1932

Abstract

The remarkable diversity of specialized metabolites produced by plants has inspired several decades of research and nucleated a long list of theories to guide empirical ecological studies. However, analytical constraints and the lack of untargeted processing workflows have long precluded comprehensive metabolite profiling and, consequently, the collection of the critical currencies to test theory predictions for the ecological functions of plant metabolic diversity. Developments in mass spectrometry (MS) metabolomics have revolutionized the large-scale inventory and annotation of chemicals from biospecimens. Hence, the next generation of MS metabolomics propelled by new bioinformatics developments provides a long-awaited framework to revisit metabolism-centered ecological questions, much like the advances in next-generation sequencing of the last two decades impacted all research horizons in genomics. Here, we review advances in plant (computational) metabolomics to foster hypothesis formulation from complex metabolome data. Additionally, we reflect on how next-generation metabolomics could reinvigorate the testing of long-standing theories on plant metabolic diversity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-071720-114836
2021-06-17
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/arplant/72/1/annurev-arplant-071720-114836.html?itemId=/content/journals/10.1146/annurev-arplant-071720-114836&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adler FR, Karban R. 1994. Defended fortresses or moving targets? Another model of inducible defenses inspired by military metaphors. Am. Nat. 144:813–32
    [Google Scholar]
  2. 2. 
    Adler LS, Schmitt J, Bowers MD. 1995. Genetic variation in defensive chemistry in Plantago lanceolata (Plantaginaceae) and its effect on the specialist herbivore Junonia coenia (Nymphalidae). Oecologia 101:75–85
    [Google Scholar]
  3. 3. 
    Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y et al. 2012. KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol 53:e1
    [Google Scholar]
  4. 4. 
    Agrawal AA, Fishbein M, Halitschke R, Hastings AP, Rabosky DL, Rasmann S 2009. Evidence for adaptive radiation from a phylogenetic study of plant defenses. PNAS 106:18067–72
    [Google Scholar]
  5. 5. 
    Aharoni A, de Vos CHR, Verhoeven HA, Maliepaard CA, Kruppa G et al. 2002. Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. OMICS 6:217–34
    [Google Scholar]
  6. 6. 
    Aksenov AA, da Silva R, Knight R, Lopes NP, Dorrestein PC. 2017. Global chemical analysis of biology by mass spectrometry. Nat. Rev. Chem. 1:0054
    [Google Scholar]
  7. 7. 
    Allard PM, Peresse T, Bisson J, Gindro K, Marcourt L et al. 2016. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal. Chem. 88:3317–23
    [Google Scholar]
  8. 8. 
    Allwood JW, Ellis DI, Goodacre R. 2008. Metabolomic technologies and their application to the study of plants and plant–host interactions. Physiol. Plant 132:117–35
    [Google Scholar]
  9. 9. 
    Allwood JW, Weber RJM, Zhou J, He S, Viant MR, Dunn WB. 2013. CASMI—the small molecule identification process from a Birmingham perspective. Metabolites 3:397–411
    [Google Scholar]
  10. 10. 
    Alonso A, Julià A, Beltran A, Vinaixa M, Díaz M et al. 2011. AStream: an R package for annotating LC/MS metabolomic data. Bioinformatics 27:1339–40
    [Google Scholar]
  11. 11. 
    Alonso A, Marsal S, Julià A. 2015. Analytical methods in untargeted metabolomics: state of the art in 2015. Front. Bioeng. Biotechnol. 3:23
    [Google Scholar]
  12. 12. 
    Babushok VI, Linstrom PJ, Reed JJ, Zenkevich IG, Brown RL et al. 2007. Development of a database of gas chromatographic retention properties of organic compounds. J. Chromatogr. A 1157:414–21
    [Google Scholar]
  13. 13. 
    Baldwin IT. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. PNAS 95:8113–18
    [Google Scholar]
  14. 14. 
    Becerra JX, Noge K, Venable DL 2009. Macroevolutionary chemical escalation in an ancient plant–herbivore arms race. PNAS 106:18062–66
    [Google Scholar]
  15. 15. 
    Blaženović I, Kind T, Ji J, Fiehn O 2018. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 8:31
    [Google Scholar]
  16. 16. 
    Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE. 2014. RAMClust: A novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Anal. Chem. 86:6812–17
    [Google Scholar]
  17. 17. 
    Broeckling CD, Heuberger AL, Prince JA, Ingelsson E, Prenni JE. 2013. Assigning precursor–product ion relationships in indiscriminant MS/MS data from non-targeted metabolite profiling studies. Metabolomics 9:33–43Rationalizes a computational pipeline to infer precursor-to-fragment relationships in large-scale data-independent MS/MS experiments.
    [Google Scholar]
  18. 18. 
    Bryant JP, Chapin FS, Klein DR. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–68
    [Google Scholar]
  19. 19. 
    Cambiaghi A, Ferrario M, Masseroli M. 2017. Analysis of metabolomic data: tools, current strategies and future challenges for omics data integration. Brief. Bioinformat. 18:498–510
    [Google Scholar]
  20. 20. 
    Chan EK, Rowe HC, Corwin JA, Joseph B, Kliebenstein DJ 2011. Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLOS Biol 9:e1001125
    [Google Scholar]
  21. 21. 
    Chen W, Wang W, Peng M, Gong L, Gao Y et al. 2016. Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals. Nat. Commun. 7:12767
    [Google Scholar]
  22. 22. 
    Coley PD, Bryant JP, Chapin FS 3rd 1985. Resource availability and plant antiherbivore defense. Science 230:895–99
    [Google Scholar]
  23. 23. 
    da Silva RR, Dorrestein PC, Quinn RA 2015. Illuminating the dark matter in metabolomics. PNAS 112:12549–50
    [Google Scholar]
  24. 24. 
    da Silva RR, Wang MX, Nothias LF, van der Hooft JJJ, Caraballo-Rodriguez AM et al. 2018. Propagating annotations of molecular networks using in silico fragmentation. PLOS Comput. Biol. 14:e1006089
    [Google Scholar]
  25. 25. 
    D'Auria JC, Gershenzon J 2005. The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr. Opin. Plant Biol. 8:308–16
    [Google Scholar]
  26. 26. 
    Dixon RA, Strack D. 2003. Phytochemistry meets genome analysis, and beyond. Phytochemistry 62:815–16
    [Google Scholar]
  27. 27. 
    Domingo-Almenara X, Brezmes J, Vinaixa M, Samino S, Ramirez N et al. 2016. eRah: a computational tool integrating spectral deconvolution and alignment with quantification and identification of metabolites in GC/MS-based metabolomics. Anal. Chem. 88:9821–29
    [Google Scholar]
  28. 28. 
    Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV et al. 2019. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16:299–302
    [Google Scholar]
  29. 29. 
    Dührkop K, Nothias LF, Fleischauer M, Reher R, Ludwig M et al. 2020. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol https://doi.org/10.1038/s41587-020-0740-8
    [Crossref] [Google Scholar]
  30. 30. 
    Dührkop K, Shen H, Meusel M, Rousu J, Bocker S 2015. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. PNAS 112:12580–85Combines fragmentation tree computation and machine learning methods for searching a molecular structure database using MS/MS data.
    [Google Scholar]
  31. 31. 
    Dyer LA, Dodson CD, Stireman JO 3rd, Tobler MA, Smilanich AM et al. 2003. Synergistic effects of three Piper amides on generalist and specialist herbivores. J. Chem. Ecol. 29:2499–514
    [Google Scholar]
  32. 32. 
    Dyer LA, Philbin CS, Ochsenrider KM, Richards LA, Massad TJ et al. 2018. Modern approaches to study plant–insect interactions in chemical ecology. Nat. Rev. Chem. 2:50–64
    [Google Scholar]
  33. 33. 
    Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608
    [Google Scholar]
  34. 34. 
    Ernst M, Kang KB, Caraballo-Rodriguez AM, Nothias LF, Wandy J et al. 2019. MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites 9:144
    [Google Scholar]
  35. 35. 
    Ernst M, Nothias LF, van der Hooft JJJ, Silva RR, Saslis-Lagoudakis CH et al. 2019. Assessing specialized metabolite diversity in the cosmopolitan plant genus Euphorbia L. Front. Plant Sci 10:846
    [Google Scholar]
  36. 36. 
    Fang C, Fernie AR, Luo J. 2019. Exploring the diversity of plant metabolism. Trends Plant Sci 24:83–98
    [Google Scholar]
  37. 37. 
    Feeny P 1976. Plant apparency and chemical defense. Biochemical Interaction Between Plants and Insects JW Wallace, RL Mansel l, pp. 1–40 Boston: Springer
    [Google Scholar]
  38. 38. 
    Fernie AR. 2007. The future of metabolic phytochemistry: larger numbers of metabolites, higher resolution, greater understanding. Phytochemistry 68:2861–80
    [Google Scholar]
  39. 39. 
    Fernie AR, Stitt M. 2012. On the discordance of metabolomics with proteomics and transcriptomics: coping with increasing complexity in logic, chemistry, and network interactions scientific correspondence. Plant Physiol 158:1139–45
    [Google Scholar]
  40. 40. 
    Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L. 2004. Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5:763–69
    [Google Scholar]
  41. 41. 
    Fiehn O. 2016. Metabolomics by gas chromatography–mass spectrometry: combined targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 114:30.4.1–32
    [Google Scholar]
  42. 42. 
    Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L. 2000. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18:1157–61
    [Google Scholar]
  43. 43. 
    Firn RD, Jones CG. 2003. Natural products—a simple model to explain chemical diversity. Nat. Prod. Rep. 20:382–91
    [Google Scholar]
  44. 44. 
    Fraenkel GS. 1959. The raison d'être of secondary plant substances. Science 129:1466–70
    [Google Scholar]
  45. 45. 
    Fraser PD, Pinto MES, Holloway DE, Bramley PM. 2000. Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J 24:551–58
    [Google Scholar]
  46. 46. 
    Fujii T, Matsuda S, Tejedor ML, Esaki T, Sakane I et al. 2015. Direct metabolomics for plant cells by live single-cell mass spectrometry. Nat. Protoc. 10:1445–56
    [Google Scholar]
  47. 47. 
    Gillet LC, Navarro P, Tate S, Röst H, Selevsek N et al. 2012. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteom. 11:O111.016717
    [Google Scholar]
  48. 48. 
    Gohlke RS, McLafferty FW. 1993. Early gas chromatography/mass spectrometry. J. Am. Soc. Mass Spectrom. 4:367–71
    [Google Scholar]
  49. 49. 
    Gullberg J, Jonsson P, Nordstrom A, Sjostrom M, Moritz T. 2004. Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal. Biochem. 331:283–95
    [Google Scholar]
  50. 50. 
    Hartmann T. 2007. From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–46
    [Google Scholar]
  51. 51. 
    Haslam E. 1986. Secondary metabolism—fact and fiction. Nat. Prod. Rep. 3:217–49
    [Google Scholar]
  52. 52. 
    Hastings J, de Matos P, Dekker A, Ennis M, Harsha B et al. 2013. The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res 41:D456–63
    [Google Scholar]
  53. 53. 
    Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB et al. 2005. Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J. Biol. Chem. 280:25590–95
    [Google Scholar]
  54. 54. 
    Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T et al. 2007. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. PNAS 104:6478–83
    [Google Scholar]
  55. 55. 
    Holeski LM, Hillstrom ML, Whitham TG, Lindroth RL. 2012. Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species. Oecologia 170:695–707
    [Google Scholar]
  56. 56. 
    Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T et al. 2010. MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 45:703–14
    [Google Scholar]
  57. 57. 
    Hsu CC, ElNaggar MS, Peng Y, Fang JS, Sanchez LM et al. 2013. Real-time metabolomics on living microorganisms using ambient electrospray ionization flow-probe. Anal. Chem. 85:7014–18
    [Google Scholar]
  58. 58. 
    Itkin M, Rogachev I, Alkan N, Rosenberg T, Malitsky S et al. 2011. GLYCOALKALOID METABOLISM1 as required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 23:4507–25
    [Google Scholar]
  59. 59. 
    Jacobowitz JR, Weng JK. 2020. Exploring uncharted territories of plant specialized metabolism in the postgenomic era. Annu. Rev. Plant Biol. 71:631–58Provides a thorough synthesis of the biochemical exploration of plant specialized metabolism diversity.
    [Google Scholar]
  60. 60. 
    Jones CG, Firn RD. 1991. On the evolution of plant secondary chemical diversity. Philos. Trans. R. Soc. B 333:273–80
    [Google Scholar]
  61. 61. 
    Karban R, Baldwin IT. 1997. Induced Responses to Herbivory Chicago: Univ. Chicago Press
    [Google Scholar]
  62. 62. 
    Katajamaa M, Miettinen J, Oresic M. 2006. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–36
    [Google Scholar]
  63. 63. 
    Katajamaa M, Oresic M. 2007. Data processing for mass spectrometry-based metabolomics. J. Chromatogr. A 1158:318–28
    [Google Scholar]
  64. 64. 
    Kempel A, Schadler M, Chrobock T, Fischer M, van Kleunen M 2011. Tradeoffs associated with constitutive and induced plant resistance against herbivory. PNAS 108:5685–89
    [Google Scholar]
  65. 65. 
    Kessler A. 2015. The information landscape of plant constitutive and induced secondary metabolite production. Curr. Opin. Insect Sci. 8:47–53
    [Google Scholar]
  66. 66. 
    Kessler A, Kalske A. 2018. Plant secondary metabolite diversity and species interactions. Annu. Rev. Ecol. Evol. Syst. 49:115–38Outlines an information transfer hypothesis framework for understanding plant specialized metabolite diversity as a factor driving ecological interactions.
    [Google Scholar]
  67. 67. 
    Khersonsky O, Tawfik DS. 2010. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79:471–505
    [Google Scholar]
  68. 68. 
    Kim S, Thiessen PA, Bolton EE, Chen J, Fu G et al. 2016. PubChem substance and compound databases. Nucleic Acids Res 44:D1202–13
    [Google Scholar]
  69. 69. 
    Kim SG, Yon F, Gaquerel E, Gulati J, Baldwin IT 2011. Tissue specific diurnal rhythms of metabolites and their regulation during herbivore attack in a native tobacco, Nicotiana attenuata. PLOS ONE 6:e26214
    [Google Scholar]
  70. 70. 
    Kind T, Tsugawa H, Cajka T, Ma Y, Lai ZJ et al. 2018. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 37:513–32
    [Google Scholar]
  71. 71. 
    Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D et al. 2001. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–25
    [Google Scholar]
  72. 72. 
    Kliebenstein DJ, Lambrix VM, Reichelt M, Gershenzon J, Mitchell-Olds T. 2001. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate–dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:681–93
    [Google Scholar]
  73. 73. 
    Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B et al. 2005. [email protected]: the Golm Metabolome Database. Bioinformatics 21:1635–38
    [Google Scholar]
  74. 74. 
    Kuhl C, Tautenhahn R, Bottcher C, Larson TR, Neumann S. 2012. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84:283–89
    [Google Scholar]
  75. 75. 
    Kursar TA, Dexter KG, Lokvam J, Pennington RT, Richardson JE et al. 2009. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. PNAS 106:18073–78
    [Google Scholar]
  76. 76. 
    Kusano M, Redestig H, Hirai T, Oikawa A, Matsuda F et al. 2011. Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment. PLOS ONE 6:e16989
    [Google Scholar]
  77. 77. 
    Kuzina V, Nielsen JK, Augustin JM, Torp AM, Bak S, Andersen SB. 2011. Barbarea vulgaris linkage map and quantitative trait loci for saponins, glucosinolates, hairiness and resistance to the herbivore Phyllotreta nemorum. Phytochemistry 72:188–98
    [Google Scholar]
  78. 78. 
    Lei ZT, Huhman DV, Sumner LW. 2011. Mass spectrometry strategies in metabolomics. J. Biol. Chem. 286:25435–42
    [Google Scholar]
  79. 79. 
    Li D, Baldwin IT, Gaquerel E 2015. Navigating natural variation in herbivory-induced secondary metabolism in coyote tobacco populations using MS/MS structural analysis. PNAS 112:E4147–55
    [Google Scholar]
  80. 80. 
    Li D, Halitschke R, Baldwin IT, Gaquerel E. 2020. Information theory tests critical predictions of plant defense theory for specialized metabolism. Sci. Adv. 6:eaaz0381Applies information theory–derived statistics to quantify diversity and specialization in metabolome profiles and test seminal plant defense theories.
    [Google Scholar]
  81. 81. 
    Li D, Heiling S, Baldwin IT, Gaquerel E 2016. Illuminating a plant's tissue-specific metabolic diversity using computational metabolomics and information theory. PNAS 113:E7610–18
    [Google Scholar]
  82. 82. 
    Lindon JC, Holmes E, Bollard ME, Stanley EG, Nicholson JK. 2004. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers 9:1–31
    [Google Scholar]
  83. 83. 
    Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J. 1980. Applications of Artificial Intelligence for Organic Chemistry: the DENDRAL Project New York: McGraw-Hill
    [Google Scholar]
  84. 84. 
    Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U. 2015. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat. Methods 12:1091–97
    [Google Scholar]
  85. 85. 
    Little JL, Cleven CD, Brown SD. 2011. Identification of “known unknowns” utilizing accurate mass data and chemical abstracts service databases. J. Am. Soc. Mass Spectrom. 22:348–59
    [Google Scholar]
  86. 86. 
    Lommen A. 2009. MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal. Chem. 81:3079–86
    [Google Scholar]
  87. 87. 
    Loomis WF. 1932. Growth-differentiation balance vs carbohydrate-nitrogen ratio. Proc. Am. Soc. Horticult. Sci. 29:240–45
    [Google Scholar]
  88. 88. 
    Lynch M, Force A. 2000. The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–73
    [Google Scholar]
  89. 89. 
    Lynn KS, Cheng ML, Chen YR, Hsu C, Chen A et al. 2015. Metabolite identification for mass spectrometry-based metabolomics using multiple types of correlated ion information. Anal. Chem. 87:2143–51
    [Google Scholar]
  90. 90. 
    Marshall AG, Hendrickson CL. 2008. High-resolution mass spectrometers. Annu. Rev. Anal. Chem. 1:579–99
    [Google Scholar]
  91. 91. 
    Martinez O, Reyes-Valdes MH 2008. Defining diversity, specialization, and gene specificity in transcriptomes through information theory. PNAS 105:9709–14
    [Google Scholar]
  92. 92. 
    McKey D. 1974. Adaptive patterns in alkaloid physiology. Am. Nat. 108:305–20
    [Google Scholar]
  93. 93. 
    Moghe GD, Last RL. 2015. Something old, something new: conserved enzymes and the evolution of novelty in plant specialized metabolism. Plant Physiol 169:1512–23
    [Google Scholar]
  94. 94. 
    Mohimani H, Gurevich A, Mikheenko A, Garg N, Nothias LF et al. 2017. Dereplication of peptidic natural products through database search of mass spectra. Nat. Chem. Biol. 13:30–37
    [Google Scholar]
  95. 95. 
    Moore BD, Andrew RL, Kulheim C, Foley WJ. 2014. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201:733–50
    [Google Scholar]
  96. 96. 
    Naake T, Gaquerel E. 2017. MetCirc: navigating mass spectral similarity in high-resolution MS/MS metabolomics data. Bioinformatics 33:2419–20
    [Google Scholar]
  97. 97. 
    Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. 2002. The Diels–Alder reaction in total synthesis. Angew. Chem. Int. Ed. Engl. 41:1668–98
    [Google Scholar]
  98. 98. 
    Nothias L-F, Petras D, Schmid R, Dührkop K, Rainer J et al. 2020. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17:905–8
    [Google Scholar]
  99. 99. 
    Oliver SG, Winson MK, Kell DB, Baganz F. 1998. Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–78
    [Google Scholar]
  100. 100. 
    Pareek V, Tian H, Winograd N, Benkovic SJ. 2020. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science 368:283–90
    [Google Scholar]
  101. 101. 
    Pelser PB, de Vos H, Theuring C, Beuerle T, Vrieling K, Hartmann T. 2005. Frequent gain and loss of pyrrolizidine alkaloids in the evolution of Senecio section Jacobaea (Asteraceae). Phytochemistry 66:1285–95
    [Google Scholar]
  102. 102. 
    Pence HE, Williams A. 2010. ChemSpider: an online chemical information resource. J. Chem. Educ. 87:1123–24
    [Google Scholar]
  103. 103. 
    Peng M, Shahzad R, Gul A, Subthain H, Shen S et al. 2017. Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nat. Commun. 8:1975
    [Google Scholar]
  104. 104. 
    Rasche F, Svatos A, Maddula RK, Bottcher C, Bocker S. 2011. Computing fragmentation trees from tandem mass spectrometry data. Anal. Chem. 83:1243–51
    [Google Scholar]
  105. 105. 
    Rhoades DF 1979. Evolution of plant chemical defense against herbivores. Herbivores: Their Interaction with Secondary Plant Metabolites GA Rosenthal, DH Janzen 1–55 New York: Academic
    [Google Scholar]
  106. 106. 
    Richards LA, Glassmire AE, Ochsenrider KM, Smilanich AM, Dodson CD et al. 2016. Phytochemical diversity and synergistic effects on herbivores. Phytochem. Rev. 15:1153–66
    [Google Scholar]
  107. 107. 
    Roessner U, Luedemann A, Brust D, Fiehn O, Linke T et al. 2001. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29
    [Google Scholar]
  108. 108. 
    Roessner U, Willmitzer L, Fernie AR. 2001. High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol 127:749–64
    [Google Scholar]
  109. 109. 
    Rost HL, Sachsenberg T, Aiche S, Bielow C, Weisser H et al. 2016. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 13:741–48
    [Google Scholar]
  110. 110. 
    Sakurai T, Yamada Y, Sawada Y, Matsuda F, Akiyama K et al. 2013. PRIMe update: innovative content for plant metabolomics and integration of gene expression and metabolite accumulation. Plant Cell Physiol 54:e5
    [Google Scholar]
  111. 111. 
    Sawada Y, Nakabayashi R, Yamada Y, Suzuki M, Sato M et al. 2012. RIKEN tandem mass spectral database (ReSpect) for phytochemicals: a plant-specific MS/MS-based data resource and database. Phytochemistry 82:38–45
    [Google Scholar]
  112. 112. 
    Schneider TD, Mastronarde DN. 1996. Fast multiple alignment of ungapped DNA sequences using information theory and a relaxation method. Discrete Appl. Math. 71:259–68
    [Google Scholar]
  113. 113. 
    Schuman MC, Baldwin IT. 2016. The layers of plant responses to insect herbivores. Annu. Rev. Entomol. 61:373–94
    [Google Scholar]
  114. 114. 
    Schymanski EL, Ruttkies C, Krauss M, Brouard C, Kind T et al. 2017. Critical assessment of small molecule identification 2016: automated methods. J. Cheminform. 9:22
    [Google Scholar]
  115. 115. 
    Sedio BE. 2017. Recent breakthroughs in metabolomics promise to reveal the cryptic chemical traits that mediate plant community composition, character evolution and lineage diversification. New Phytol 214:952–58
    [Google Scholar]
  116. 116. 
    Sedio BE, Rojas Echeverri JC, Boya PC, Wright SJ. 2017. Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology 98:616–23
    [Google Scholar]
  117. 117. 
    Shahaf N, Rogachev I, Heinig U, Meir S, Malitsky S et al. 2016. The WEIZMASS spectral library for high-confidence metabolite identification. Nat. Commun. 7:12423
    [Google Scholar]
  118. 118. 
    Shannon CE. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27:379–423
    [Google Scholar]
  119. 119. 
    Shendure J, Ji H 2008. Next-generation DNA sequencing. Nat. Biotechnol. 26:1135–45
    [Google Scholar]
  120. 120. 
    Sherman PW. 1988. The levels of analysis. Anim. Behav. 36:616–19
    [Google Scholar]
  121. 121. 
    Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. 2006. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78:779–87Describes one of the first examples of open-source software for untargeted metabolomics data processing.
    [Google Scholar]
  122. 122. 
    Stamp N. 2003. Out of the quagmire of plant defense hypotheses. Q. Rev. Biol. 78:23–55
    [Google Scholar]
  123. 123. 
    Strauss SY, Rudgers JA, Lau JA, Irwin RE. 2002. Direct and ecological costs of resistance to herbivory. Trends Ecol. Evol. 17:278–85
    [Google Scholar]
  124. 124. 
    Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M. 2012. Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr. Bioinform. 7:96–108
    [Google Scholar]
  125. 125. 
    Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T. 1988. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2:151–53
    [Google Scholar]
  126. 126. 
    Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti GJ, Siuzdak G. 2012. An accelerated workflow for untargeted metabolomics using the METLIN database. Nat. Biotechnol. 30:826–28
    [Google Scholar]
  127. 127. 
    Thompson JN. 2005. The Geographic Mosaic of Coevolution Chicago: Univ. Chicago Press
    [Google Scholar]
  128. 128. 
    Tikunov YM, Laptenok S, Hall RD, Bovy A, de Vos RC. 2012. MSClust: A tool for unsupervised mass spectra extraction of chromatography-mass spectrometry ion-wise aligned data. Metabolomics 8:714–18
    [Google Scholar]
  129. 129. 
    Tripathi A, Vázquez-Baeza Y, Gauglitz JM, Wang M, Dührkop K et al. 2021. Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nat. Chem. Bio. 17:146–51
    [Google Scholar]
  130. 130. 
    Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B et al. 2015. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12:523–26Reports on a broadly applicable open-source program for deconvolution and annotation of data-independent MS/MS data.
    [Google Scholar]
  131. 131. 
    Tsugawa H, Nakabayashi R, Mori T, Yamada Y, Takahashi M et al. 2019. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods 16:295–98
    [Google Scholar]
  132. 132. 
    Ulanowicz RE. 2001. Information theory in ecology. Comput. Chem. 25:393–99
    [Google Scholar]
  133. 133. 
    Uppal K, Walker DI, Jones DP. 2017. xMSannotator: an R package for network-based annotation of high-resolution metabolomics data. Anal. Chem. 89:1063–67
    [Google Scholar]
  134. 134. 
    van der Hooft JJJ, Wandy J, Barrett MP, Burgess KEV, Rogers S 2016. Topic modeling for untargeted substructure exploration in metabolomics. PNAS 113:13738–43
    [Google Scholar]
  135. 135. 
    Venable JD, Dong M-Q, Wohlschlegel J, Dillin A, Yates JR. 2004. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 1:39–45
    [Google Scholar]
  136. 136. 
    Von Poser GL, Toffoli ME, Sobral M, Henriques AT. 1997. Iridoid glucosides substitution patterns in Verbenaceae and their taxonomic implication. Plant Syst. Evol. 205:265–87
    [Google Scholar]
  137. 137. 
    von Roepenack-Lahaye E, Degenkolb T, Zerjeski M, Franz M, Roth U et al. 2004. Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol 134:548–59
    [Google Scholar]
  138. 138. 
    Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N et al. 2016. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34:828–37Breakthrough report on the crowd-source Global Natural Products Social Molecular Networking (GNPS) infrastructure for MS/MS metabolomics data sharing, reanalysis and chemical knowledge capture.
    [Google Scholar]
  139. 139. 
    Wang MX, Jarmusch AK, Vargas F, Aksenov AA, Gauglitz JM et al. 2020. Mass spectrometry searches using MASST. Nat. Biotechnol. 38:23–26
    [Google Scholar]
  140. 140. 
    Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY et al. 2012. Mass spectral molecular networking of living microbial colonies. PNAS 109:E1743–52Illustrates the exploratory power of a broadly applicable and simple MS/MS scoring approach, providing a foundation for spectral molecular networking.
    [Google Scholar]
  141. 141. 
    Weng JK. 2014. The evolutionary paths towards complexity: a metabolic perspective. New Phytol 201:1141–49
    [Google Scholar]
  142. 142. 
    Weng JK, Philippe RN, Noel JP 2012. The rise of chemodiversity in plants. Science 336:1667–70
    [Google Scholar]
  143. 143. 
    Whittaker RH. 1972. Evolution and measurement of species diversity. Taxon 21:213–51
    [Google Scholar]
  144. 144. 
    Wink M. 2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19
    [Google Scholar]
  145. 145. 
    Wink M, Carey DB. 1994. Variability of quinolizidine alkaloid profiles of Lupinus argenteus (Fabaceae) from North America. Biochem. Syst. Ecol. 22:663–69
    [Google Scholar]
  146. 146. 
    Yamashita M, Fenn JB. 1984. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 88:4451–59
    [Google Scholar]
  147. 147. 
    Zhou B, Xiao JF, Tuli L, Ressom HW. 2012. LC-MS-based metabolomics. Mol. Biosyst. 8:470–81
    [Google Scholar]
  148. 148. 
    Zhu G, Wang S, Huang Z, Zhang S, Liao Q et al. 2018. Rewiring of the fruit metabolome in tomato breeding. Cell 172:249–61.e12
    [Google Scholar]
  149. 149. 
    Zu P, Boege K, Del-Val E, Schuman MC, Stevenson PC et al. 2020. Information arms race explains plant-herbivore chemical communication in ecological communities. Science 368:1377–81Applies information theory to decode the volatile-mediated chemical communication arms race between plants and herbivores and to test the information transfer hypothesis.
    [Google Scholar]
  150. 150. 
    Züst T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, Turnbull LA. 2012. Natural enemies drive geographic variation in plant defenses. Science 338:116–19
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-071720-114836
Loading
/content/journals/10.1146/annurev-arplant-071720-114836
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error