Transpiration—the movement of water from the soil, through plants, and into the atmosphere—is the dominant water flux from the earth's terrestrial surface. The evolution of vascular plants, while increasing terrestrial primary productivity, led to higher transpiration rates and widespread alterations in the global climate system. Similarly, anthropogenic influences on transpiration rates are already influencing terrestrial hydrologic cycles, with an even greater potential for changes lying ahead. Intricate linkages among anthropogenic activities, terrestrial productivity, the hydrologic cycle, and global demand for ecosystem services will lead to increased pressures on ecosystem water demands. Here, we focus on identifying the key drivers of ecosystem water use as they relate to plant physiological function, the role of predicted global changes in ecosystem water uses, trade-offs between ecosystem water use and carbon uptake, and knowledge gaps.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ainsworth EA. 1.  2008. Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob. Change Biol. 14:1642–50 [Google Scholar]
  2. Ainsworth EA, Davey PA, Bernacchi CJ, Dermody OC, Heaton EA. 2.  et al. 2002. A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob. Change Biol. 8:695–709 [Google Scholar]
  3. Ainsworth EA, Long SP. 3.  2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165:351–72 [Google Scholar]
  4. Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD. 4.  2012. The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu. Rev. Plant Biol. 63:637–61 [Google Scholar]
  5. Algeo TJ, Scheckler SE. 5.  1998. Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events. Philos. Trans. R. Soc. Lond. B 353:113–30 [Google Scholar]
  6. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N. 6.  et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259:660–84 [Google Scholar]
  7. Asner GP, Scurlock JM, A Hicke J. 7.  2003. Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob. Ecol. Biogeogr. 12:191–205 [Google Scholar]
  8. Bagley JE, Desai AR, Dirmeyer PA, Foley JA. 8.  2012. Effects of land cover change on moisture availability and potential crop yield in the world's breadbaskets. Environ. Res. Lett. 7:014009 [Google Scholar]
  9. Bagley JE, Desai AR, Harding KJ, Snyder PK, Foley JA. 9.  2014. Drought and deforestation: Has land cover change influenced recent precipitation extremes in the Amazon?. J. Clim. 27:345–61 [Google Scholar]
  10. Bagley JE, Desai AR, West PC, Foley JA. 10.  2011. A simple, minimal parameter model for predicting the influence of changing land cover on the land-atmosphere system. Earth Interact. 15:1–32 [Google Scholar]
  11. Baldocchi D. 11.  1994. A comparative study of mass and energy exchange rates over a closed C3 (wheat) and an open C4 (corn) crop: II. CO2 exchange and water use efficiency. Agric. For. Meteorol. 67:291–321 [Google Scholar]
  12. Barbosa IC, Köhler IH, Auerswald K, Lüps P, Schnyder H. 12.  2010. Last-century changes of alpine grassland water-use efficiency: a reconstruction through carbon isotope analysis of a time-series of Capra ibex horns. Glob. Change Biol. 16:1171–80 [Google Scholar]
  13. Beer C, Ciais P, Reichstein M, Baldocchi D, Law B. 13.  et al. 2009. Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Glob. Biogeochem. Cycles 23:GB2018 [Google Scholar]
  14. Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M. 14.  et al. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–38 [Google Scholar]
  15. Beerling D. 15.  2007. The Emerald Planet: How Plants Changed Earth's History Oxford, UK: Oxford Univ. Press
  16. Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR. 16.  2007. Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol. 143:134–44 [Google Scholar]
  17. Bernacchi CJ, Leakey ADB, Kimball BA, Ort DR. 17.  2011. Growth of soybean at midcentury tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion. Environ. Pollut. 159:1464–72 [Google Scholar]
  18. Berry JA, Beerling DJ, Franks PJ. 18.  2010. Stomata: key players in the Earth System, past and present. Curr. Opin. Plant Biol. 13:232–39 [Google Scholar]
  19. Betts AK, Ball JH, Beljaars A, Miller MJ, Viterbo PA. 19.  1996. The land surface-atmosphere interaction: a review based on observational and global modeling perspectives. J. Geophys. Res. Atmos. 101:7209–25 [Google Scholar]
  20. Bishop KA, Leakey AD, Ainsworth EA. 20.  2014. How seasonal temperature or water inputs affect the relative response of C3 crops to elevated [CO2]: a global analysis of open top chamber and free air CO2 enrichment studies. Food Energy Secur. 3:33–45 [Google Scholar]
  21. Bister M, Renno N, Pauluis O, Emanuel K. 21.  2011. Comment on Makarieva et al. “A critique of some modern applications of the Carnot heat engine concept: The dissipative heat engine cannot exist.”. Proc. R. Soc. A 467:1–6 [Google Scholar]
  22. Bowen IS. 22.  1926. The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 27:779–87 [Google Scholar]
  23. Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA. 23.  2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc. R. Soc. B 276:1771–76 [Google Scholar]
  24. Brauman KA, Siebert S, Foley JA. 24.  2013. Improvements in crop water productivity increase water sustainability and food security—a global analysis. Environ. Res. Lett. 8:024030 [Google Scholar]
  25. Briggs LJ, Shantz HL. 25.  1913. The Water Requirement of Plants Washington, DC: US Gov. Print. Off.
  26. Brodribb TJ, Feild TS. 26.  2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13:175–83 [Google Scholar]
  27. Brodribb TJ, Feild TS, Jordan GJ. 27.  2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 144:1890–98 [Google Scholar]
  28. Buick R. 28.  2008. When did oxygenic photosynthesis evolve?. Philos. Trans. R. Soc. Lond. B. 363:2731–43 [Google Scholar]
  29. Campbell GS, Norman JM. 29.  1998. An Introduction to Environmental Biophysics New York: Springer
  30. 30. CCSP (Clim. Change Sci. Program) 2008. The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States Rep., US Dep. Agric., Washington, DC
  31. Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S. 31.  et al. 2012. Global convergence in the vulnerability of forests to drought. Nature 491:752–55 [Google Scholar]
  32. Churkina G, Running SW. 32.  1998. Contrasting climatic controls on the estimated productivity of global terrestrial biomes. Ecosystems 1:206–15 [Google Scholar]
  33. Collins M, Knutti R, Arblaster J, Dufresne J, Fichefet T. 33.  et al. 2013. Long-term climate change: projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen, et al. 1054–57 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  34. Condon A, Richards R, Rebetzke G, Farquhar G. 34.  2002. Improving intrinsic water-use efficiency and crop yield. Crop Sci. 42:122–31 [Google Scholar]
  35. Dai A. 35.  2011. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2:45–65 [Google Scholar]
  36. Dai A. 36.  2013. Increasing drought under global warming in observations and models. Nat. Clim. Change 3:52–58 [Google Scholar]
  37. Davies B, Baulcombe D, Crute I, Dunwell J, Gale M. 37.  et al. 2009. Reaping the benefits: science and the sustainable intensification of global agriculture Policy Doc. 11/09, R. Soc., London
  38. Dirmeyer PA, Kinter JL III. 38.  2010. Floods over the US Midwest: a regional water cycle perspective. J. Hydrometeorol. 11:1172–81 [Google Scholar]
  39. Dolman AJ, Miralles DG, Jeu RA. 39.  2014. Fifty years since Monteith's 1965 seminal paper: the emergence of global ecohydrology. Ecohydrology 7:897–902 [Google Scholar]
  40. Dominguez F, Kumar P, Liang X, Ting M. 40.  2006. Impact of atmospheric moisture storage on precipitation recycling. J. Clim. 19:1513–30 [Google Scholar]
  41. Donohue RJ, Roderick ML, McVicar TR, Farquhar GD. 41.  2013. Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments. Geophys. Res. Lett. 40:3031–35 [Google Scholar]
  42. Drake BG, Gonzàlez-Meler MA, Long SP. 42.  1997. More efficient plants: a consequence of rising atmospheric CO2?. Annu. Rev. Plant Biol. 48:609–39 [Google Scholar]
  43. Drewry D, Kumar P, Long S, Bernacchi CJ, Liang X, Sivapalan M. 43.  2010. Ecohydrological responses of dense canopies to environmental variability: 1. interplay between vertical structure and photosynthetic pathway. J. Geophys. Res. 115:G04022 [Google Scholar]
  44. Drewry D, Kumar P, Long S, Bernacchi CJ, Liang X, Sivapalan M. 44.  2010. Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2. J. Geophys. Res. 115:G04023 [Google Scholar]
  45. Ehleringer JR, Hall AE, Farquhar GD. 45.  1993. Stable Isotopes and Plant Carbon-Water Relations. London: Academic
  46. Farquhar GD, O'Leary M, Berry J. 46.  1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct. Plant Biol. 9:121–37 [Google Scholar]
  47. Feild TS, Arens NC. 47.  2007. The ecophysiology of early angiosperms. Plant Cell Environ. 30:291–309 [Google Scholar]
  48. Feng X. 48.  1999. Trends in intrinsic water-use efficiency of natural trees for the past 100–200 years: a response to atmospheric CO2 concentration. Geochim. Cosmochim. Acta 63:1891–903 [Google Scholar]
  49. Field C, Jackson R, Mooney H. 49.  1995. Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ. 18:1214–25 [Google Scholar]
  50. Field C, Merino J, Mooney H. 50.  1983. Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia 60:384–89 [Google Scholar]
  51. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS. 51.  et al. 2011. Solutions for a cultivated planet. Nature 478:337–42 [Google Scholar]
  52. Franks PJ, Adams MA, Amthor JS, Barbour MM, Berry JA. 52.  et al. 2013. Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol. 197:1077–94 [Google Scholar]
  53. Gerten D, Heinke J, Hoff H, Biemans H, Fader M, Waha K. 53.  2011. Global water availability and requirements for future food production. J. Hydrometeorol. 12:885–99 [Google Scholar]
  54. Gleick PH. 54.  2014. The World's Water, Volume 8: The Biennial Report on Freshwater Resources Washington, DC: Island
  55. Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D. 55.  et al. 2010. Food security: the challenge of feeding 9 billion people. Science 327:812–18 [Google Scholar]
  56. Goessling H, Reick C. 56.  2011. What do moisture recycling estimates tell us? Exploring the extreme case of non-evaporating continents. Hydrol. Earth Syst. Sci. 15:3217–35 [Google Scholar]
  57. Hatfield JL, Boote KJ, Fay PA, Hahn GL, Izaurralde RC. 57.  et al. 2008. Agriculture. See Ref. 30 21–74
  58. Hatfield JL, Boote KJ, Kimball B, Ziska L, Izaurralde RC. 58.  et al. 2011. Climate impacts on agriculture: implications for crop production. Agron. J. 103:351–70 [Google Scholar]
  59. Hetherington AM, Woodward FI. 59.  2003. The role of stomata in sensing and driving environmental change. Nature 424:901–8 [Google Scholar]
  60. Hickman GC, VanLoocke A, Dohleman FG, Bernacchi CJ. 60.  2010. A comparison of canopy evapotranspiration for maize and two perennial grasses identified as potential bioenergy crops. Glob. Change Biol. Bioenergy 2:157–68 [Google Scholar]
  61. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 61.  2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25:1965–78 [Google Scholar]
  62. Horodyski RJ, Knauth LP. 62.  1994. Life on land in the Precambrian. Science 263:494–98 [Google Scholar]
  63. Houghton R. 63.  2007. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35:313–47 [Google Scholar]
  64. Hunsaker D, Hendrey G, Kimball B, Lewin K, Mauney J, Nagy J. 64.  1994. Cotton evapotranspiration under field conditions with CO2 enrichment and variable soil moisture regimes. Agric. For. Meteorol. 70:247–58 [Google Scholar]
  65. Hunsaker D, Kimball B, Pinter PJ Jr, LaMorte R, Wall G. 65.  1996. Carbon dioxide enrichment and irrigation effects on wheat evapotranspiration and water use efficiency. Trans. ASAE 39:1345–55 [Google Scholar]
  66. Hunsaker D, Kimball B, Pinter PJ Jr, Wall G, LaMorte R. 66.  et al. 2000. CO enrichment and soil nitrogen effects on wheat evapotranspiration and water use efficiency. Agric. For. Meteorol. 104:85–105 [Google Scholar]
  67. Huntington TG. 67.  2006. Evidence for intensification of the global water cycle: review and synthesis. J. Hydrol. 319:83–95 [Google Scholar]
  68. Hussain MZ, VanLoocke A, Siebers MH, Ruiz-Vera UM, Cody Markelz R. 68.  et al. 2013. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize. Glob. Change Biol. 19:1572–84 [Google Scholar]
  69. Jackson RB, Carpenter SR, Dahm CN, McKnight DM, Naiman RJ. 69.  et al. 2001. Water in a changing world. Ecol. Appl. 11:1027–45 [Google Scholar]
  70. Jackson RB, Sala O, Paruelo J, Mooney H. 70.  1998. Ecosystem water fluxes for two grasslands in elevated CO2: a modeling analysis. Oecologia 113:537–46 [Google Scholar]
  71. Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ. 71.  2013. Terrestrial water fluxes dominated by transpiration. Nature 496:347–50 [Google Scholar]
  72. Jones HG. 72.  2014. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology Cambridge, UK: Cambridge Univ. Press, 3rd ed..
  73. Kang S, Gu B, Du T, Zhang J. 73.  2003. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region. Agric. Water Manag. 59:239–54 [Google Scholar]
  74. Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW. 74.  et al. 2013. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324–27 [Google Scholar]
  75. Kiers E, Leakey R, Izac A-M, Heinemann J, Rosenthal E. 75.  et al. 2008. Agriculture at a crossroads. Science 320:320–21 [Google Scholar]
  76. Kimball B, LaMorte R, Pinter PJ Jr, Wall G, Hunsaker D. 76.  et al. 1999. Free-air CO2 enrichment and soil nitrogen effects on energy balance and evapotranspiration of wheat. Water Resour. Res. 35:1179–90 [Google Scholar]
  77. Kimball B, LaMorte R, Seay R, Pinter PJ Jr, Rokey R. 77.  et al. 1994. Effects of free-air CO2 enrichment on energy balance and evapotranspiration of cotton. Agric. For. Meteorol. 70:259–78 [Google Scholar]
  78. Köhler IH, Poulton PR, Auerswald K, Schnyder H. 78.  2010. Intrinsic water-use efficiency of temperate seminatural grassland has increased since 1857: an analysis of carbon isotope discrimination of herbage from the park grass experiment. Glob. Change Biol. 16:1531–41 [Google Scholar]
  79. Labat D, Goddéris Y, Probst JL, Guyot JL. 79.  2004. Evidence for global runoff increase related to climate warming. Adv. Water Resour. 27:631–42 [Google Scholar]
  80. Lambers H, Chapin FS III, Pons TL. 80.  2008. Plant Physiological Ecology New York: Springer
  81. Law B, Falge E, Gu L, Baldocchi D, Bakwin P. 81.  et al. 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteorol. 113:97–120 [Google Scholar]
  82. Le PV, Kumar P, Drewry DT. 82.  2011. Implications for the hydrologic cycle under climate change due to the expansion of bioenergy crops in the Midwestern United States. PNAS 108:15085–90 [Google Scholar]
  83. Le PV, Kumar P, Drewry DT, Quijano JC. 83.  2012. A graphical user interface for numerical modeling of acclimation responses of vegetation to climate change. Comput. Geosci. 49:91–101 [Google Scholar]
  84. Leakey AD, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR. 84.  2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60:2859–76 [Google Scholar]
  85. Lee J, Boyce K. 85.  2010. Impact of the hydraulic capacity of plants on water and carbon fluxes in tropical South America. J. Geophys. Res. 115:D23123 [Google Scholar]
  86. Linsbauer K. 86.  1916. Beitrage zur Kenntnis der Spaltoffnungsbewegung. Flora 9:100–43 [Google Scholar]
  87. Liu J, Zehnder AJ, Yang H. 87.  2009. Global consumptive water use for crop production: the importance of green water and virtual water. Water Resour. Res. 45:W05428 [Google Scholar]
  88. Lobell DB, Hammer GL, McLean G, Messina C, Roberts MJ, Schlenker W. 88.  2013. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3:497–501 [Google Scholar]
  89. Lobell DB, Roberts MJ, Schlenker W, Braun N, Little BB. 89.  et al. 2014. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344:516–19 [Google Scholar]
  90. Lombardozzi D, Sparks J, Bonan G. 90.  2013. Integrating O3 influences on terrestrial processes: photosynthetic and stomatal response data available for regional and global modeling. Biogeosciences 10:6815–31 [Google Scholar]
  91. Luyssaert S, Inglima I, Jung M, Richardson A, Reichstein M. 91.  et al. 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13:2509–37 [Google Scholar]
  92. Magliulo V, Bindi M, Rana G. 92.  2003. Water use of irrigated potato (Solanum tuberosum L.) grown under free air carbon dioxide enrichment in central Italy. Agric. Ecosyst. Environ. 97:65–80 [Google Scholar]
  93. Makarieva AM, Gorshkov VG, Li B, Nobre AD. 93.  2010. A critique of some modern applications of the Carnot heat engine concept: The dissipative heat engine cannot exist. Proc. R. Soc. A 466:1893–902 [Google Scholar]
  94. McGrath JM, Lobell DB. 94.  2011. An independent method of deriving the carbon dioxide fertilization effect in dry conditions using historical yield data from wet and dry years. Glob. Change Biol. 17:2689–96 [Google Scholar]
  95. McNaughton K, Jarvis P. 95.  1991. Effects of spatial scale on stomatal control of transpiration. Agric. For. Meteorol. 54:279–302 [Google Scholar]
  96. Monteith J. 96.  1965. Evaporation and environment. The State and Movement of Water in Living Organisms GE Fogg 205–34 Symp. Soc. Exp. Biol. 19 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  97. Monteith J. 97.  1984. Consistency and convenience in the choice of units for agricultural science. Exp. Agric. 20:105–17 [Google Scholar]
  98. Monteith J. 98.  1993. The exchange of water and carbon by crops in a Mediterranean climate. Irrig. Sci. 14:85–91 [Google Scholar]
  99. Morison JL. 99.  1985. Sensitivity of stomata and water use efficiency to high CO2. Plant Cell Environ. 8:467–74 [Google Scholar]
  100. Nobel P. 100.  2009. Physicochemical and Environmental Plant Physiology. San Diego, CA: Academic, 4th ed..
  101. Norby RJ, Zak DR. 101.  2011. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42:181–203 [Google Scholar]
  102. Oki T, Kanae S. 102.  2006. Global hydrological cycles and world water resources. Science 313:1068–72 [Google Scholar]
  103. Ort DR, Ainsworth EA, Aldea M, Allen DJ, Bernacchi CJ. 103.  et al. 2006. SoyFACE: the effects and interactions of elevated [CO2] and [O3] on soybean. Managed Ecosystems and CO2: Case Studies, Processes, and Perspectives J Nösberger, SP Long, RJ Norby, M Stitt, GR Hendrey, H Blum 71–86 Berlin: Springer [Google Scholar]
  104. Ort DR, Long SP. 104.  2014. Limits on yields in the Corn Belt. Science 344:484–85 [Google Scholar]
  105. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE. 105.  et al. 2011. A large and persistent carbon sink in the world's forests. Science 333:988–93 [Google Scholar]
  106. Paul EA. 106.  2006. Soil Microbiology, Ecology and Biochemistry San Diego, CA: Academic, 3rd ed..
  107. Pelletier N, Tyedmers P. 107.  2010. Forecasting potential global environmental costs of livestock production 2000–2050. PNAS 107:18371–74 [Google Scholar]
  108. Peñuelas J, Canadell JG, Ogaya R. 108.  2011. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob. Ecol. Biogeogr. 20:597–608 [Google Scholar]
  109. Piao S, Friedlingstein P, Ciais P, de Noblet-Ducoudre N, Labat D, Zaehle S. 109.  2007. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. PNAS 104:15242–47 [Google Scholar]
  110. Pielke RA, Avissar R, Raupach M, Dolman AJ, Zeng X, Denning AS. 110.  1998. Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob. Change Biol. 4:461–75 [Google Scholar]
  111. Pieruschka R, Huber G, Berry JA. 111.  2010. Control of transpiration by radiation. PNAS 107:13372–77 [Google Scholar]
  112. Pinter PJ Jr, Kimball BA, Garcia RL, Wall GW, Hunsaker DJ, LaMorte RL. 112.  1996. Free-air CO2 enrichment: responses of cotton and wheat crops. Carbon Dioxide and Terrestrial Ecosystems GW Koch, HA Mooney 215–49 San Diego: Academic [Google Scholar]
  113. Prudhomme C, Giuntoli I, Robinson EL, Clark DB, Arnell NW. 113.  et al. 2014. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. PNAS 111:3262–67 [Google Scholar]
  114. Raupach M. 114.  2001. Combination theory and equilibrium evaporation. Q. J. R. Meteorol. Soc. 127:1149–81 [Google Scholar]
  115. Rawson H, Begg J, Woodward R. 115.  1977. The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species. Planta 134:5–10 [Google Scholar]
  116. Rost S, Gerten D, Bondeau A, Lucht W, Rohwer J, Schaphoff S. 116.  2008. Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 44:W09405 [Google Scholar]
  117. Sack L, Holbrook NM. 117.  2006. Leaf hydraulics. Annu. Rev. Plant Biol. 57:361–81 [Google Scholar]
  118. Sacks WJ, Kucharik CJ. 118.  2011. Crop management and phenology trends in the US Corn Belt: impacts on yields, evapotranspiration and energy balance. Agric. For. Meteorol. 151:882–94 [Google Scholar]
  119. Saurer M, Siegwolf RT, Schweingruber FH. 119.  2004. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Glob. Change Biol. 10:2109–20 [Google Scholar]
  120. Schlesinger WH, Bernhardt ES. 120.  2013. Biogeochemistry: An Analysis of Global Change San Diego, CA: Academic
  121. Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG. 121.  et al. 1997. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275:502–9 [Google Scholar]
  122. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB. 122.  et al. 2010. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99:125–61 [Google Scholar]
  123. Sherwood S, Fu Q. 123.  2014. A drier future?. Science 343:737–39 [Google Scholar]
  124. Siebert S, Döll P. 124.  2010. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384:198–217 [Google Scholar]
  125. Sperry JS. 125.  2011. Hydraulics of vascular water transport. Mechanical Integration of Plant Cells and Plants P Wojtaszek 303–27 Berlin: Springer-Verlag [Google Scholar]
  126. Steduto P, Hsiao TC, Fereres E. 126.  2007. On the conservative behavior of biomass water productivity. Irrig. Sci. 25:189–207 [Google Scholar]
  127. Steudle E. 127.  2001. The cohesion-tension mechanism and the acquisition of water by plant roots. Annu. Rev. Plant Biol. 52:847–75 [Google Scholar]
  128. Stirzaker R, Passioura J, Wilms Y. 128.  1996. Soil structure and plant growth: impact of bulk density and biopores. Plant Soil 185:151–62 [Google Scholar]
  129. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK. 129.  et al. 2013. Summary for policymakers. Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change TF Stocker, D Qin, G-K Plattner, M Tignor, SK Allen 3–29 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  130. Tallec T, Béziat P, Jarosz N, Rivalland V, Ceschia E. 130.  2013. Crops' water use efficiencies in temperate climate: comparison of stand, ecosystem and agronomical approaches. Agric. For. Meteorol. 168:69–81 [Google Scholar]
  131. Tanner C, Sinclair T. 131.  1983. Efficient water use in crop production: research or re-search?. Limitations to Efficient Water Use in Crop Production HM Taylor, WR Jordan, TS Sinclair 1–27 Madison, WI: Am. Soc. Agron., Crop Sci. Soc. Am., and Soil Sci. Soc. Am. [Google Scholar]
  132. Tian H, Chen G, Liu M, Zhang C, Sun G. 132.  et al. 2010. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. For. Ecol. Manag. 259:1311–27 [Google Scholar]
  133. Trenberth KE. 133.  1998. Atmospheric moisture residence times and cycling: implications for rainfall rates and climate change. Clim. Change 39:667–94 [Google Scholar]
  134. Trenberth KE, Smith L, Qian T, Dai A, Fasullo J. 134.  2007. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol. 8:758–69 [Google Scholar]
  135. Triggs JM, Kimball B, Pinter PJ Jr, Wall G, Conley M. 135.  et al. 2004. Free-air CO2 enrichment effects on the energy balance and evapotranspiration of sorghum. Agric. For. Meteorol. 124:63–79 [Google Scholar]
  136. Twine TE, Bryant JJ, T Richter K, Bernacchi CJ, McConnaughay KD. 136.  et al. 2013. Impacts of elevated CO2 concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest USA. Glob. Change Biol. 19:2838–52 [Google Scholar]
  137. Tyree MT. 137.  1997. The cohesion-tension theory of sap ascent: current controversies. J. Exp. Bot. 48:1753–65 [Google Scholar]
  138. Tyree MT, Sperry JS. 138.  1989. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Biol. 40:19–36 [Google Scholar]
  139. 139. US Dep. Energy 2008. Climate placemat: energy-climate nexus. Placemat, Off. Sci., US Dep. Energy, Washington, DC
  140. VanLoocke A, Betzelberger AM, Ainsworth EA, Bernacchi CJ. 140.  2012. Rising ozone concentrations decrease soybean evapotranspiration and water use efficiency whilst increasing canopy temperature. New Phytol. 195:164–71 [Google Scholar]
  141. VanLoocke A, Twine TE, Zeri M, Bernacchi CJ. 141.  2012. A regional comparison of water use efficiency for miscanthus, switchgrass and maize. Agric. For. Meteorol. 164:82–95 [Google Scholar]
  142. Vinyard DJ, Ananyev GM, Dismukes GC. 142.  2013. Photosystem II: the reaction center of oxygenic photosynthesis. Annu. Rev. Biochem. 82:577–606 [Google Scholar]
  143. Webb WL, Lauenroth WK, Szarek SR, Kinerson RS. 143.  1983. Primary production and abiotic controls in forests, grasslands, and desert ecosystems in the United States. Ecology 64:134–51 [Google Scholar]
  144. West PC, Gerber JS, Engstrom PM, Mueller ND, Brauman KA. 144.  et al. 2014. Leverage points for improving global food security and the environment. Science 345:325–28 [Google Scholar]
  145. Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA. 145.  et al. 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3:292–97 [Google Scholar]
  146. Wullschleger SD, Norby RJ. 146.  2001. Sap velocity and canopy transpiration in a sweetgum stand exposed to free-air CO2 enrichment (FACE). New Phytol. 150:489–98 [Google Scholar]
  147. Yang Z. 147.  2004. Modeling land surface processes in short-term weather and climate studies. Observation, Theory and Modeling of Atmospheric Variability X Zhu, X Li, M Cai, S Zhou, Y Zhu, et al. 288–313 World Sci. Ser. Meteorol. East Asia Vol. 3 Hackensack, NJ: World Sci. [Google Scholar]
  148. Yoshimoto M, Oue H, Kobayashi K. 148.  2005. Energy balance and water use efficiency of rice canopies under free-air CO2 enrichment. Agric. For. Meteorol. 133:226–46 [Google Scholar]
  149. Zeri M, Hussain MZ, Anderson-Teixeira KJ, DeLucia E, Bernacchi CJ. 149.  2013. Water use efficiency of perennial and annual bioenergy crops in central Illinois. J. Geophys. Res. Biogeosci. 118:581–89 [Google Scholar]
  150. Zhou J, Poulsen C, Rosenbloom N, Shields C, Briegleb B. 150.  2012. Vegetation-climate interactions in the warm mid-Cretaceous. Clim. Past 8:565–76 [Google Scholar]
  151. Zwart SJ, Bastiaanssen WG. 151.  2004. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric. Water Manag. 69:115–33 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error