuchi K 2013. Development of cell-impermeable coelenterazine derivatives. Chem. Sci. 4:4395–400
    [Google Scholar]
  51. 51.
    Shimomura O, Masugi T, Johnson FH, Haneda Y 1978. Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris. Biochemistry 17:994–98
    [Google Scholar]
  52. 52.
    Inouye S, Sasaki S. 2007. Overexpression, purification and characterization of the catalytic component of Oplophorus luciferase in the deep-sea shrimp. Oplophorus gracilirostris. Protein Expr. Purif. 56:261–68
    [Google Scholar]
  53. 53.
    Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL et al. 2012. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 7:1848–57
    [Google Scholar]
  54. 54.
    Inouye S, Sato J, Sahara-Miura Y, Yoshida S, Kurakata H, Hosoya T 2013. C6-Deoxy coelenterazine analogues as an efficient substrate for glow luminescence reaction of nanoKAZ: the mutated catalytic 19 kDa component of Oplophorus luciferase. Biochem. Biophys. Res. Commun. 437:23–28
    [Google Scholar]
  55. 55.
    Inouye S, Sato J, Sahara-Miura Y, Yoshida S, Hosoya T 2014. Luminescence enhancement of the catalytic 19 kDa protein (KAZ) of Oplophorus luciferase by three amino acid substitutions. Biochem. Biophys. Res. Commun. 445:157–62
    [Google Scholar]
  56. 56.
    England CG, Ehlerding EB, Cai WB 2016. NanoLuc: a small luciferase is brightening up the field of bioluminescence. Bioconjug. Chem. 27:1175–87
    [Google Scholar]
  57. 57.
    Goyet E, Bouquier N, Ollendorff V, Perroy J 2016. Fast and high resolution single-cell BRET imaging. Sci. Rep. 6:28231
    [Google Scholar]
  58. 58.
    Karlsson EA, Meliopoulos VA, Savage C, Livingston B, Mehle A, Schultz-Cherry S 2015. Visualizing real-time influenza virus infection, transmission and protection in ferrets. Nat. Commun. 6:6378
    [Google Scholar]
  59. 59.
    Yeh HW, Karmach O, Ji A, Carter D, Martins-Green MM, Ai HW 2017. Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging. Nat. Methods 14:971–74
    [Google Scholar]
  60. 60.
    Shakhmin A, Hall MP, Machleidt T, Walker JR, Wood KV, Kirkland TA 2017. Coelenterazine analogues emit red-shifted bioluminescence with NanoLuc. Org. Biomol. Chem. 15:8559–67
    [Google Scholar]
  61. 61.
    Chu J, Oh Y, Sens A, Ataie N, Dana H et al. 2016. A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo. Nat. Biotechnol 34:760–67
    [Google Scholar]
  62. 62.
    Suzuki K, Kimura T, Shinoda H, Bai G, Daniels MJ et al. 2016. Five colour variants of bright luminescent protein for real-time multicolour bioimaging. Nat. Commun. 7:13718
    [Google Scholar]
  63. 63.
    Hiblot J, Yu Q, Sabbadini MDB, Reymond L, Xue L et al. 2017. Luciferases with tunable emission wavelengths. Angew. Chem. Int. Ed. 129:14748–52
    [Google Scholar]
  64. 64.
    Dixon AS, Schwinn MK, Hall MP, Zimmerman K, Otto P et al. 2016. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11:400–8
    [Google Scholar]
  65. 65.
    Yano H, Cai NS, Javitch JA, Ferre S 2018. Luciferase complementation based-detection of G-protein-coupled receptor activity. Biotechniques 65:9–14
    [Google Scholar]
  66. 66.
    Schwinn MK, Machleidt T, Zimmerman K, Eggers CT, Dixon AS et al. 2017. CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chem. Biol. 16:467–74
    [Google Scholar]
  67. 67.
    Ohmuro-Matsuyama Y, Ueda H. 2018. Homogeneous noncompetitive luminescent immunodetection of small molecules by ternary protein fragment complementation. Anal. Chem. 90:3001–4
    [Google Scholar]
  68. 68.
    Kim SB, Torimura M, Tao H 2013. Creation of artificial luciferases for bioassays. Bioconjug. Chem. 24:2067–75
    [Google Scholar]
  69. 69.
    Nishihara R, Abe M, Nishiyama S, Citterio D, Suzuki K, Kim SB 2017. Luciferase-specific coelenterazine analogues for optical contamination-free bioassays. Sci. Rep. 7:908
    [Google Scholar]
  70. 70.
    Kim SB, Nishihara R, Citterio D, Suzuki K 2017. Fabrication of a new lineage of artificial luciferases from natural luciferase pools. ACS Comb. Sci. 19:594–99
    [Google Scholar]
  71. 71.
    Nishihara R, Hoshino E, Kakudate Y, Kishigami S, Iwasawa N et al. 2018. Azide- and dye-conjugated coelenterazine analogues for a multiplex molecular imaging platform. Bioconjug. Chem. 29:1922–31
    [Google Scholar]
  72. 72.
    Andreu N, Zelmer A, Wiles S 2011. Noninvasive biophotonic imaging for studies of infectious disease. FEMS Microbiol. Rev. 35:360–94
    [Google Scholar]
  73. 73.
    Close DM, Patterson SS, Ripp S, Baek SJ, Sanseverino J, Sayler GS 2010. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line. PLOS ONE 5:e12441
    [Google Scholar]
  74. 74.
    Gregor C, Gwosch KC, Sahl SJ, Hell SW 2018. Strongly enhanced bacterial bioluminescence with the ilux operon for single-cell imaging. PNAS 115:962–67
    [Google Scholar]
  75. 75.
    Thompson EM, Nagata S, Tsuji FI 1989. Cloning and expression of cDNA for the luciferase from the marine ostracod Vargula hilgendorfii. PNAS 86:6567–71
    [Google Scholar]
  76. 76.
    Maguire CA, Bovenberg MS, Crommentuijn MH, Niers JM, Kerami M et al. 2013. Triple bioluminescence imaging for in vivo monitoring of cellular processes. Mol. Ther. Nucleic Acids 2:e99
    [Google Scholar]
  77. 77.
    Purtov KV, Petushkov VN, Baranov MS, Mineev KS, Rodionova NS et al. 2015. The chemical basis of fungal bioluminescence. Angew. Chem. Int. Ed. 54:8124–28
    [Google Scholar]
  78. 78.
    Kaskova ZM, Dorr FA, Petushkov VN, Purtov KV, Tsarkova AS et al. 2017. Mechanism and color modulation of fungal bioluminescence. Sci. Adv. 3:e1602847
    [Google Scholar]
  79. 79.
    Dragulescu-Andrasi A, Liang GL, Rao JH 2009. In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates. Bioconjug. Chem. 20:1660–66
    [Google Scholar]
  80. 80.
    Vorobyeva AG, Stanton M, Godinat A, Lund KB, Karateev GG et al. 2015. Development of a bioluminescent nitroreductase probe for preclinical imaging. PLOS ONE 10:e0131037
    [Google Scholar]
  81. 81.
    von Degenfeld G, Wehrman TS, Blau HM 2009. Imaging β-galactosidase activity in vivo using sequential reporter-enzyme luminescence. Biolumin. Methods Protoc. 574:249–59
    [Google Scholar]
  82. 82.
    Yao H, So MK, Rao J 2007. A bioluminogenic substrate for in vivo imaging of β-lactamase activity. Angew. Chem. Int. Ed. 46:7031–34
    [Google Scholar]
  83. 83.
    Kanno A, Yamanaka Y, Hirano H, Umezawa Y, Ozawa T 2007. Cyclic luciferase for real-time sensing of caspase-3 activities in living mammals. Angew. Chem. Int. Ed. 46:7595–99
    [Google Scholar]
  84. 84.
    Hai Z, Wu J, Wang L, Xu J, Zhang H, Liang G 2017. Bioluminescence sensing of γ-glutamyltrans-peptidase activity in vitro and in vivo. Anal. Chem. 89:7017–21
    [Google Scholar]
  85. 85.
    Van de Bittner GC, Dubikovskaya EA, Bertozzi CR, Chang CJ 2010. In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. PNAS 107:21316–21
    [Google Scholar]
  86. 86.
    Ke B, Wu W, Liu W, Liang H, Gong D et al. 2016. Bioluminescence probe for detecting hydrogen sulfide in vivo. Anal. Chem. 88:592–95
    [Google Scholar]
  87. 87.
    Chen P, Zheng Z, Zhu Y, Dong Y, Wang F, Liang G 2017. Bioluminescent turn-on probe for sensing hypochlorite in vitro and in tumors. Anal. Chem. 89:5693–96
    [Google Scholar]
  88. 88.
    Takakura H, Kojirna R, Kamiya M, Kobayashi E, Komatsu T et al. 2015. New class of bioluminogenic probe based on bioluminescent enzyme-induced electron transfer: BioLeT. J. Am. Chem. Soc. 137:4010–13
    [Google Scholar]
  89. 89.
    Ke B, Wu W, Wei L, Wu F, Chen G et al. 2015. Cell and in vivo imaging of fluoride ion with highly selective bioluminescent probes. Anal. Chem. 87:9110–13
    [Google Scholar]
  90. 90.
    Heffern MC, Park HM, Au-Yeung HY, Van de Bittner GC, Ackerman CM et al. 2016. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease. PNAS 113:14219–24
    [Google Scholar]
  91. 91.
    Aron AT, Heffern MC, Lonergan ZR, Vander Wal MN, Blank BR et al. 2017. In vivo bioluminescence imaging of labile iron accumulation in a murine model of Acinetobacter baumannii infection. PNAS 114:12669–74
    [Google Scholar]
  92. 92.
    Porterfield WB, Jones KA, McCutcheon DC, Prescher JA 2015. A “caged” luciferin for imaging cell-cell contacts. J. Am. Chem. Soc. 137:8656–59
    [Google Scholar]
  93. 93.
    Lindberg E, Mizukami S, Ibata K, Miyawaki A, Kikuchi K 2013. Development of luminescent coelenterazine derivatives activatable by β-galactosidase for monitoring dual gene expression. Chemistry 19:14970–76
    [Google Scholar]
  94. 94.
    Promega Corp 2012. Coelenterazine derivatives and methods of using same WO Patent 2012/061477A1
  95. 95.
    Dacres H, Wang J, Dumancic MM, Trowell SC 2010. Experimental determination of the Förster distance for two commonly used bioluminescent resonance energy transfer pairs. Anal. Chem. 82:432–35
    [Google Scholar]
  96. 96.
    De A. 2011. The new era of bioluminescence resonance energy transfer technology. Curr. Pharm. Biotechnol. 12:558–68
    [Google Scholar]
  97. 97.
    Binkowski B, Fan F, Wood K 2009. Engineered luciferases for molecular sensing in living cells. Curr. Opin. Biotechnol. 20:14–18
    [Google Scholar]
  98. 98.
    Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A et al. 2017. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem. Sci. 42:111–29
    [Google Scholar]
  99. 99.
    Arai R, Nakagawa H, Kitayama A, Ueda H, Nagamune T 2002. Detection of protein-protein interaction by bioluminescence resonance energy transfer from firefly luciferase to red fluorescent protein. J. Biosci. Bioeng. 94:362–64
    [Google Scholar]
  100. 100.
    Branchini BR, Rosenberg JC, Ablamsky DM, Taylor KP, Southworth TL, Linder SJ 2011. Sequential bioluminescence resonance energy transfer-fluorescence resonance energy transfer-based ratiometric protease assays with fusion proteins of firefly luciferase and red fluorescent protein. Anal. Biochem. 414:239–45
    [Google Scholar]
  101. 101.
    Kim GB, Kim YP. 2012. Analysis of protease activity using quantum dots and resonance energy transfer. Theranostics 2:127–38
    [Google Scholar]
  102. 102.
    De A, Ray P, Loening AM, Gambhir SS 2009. BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals. FASEB J 23:2702–9
    [Google Scholar]
  103. 103.
    Dragulescu-Andrasi A, Chan CT, De A, Massoud TF, Gambhir SS 2011. Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects. PNAS 108:12060–65
    [Google Scholar]
  104. 104.
    Compan V, Baroja-Mazo A, Bragg L, Verkhratsky A, Perroy J, Pelegrin P 2012. A genetically encoded IL-1β bioluminescence resonance energy transfer sensor to monitor inflammasome activity. J. Immunol. 189:2131–37
    [Google Scholar]
  105. 105.
    Carriba P, Navarro G, Ciruela F, Ferre S, Casado V et al. 2008. Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat. Methods 5:727–33
    [Google Scholar]
  106. 106.
    Navarro G, Carriba P, Gandia J, Ciruela F, Casado V et al. 2008. Detection of heteromers formed by cannabinoid CB1, dopamine D2, and adenosine A2A G-protein-coupled receptors by combining bimolecular fluorescence complementation and bioluminescence energy transfer. Sci. World J. 8:1088–97
    [Google Scholar]
  107. 107.
    Urizar E, Yano H, Kolster R, Gales C, Lambert N, Javitch JA 2011. CODA-RET reveals functional selectivity as a result of GPCR heteromerization. Nat. Chem. Biol. 7:624–30
    [Google Scholar]
  108. 108.
    Zhang LY, Xu F, Chen ZX, Zhu XX, Min W 2013. Bioluminescence assisted switching and fluorescence imaging (BASFI). J. Phys. Chem. Lett. 4:3897–902
    [Google Scholar]
  109. 109.
    Perroy J, Pontier S, Charest PG, Aubry M, Bouvier M 2004. Real-time monitoring of ubiquitination in living cells by BRET. Nat. Methods 1:203–8
    [Google Scholar]
  110. 110.
    Jiang LI, Collins J, Davis R, Lin KM, DeCamp D et al. 2007. Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J. Biol. Chem. 282:10576–84
    [Google Scholar]
  111. 111.
    Biswas KH, Sopory S, Visweswariah SS 2008. The GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase (PDE5) is a sensor and a sink for cGMP. Biochemistry 47:3534–43
    [Google Scholar]
  112. 112.
    Saito K, Hatsugai N, Horikawa K, Kobayashi K, Matsu-ura T et al. 2010. Auto-luminescent genetically-encoded ratiometric indicator for real-time Ca2+ imaging at the single cell level. PLOS ONE 5:e9935
    [Google Scholar]
  113. 113.
    Yoshida T, Kakizuka A, Imamura H 2016. BTeam, a novel BRET-based biosensor for the accurate quantification of ATP concentration within living cells. Sci. Rep. 6:39618
    [Google Scholar]
  114. 114.
    Saito K, Chang YF, Horikawa K, Hatsugai N, Higuchi Y et al. 2012. Luminescent proteins for high-speed single-cell and whole-body imaging. Nat. Commun. 3:1262
    [Google Scholar]
  115. 115.
    Yang J, Cumberbatch D, Centanni S, Shi SQ, Winder D et al. 2016. Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca++ sensing. Nat. Commun. 7:13268
    [Google Scholar]
  116. 116.
    Hossain MN, Suzuki K, Iwano M, Matsuda T, Nagai T 2018. Bioluminescent low-affinity Ca2+ indicator for ER with multicolor calcium imaging in single living cells. ACS Chem. Biol. 13:1862–71
    [Google Scholar]
  117. 117.
    Inagaki S, Tsutsui H, Suzuki K, Agetsuma M, Arai Y et al. 2017. Genetically encoded bioluminescent voltage indicator for multi-purpose use in wide range of bioimaging. Sci. Rep. 7:42398
    [Google Scholar]
  118. 118.
    Van Gasse AL, Mangodt EA, Faber M, Sabato V, Bridts CH, Ebo DG 2015. Molecular allergy diagnosis: status anno 2015. Clin. Chim. Acta 444:54–61
    [Google Scholar]
  119. 119.
    Arts R, den Hartog I, Zijlema SE, Thijssen V, van der Beelen SHE, Merkx M 2016. Detection of antibodies in blood plasma using bioluminescent sensor proteins and a smartphone. Anal. Chem. 88:4525–32
    [Google Scholar]
  120. 120.
    van Rosmalen M, Ni Y, Vervoort DFM, Arts R, Ludwig SKJ, Merkx M 2018. Dual-color bioluminescent sensor proteins for therapeutic drug monitoring of antitumor antibodies. Anal. Chem. 90:3592–99
    [Google Scholar]
  121. 121.
    Arts R, Ludwig SKJ, van Gerven BCB, Estirado EM, Milroy LG, Merkx M 2017. Semisynthetic bioluminescent sensor proteins for direct detection of antibodies and small molecules in solution. ACS Sens 2:1730–36
    [Google Scholar]
  122. 122.
    Hochreiter B, Pardo-Garcia A, Schmid JA 2015. Fluorescent proteins as genetically encoded FRET biosensors in life sciences. Sensors 15:26281–314
    [Google Scholar]
  123. 123.
    Komatsu N, Terai K, Imanishi A, Kamioka Y, Sumiyama K et al. 2018. A platform of BRET-FRET hybrid biosensors for optogenetics, chemical screening, and in vivo imaging. Sci. Rep. 8:8984
    [Google Scholar]
  124. 124.
    Chabosseau P, Tuncay E, Meur G, Bellomo EA, Hessels A et al. 2014. Mitochondrial and ER-targeted eCALWY probes reveal high levels of free Zn2+. ACS Chem. Biol. 9:2111–20
    [Google Scholar]
  125. 125.
    Hessels AM, Chabosseau P, Bakker MH, Engelen W, Rutter GA et al. 2015. eZinCh-2: a versatile, genetically encoded FRET sensor for cytosolic and intraorganelle Zn2+ imaging. ACS Chem. Biol. 10:2126–34
    [Google Scholar]
  126. 126.
    Aper SJA, Dierickx P, Merkx M 2016. Dual readout BRET/FRET sensors for measuring intracellular zinc. ACS Chem. Biol. 11:2854–64
    [Google Scholar]
  127. 127.
    Qian Y, Rancic V, Wu J, Ballanyi K, Campbell RE 2018. A bioluminescent Ca2+ indicator based on a topological variant of GCaMP6s. ChemBioChem 20:516–20
    [Google Scholar]
  128. 128.
    Xue L, Prifti E, Johnsson K 2016. A general strategy for the semisynthesis of ratiometric fluorescent sensor proteins with increased dynamic range. J. Am. Chem. Soc. 138:5258–61
    [Google Scholar]
  129. 129.
    Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K 2003. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol 21:86–89
    [Google Scholar]
  130. 130.
    Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M et al. 2008. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15:128–36
    [Google Scholar]
  131. 131.
    Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N et al. 2008. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3:373–82
    [Google Scholar]
  132. 132.
    Griss R, Schena A, Reymond L, Patiny L, Werner D et al. 2014. Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Nat. Chem. Biol. 10:598–603
    [Google Scholar]
  133. 133.
    Xue L, Yu Q, Griss R, Schena A, Johnsson K 2017. Bioluminescent antibodies for point-of-care diagnostics. Angew. Chem. Int. Ed. 56:7112–16
    [Google Scholar]
  134. 134.
    Schena A, Griss R, Johnsson K 2015. Modulating protein activity using tethered ligands with mutually exclusive binding sites. Nat. Commun. 6:7830
    [Google Scholar]
  135. 135.
    Lindberg E, Angerani S, Anzola M, Winssinger N 2018. Luciferase-induced photoreductive uncaging of small-molecule effectors. Nat. Commun. 9:3539
    [Google Scholar]
  136. 136.
    Hananya N, Shabat D. 2017. A glowing trajectory between bio- and chemiluminescence: from luciferin-based probes to triggerable dioxetanes. Angew. Chem. Int. Ed. 56:16454–63
    [Google Scholar]
  137. 137.
    Green O, Eilon T, Hananya N, Gutkin S, Bauer CR, Shabat D 2017. Opening a gateway for chemiluminescence cell imaging: distinctive methodology for design of bright chemiluminescent dioxetane probes. ACS Cent. Sci. 3:349–58
    [Google Scholar]
  138. 138.
    Hananya N, Green O, Blau R, Satchi-Fainaro R, Shabat D 2017. A highly efficient chemiluminescence probe for the detection of singlet oxygen in living cells. Angew. Chem. Int. Ed. 56:11793–96
    [Google Scholar]
  139. 139.
    Green O, Gnaim S, Blau R, Eldar-Boock A, Satchi-Fainaro R, Shabat D 2017. Near-infrared dioxetane luminophores with direct chemiluminescence emission mode. J. Am. Chem. Soc. 139:13243–48
    [Google Scholar]
  140. 140.
    Cao J, An W, Reeves AG, Lippert AR 2018. A chemiluminescent probe for cellular peroxynitrite using a self-immolative oxidative decarbonylation reaction. Chem. Sci. 9:2552–58
    [Google Scholar]
  141. 141.
    Cao J, Lopez R, Thacker JM, Moon JY, Jiang C et al. 2015. Chemiluminescent probes for imaging H2S in living animals. Chem. Sci. 6:1979–85
    [Google Scholar]
  142. 142.
    Hananya N, Boock AE, Bauer CR, Satchi-Fainaro R, Shabat D 2016. Remarkable enhancement of chemiluminescent signal by dioxetane-fluorophore conjugates: turn-ON chemiluminescence probes with color modulation for sensing and imaging. J. Am. Chem. Soc. 138:13438–46
    [Google Scholar]
  143. 143.
    Cao J, Campbell J, Liu L, Mason RP, Lippert AR 2016. In vivo chemiluminescent imaging agents for nitroreductase and tissue oxygenation. Anal. Chem. 88:4995–5002
    [Google Scholar]
  144. 144.
    Ryan LS, Lippert AR. 2018. Ultrasensitive chemiluminescent detection of cathepsin B: insights into the new frontier of chemiluminescent imaging. Angew. Chem. Int. Ed. 57:622–24
    [Google Scholar]
  145. 145.
    Claes F, Vodnala SK, van Reet N, Boucher N, Lunden-Miguel H et al. 2009. Bioluminescent imaging of Trypanosoma brucei shows preferential testis dissemination which may hamper drug efficacy in sleeping sickness. PLOS Negl. Trop. Dis. 3:e486
    [Google Scholar]
  146. 146.
    Zhao H, Doyle TC, Wong RJ, Cao Y, Stevenson DK et al. 2004. Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol. Imaging 3:43–54
    [Google Scholar]
  147. 147.
    Kotlobay AA, Sarkisyan KS, Mokrushina YA, Marcet-Houban M, Serebrovskaya EO et al. 2018. Genetically encodable bioluminescent system from fungi. PNAS 115:12728–32
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-115027
Loading
/content/journals/10.1146/annurev-anchem-061318-115027
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error