1932

Abstract

P-type ATPases are found in all kingdoms of life and constitute a wide range of cation transporters, primarily for H+, Na+, K+, Ca2+, and transition metal ions such as Cu(I), Zn(II), and Cd(II). They have been studied through a wide range of techniques, and research has gained very significant insight on their transport mechanism and regulation. Here, we review the structure, function, and dynamics of P2-ATPases including Ca2+-ATPases and Na,K-ATPase. We highlight mechanisms of functional transitions that are associated with ion exchange on either side of the membrane and how the functional cycle is regulated by interaction partners, autoregulatory domains, and off-cycle states. Finally, we discuss future perspectives based on emerging techniques and insights.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-010611-112801
2020-06-20
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-010611-112801.html?itemId=/content/journals/10.1146/annurev-biochem-010611-112801&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Pedersen PL, Carafoli E. 1987. Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem. Sci. 12:146–50
    [Google Scholar]
  2. 2. 
    Kuhlbrandt W. 2004. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 5:282–95
    [Google Scholar]
  3. 3. 
    Moller JV, Olesen C, Winther AM, Nissen P 2010. The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump. Q. Rev. Biophys. 43:501–66
    [Google Scholar]
  4. 4. 
    Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B et al. 2011. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat. Rev. Mol. Cell Biol. 12:60–70
    [Google Scholar]
  5. 5. 
    Palmgren MG, Nissen P. 2011. P-type ATPases. Annu. Rev. Biophys. 40:243–66
    [Google Scholar]
  6. 6. 
    Bublitz M, Musgaard M, Poulsen H, Thogersen L, Olesen C et al. 2013. Ion pathways in the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 288:10759–65
    [Google Scholar]
  7. 7. 
    Brini M, Cali T, Ottolini D, Carafoli E 2013. The plasma membrane calcium pump in health and disease. FEBS J 280:5385–97
    [Google Scholar]
  8. 8. 
    Toyoshima C, Cornelius F. 2013. New crystal structures of PII-type ATPases: excitement continues. Curr. Opin. Struct. Biol. 23:507–14
    [Google Scholar]
  9. 9. 
    Heinzen EL, Arzimanoglou A, Brashear A, Clapcote SJ, Gurrieri F et al. 2014. Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol 13:503–14
    [Google Scholar]
  10. 10. 
    Sitsel O, Gronberg C, Autzen HE, Wang K, Meloni G et al. 2015. Structure and function of Cu(I)- and Zn(II)-ATPases. Biochemistry 54:5673–83
    [Google Scholar]
  11. 11. 
    Clausen MV, Hilbers F, Poulsen H 2017. The structure and function of the Na,K-ATPase isoforms in health and disease. Front. Physiol. 8:371
    [Google Scholar]
  12. 12. 
    Sorensen TL, Moller JV, Nissen P 2004. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304:1672–75
    [Google Scholar]
  13. 13. 
    Kanai R, Ogawa H, Vilsen B, Cornelius F, Toyoshima C 2013. Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state. Nature 502:201–6
    [Google Scholar]
  14. 14. 
    Post RL, Kume S, Tobin T, Orcutt B, Sen AK 1969. Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase. J. Gen. Physiol. 54:306–26
    [Google Scholar]
  15. 15. 
    Albers RW. 1967. Biochemical aspects of active transport. Annu. Rev. Biochem. 36:727–56
    [Google Scholar]
  16. 16. 
    Jorgensen PL. 1975. Purification and characterization of (Na+, K+)-ATPase. V. Conformational changes in the enzyme. Transitions between the Na-form and the K-form studied with tryptic digestion as a tool. Biochim. Biophys. Acta Biomembr. 401:399–415
    [Google Scholar]
  17. 17. 
    Karlsen JL, Bublitz M. 2016. How to compare, analyze, and morph between crystal structures of different conformations: the P-type ATPase example. Methods Mol. Biol. 1377:523–39
    [Google Scholar]
  18. 18. 
    Nyblom M, Poulsen H, Gourdon P, Reinhard L, Andersson M et al. 2013. Crystal structure of Na+, K+-ATPase in the Na+-bound state. Science 342:123–27
    [Google Scholar]
  19. 19. 
    Toyoshima C, Nomura H, Tsuda T 2004. Luminal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432:361–68
    [Google Scholar]
  20. 20. 
    Picard M, Jensen AM, Sorensen TL, Champeil P, Moller JV, Nissen P 2007. Ca2+ versus Mg2+ coordination at the nucleotide-binding site of the sarcoplasmic reticulum Ca2+-ATPase. J. Mol. Biol. 368:1–7
    [Google Scholar]
  21. 21. 
    Toyoshima C, Mizutani T. 2004. Crystal structure of the calcium pump with a bound ATP analogue. Nature 430:529–35
    [Google Scholar]
  22. 22. 
    Olesen C, Picard M, Winther AM, Gyrup C, Morth JP et al. 2007. The structural basis of calcium transport by the calcium pump. Nature 450:1036–42
    [Google Scholar]
  23. 23. 
    Toyoshima C, Norimatsu Y, Iwasawa S, Tsuda T, Ogawa H 2007. How processing of aspartylphosphate is coupled to luminal gating of the ion pathway in the calcium pump. PNAS 104:19831–36
    [Google Scholar]
  24. 24. 
    Daiho T, Yamasaki K, Danko S, Suzuki H 2007. Critical role of Glu40-Ser48 loop linking actuator domain and first transmembrane helix of Ca2+-ATPase in Ca2+ deocclusion and release from ADP-insensitive phosphoenzyme. J. Biol. Chem. 282:34429–47
    [Google Scholar]
  25. 25. 
    Laursen M, Yatime L, Nissen P, Fedosova NU 2013. Crystal structure of the high-affinity Na+,K+-ATPase–ouabain complex with Mg2+ bound in the cation binding site. PNAS 110:10958–63
    [Google Scholar]
  26. 26. 
    Laursen M, Gregersen JL, Yatime L, Nissen P, Fedosova NU 2015. Structures and characterization of digoxin- and bufalin-bound Na+,K+-ATPase compared with the ouabain-bound complex. PNAS 112:1755–60
    [Google Scholar]
  27. 27. 
    Hou Z, Hu Z, Blackwell DJ, Miller TD, Thomas DD, Robia SL 2012. 2-Color calcium pump reveals closure of the cytoplasmic headpiece with calcium binding. PLOS ONE 7:e40369
    [Google Scholar]
  28. 28. 
    Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TLM, Petersen J et al. 2007. Crystal structure of the sodium–potassium pump. Nature 450:1043–49
    [Google Scholar]
  29. 29. 
    Olesen C, Sørensen TL-M, Nielsen RC, Møller JV, Nissen P 2004. Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306:2251–55
    [Google Scholar]
  30. 30. 
    Jencks WP. 1989. How does a calcium pump pump calcium. J. Biol. Chem. 264:18855–58
    [Google Scholar]
  31. 31. 
    Clausen JD, Bublitz M, Arnou B, Montigny C, Jaxel C et al. 2013. SERCA mutant E309Q binds two Ca2+ ions but adopts a catalytically incompetent conformation. EMBO J 32:3231–43
    [Google Scholar]
  32. 32. 
    Daiho T, Yamasaki K, Wang G, Danko S, Iizuka H, Suzuki H 2003. Deletions of any single residues in Glu40-Ser48 loop connecting a domain and the first transmembrane helix of sarcoplasmic reticulum Ca2+-ATPase result in almost complete inhibition of conformational transition and hydrolysis of phosphoenzyme intermediate. J. Biol. Chem. 278:39197–204
    [Google Scholar]
  33. 33. 
    Carafoli E. 1991. Calcium pump of the plasma membrane. Physiol. Rev. 71:129–53
    [Google Scholar]
  34. 34. 
    Wolosin JM. 1985. Ion transport studies with H+-K+-ATPase-rich vesicles: implications for HCl secretion and parietal cell physiology. Am. J. Physiol. 248:G595–607
    [Google Scholar]
  35. 35. 
    Inesi G, Tadini-Buoninsegni F. 2014. Ca2+/H+ exchange, luminal Ca2+ release and Ca2+/ATP coupling ratios in the sarcoplasmic reticulum ATPase. J. Cell Commun. Signal. 8:5–11
    [Google Scholar]
  36. 36. 
    de Meis L, Arruda AP, Carvalho DP 2005. Role of sarco/endoplasmic reticulum Ca2+-ATPase in thermogenesis. Biosci. Rep. 25:181–90
    [Google Scholar]
  37. 37. 
    Bal NC, Maurya SK, Sopariwala DH, Sahoo SK, Gupta SC et al. 2012. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18:1575–79
    [Google Scholar]
  38. 38. 
    Kanazawa T, Yamada S, Yamamoto T, Tonomura Y 1971. Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. V. Vectorial requirements for calcium and magnesium ions of three partial reactions of ATPase: formation and decomposition of a phosphorylated intermediate and ATP-formation from ADP. J. Biochem. 70:95–123
    [Google Scholar]
  39. 39. 
    Shigekawa M, Dougherty JP. 1978. Reaction mechanism of Ca2+-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. III. Sequential occurrence of ADP-sensitive and ADP-insensitive phosphoenzymes. J. Biol. Chem. 253:1458–64
    [Google Scholar]
  40. 40. 
    Inesi G, Kurzmack M, Kosk-Kosicka D, Lewis D, Scofano H, Guimaraes-Motta H 1982. Equilibrium and kinetic studies of calcium transport and ATPase activity in sarcoplasmic reticulum. Z. Naturforsch. C 37:685–91
    [Google Scholar]
  41. 41. 
    Inao S, Kanazawa T. 1986. Characterization of the phosphoenzyme that is involved in the Ca2+ -Ca2+ exchange catalyzed by the Ca2+-ATPase of sarcoplasmic reticulum vesicles. Biochim. Biophys. Acta 857:28–37
    [Google Scholar]
  42. 42. 
    Daiho T, Danko S, Yamasaki K, Suzuki H 2010. Stable structural analog of Ca2+-ATPase ADP-insensitive phosphoenzyme with occluded Ca2+ formed by elongation of A-domain/M1'-linker and beryllium fluoride binding. J. Biol. Chem. 285:24538–47
    [Google Scholar]
  43. 43. 
    Dyla M, Terry DS, Kjaergaard M, Sorensen TL, Lauwring Andersen J et al. 2017. Dynamics of P-type ATPase transport revealed by single-molecule FRET. Nature 551:346–51
    [Google Scholar]
  44. 44. 
    Jensen AM, Sorensen TL, Olesen C, Moller JV, Nissen P 2006. Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J 25:2305–14
    [Google Scholar]
  45. 45. 
    Dyla M, Hansen SB, Nissen P, Kjaergaard M 2019. Structural dynamics of P-type ATPase ion pumps. Biochem. Soc. Trans. 47:51247–57
    [Google Scholar]
  46. 46. 
    Inesi G, Ma H, Lewis D, Xu C 2004. Ca2+ occlusion and gating function of Glu309 in the ADP-fluoroaluminate analog of the Ca2+-ATPase phosphoenzyme intermediate. J. Biol. Chem. 279:31629–37
    [Google Scholar]
  47. 47. 
    Clausen JD, Andersen JP. 2010. Glutamate 90 at the luminal ion gate of sarcoplasmic reticulum Ca2+-ATPase is critical for Ca2+ binding on both sides of the membrane. J. Biol. Chem. 285:20780–92
    [Google Scholar]
  48. 48. 
    Song H, Karashima E, Hamlyn JM, Blaustein MP 2014. Ouabain-digoxin antagonism in rat arteries and neurones. J. Physiol. 592:941–69
    [Google Scholar]
  49. 49. 
    Nakao M, Gadsby DC. 1986. Voltage dependence of Na translocation by the Na/K pump. Nature 323:628–30
    [Google Scholar]
  50. 50. 
    Holmgren M, Wagg J, Bezanilla F, Rakowski RF, De Weer P, Gadsby DC 2000. Three distinct and sequential steps in the release of sodium ions by the Na+/K+-ATPase. Nature 403:898–901
    [Google Scholar]
  51. 51. 
    Stanley KS, Meyer DJ, Gatto C, Artigas P 2016. Intracellular requirements for passive proton transport through the Na+,K+-ATPase. Biophys. J. 111:2430–39
    [Google Scholar]
  52. 52. 
    Abe K, Irie K, Nakanishi H, Suzuki H, Fujiyoshi Y 2018. Crystal structures of the gastric proton pump. Nature 556:214–18
    [Google Scholar]
  53. 53. 
    Winther AM, Bublitz M, Karlsen JL, Moller JV, Hansen JB et al. 2013. The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm. Nature 495:265–69
    [Google Scholar]
  54. 54. 
    Toyoshima C, Iwasawa S, Ogawa H, Hirata A, Tsueda J, Inesi G 2013. Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state. Nature 495:260–64
    [Google Scholar]
  55. 55. 
    Akin BL, Hurley TD, Chen Z, Jones LR 2013. The structural basis for phospholamban inhibition of the calcium pump in sarcoplasmic reticulum. J. Biol. Chem. 288:30181–91
    [Google Scholar]
  56. 56. 
    Smith GA, Vandenberg JI, Freestone NS, Dixon HB 2001. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum. Biochem. J. 354:539–51
    [Google Scholar]
  57. 57. 
    Peinelt C, Apell HJ. 2002. Kinetics of the Ca2+, H+, and Mg2+ interaction with the ion-binding sites of the SR Ca-ATPase. Biophys. J. 82:170–81
    [Google Scholar]
  58. 58. 
    Poulsen H, Khandelia H, Morth JP, Bublitz M, Mouritsen OG et al. 2010. Neurological disease mutations compromise a C-terminal ion pathway in the Na+/K+-ATPase. Nature 467:99–102
    [Google Scholar]
  59. 59. 
    de Meis L, Martins OB, Alves EW 1980. Role of water, hydrogen ion, and temperature on the synthesis of adenosine triphosphate by the sarcoplasmic reticulum adenosine triphosphatase in the absence of a calcium ion gradient. Biochemistry 19:4252–61
    [Google Scholar]
  60. 60. 
    Makinose M, Hasselbach W. 1971. ATP synthesis by the reverse of the sarcoplasmic calcium pump. FEBS Lett 12:271–72
    [Google Scholar]
  61. 61. 
    Kranias EG, Hajjar RJ. 2012. Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ. Res. 110:1646–60
    [Google Scholar]
  62. 62. 
    Mueller B, Karim CB, Negrashov IV, Kutchai H, Thomas DD 2004. Direct detection of phospholamban and sarcoplasmic reticulum Ca-ATPase interaction in membranes using fluorescence resonance energy transfer. Biochemistry 43:8754–65
    [Google Scholar]
  63. 63. 
    Chen Z, Akin BL, Jones LR 2007. Mechanism of reversal of phospholamban inhibition of the cardiac Ca2+-ATPase by protein kinase A and by anti-phospholamban monoclonal antibody 2D12. J. Biol. Chem. 282:20968–76
    [Google Scholar]
  64. 64. 
    Chiesi M, Vorherr T, Falchetto R, Waelchli C, Carafoli E 1991. Phospholamban is related to the autoinhibitory domain of the plasma membrane Ca2+-pumping ATPase. Biochemistry 30:7978–83
    [Google Scholar]
  65. 65. 
    Oxenoid K, Chou JJ. 2005. The structure of phospholamban pentamer reveals a channel-like architecture in membranes. PNAS 102:10870–75
    [Google Scholar]
  66. 66. 
    Gustavsson M, Verardi R, Mullen DG, Mote KR, Traaseth NJ et al. 2013. Allosteric regulation of SERCA by phosphorylation-mediated conformational shift of phospholamban. PNAS 110:17338–43
    [Google Scholar]
  67. 67. 
    Magny EG, Pueyo JI, Pearl FM, Cespedes MA, Niven JE et al. 2013. Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science 341:1116–20
    [Google Scholar]
  68. 68. 
    Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR et al. 2015. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160:595–606
    [Google Scholar]
  69. 69. 
    Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD et al. 2016. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351:271–75
    [Google Scholar]
  70. 70. 
    Arvanitis DA, Vafiadaki E, Fan GC, Mitton BA, Gregory KN et al. 2007. Histidine-rich Ca-binding protein interacts with sarcoplasmic reticulum Ca-ATPase. Am. J. Physiol. Heart Circ. Physiol. 293:H1581–89
    [Google Scholar]
  71. 71. 
    Sahoo SK, Kim T, Kang GB, Lee JG, Eom SH, Kim DH 2009. Characterization of calumenin-SERCA2 interaction in mouse cardiac sarcoplasmic reticulum. J. Biol. Chem. 284:31109–21
    [Google Scholar]
  72. 72. 
    Park CS, Chen S, Lee H, Cha H, Oh JG et al. 2013. Targeted ablation of the histidine-rich Ca2+-binding protein (HRC) gene is associated with abnormal SR Ca2+-cycling and severe pathology under pressure-overload stress. Basic Res. Cardiol. 108:344
    [Google Scholar]
  73. 73. 
    Hasler U, Wang X, Crambert G, Beguin P, Jaisser F et al. 1998. Role of β-subunit domains in the assembly, stable expression, intracellular routing, and functional properties of Na,K-ATPase. J. Biol. Chem. 273:30826–35
    [Google Scholar]
  74. 74. 
    Hilbers F, Kopec W, Isaksen TJ, Holm TH, Lykke-Hartmann K et al. 2016. Tuning of the Na,K-ATPase by the beta subunit. Sci. Rep. 6:20442
    [Google Scholar]
  75. 75. 
    Li C, Grosdidier A, Crambert G, Horisberger JD, Michielin O, Geering K 2004. Structural and functional interaction sites between Na,K-ATPase and FXYD proteins. J. Biol. Chem. 279:38895–902
    [Google Scholar]
  76. 76. 
    Jorgensen PL. 2008. Importance for absorption of Na+ from freshwater of lysine, valine and serine substitutions in the α1a-isoform of Na,K-ATPase in the gills of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). J. Membr. Biol. 223:37–47
    [Google Scholar]
  77. 77. 
    Shinoda T, Ogawa H, Cornelius F, Toyoshima C 2009. Crystal structure of the sodium–potassium pump at 2.4 Å resolution. Nature 459:446–50
    [Google Scholar]
  78. 78. 
    Han M, Kopec W, Solov'yov IA, Khandelia H 2017. Glutamate water gates in the ion binding pocket of Na+ bound Na+, K+-ATPase. Sci. Rep. 7:39829
    [Google Scholar]
  79. 79. 
    Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT 2004. The DISOPRED server for the prediction of protein disorder. Bioinformatics 20:2138–39
    [Google Scholar]
  80. 80. 
    Minezaki Y, Homma K, Nishikawa K 2007. Intrinsically disordered regions of human plasma membrane proteins preferentially occur in the cytoplasmic segment. J. Mol. Biol. 368:902–13
    [Google Scholar]
  81. 81. 
    Kjaergaard M, Kragelund BB. 2017. Functions of intrinsic disorder in transmembrane proteins. Cell Mol. Life Sci. 74:3205–24
    [Google Scholar]
  82. 82. 
    Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK 2001. Sequence complexity of disordered protein. Proteins 42:38–48
    [Google Scholar]
  83. 83. 
    Brown CJ, Johnson AK, Dunker AK, Daughdrill GW 2011. Evolution and disorder. Curr. Opin. Struct. Biol. 21:441–46
    [Google Scholar]
  84. 84. 
    Buljan M, Chalancon G, Dunker AK, Bateman A, Balaji S et al. 2013. Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. Curr. Opin. Struct. Biol. 23:443–50
    [Google Scholar]
  85. 85. 
    Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG et al. 2004. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32:1037–49
    [Google Scholar]
  86. 86. 
    Dosztanyi Z, Csizmok V, Tompa P, Simon I 2005. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21:3433–34
    [Google Scholar]
  87. 87. 
    Sonnhammer EL, von Heijne G, Krogh A 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6:175–82
    [Google Scholar]
  88. 88. 
    Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7:539
    [Google Scholar]
  89. 89. 
    Pei J, Grishin NV. 2001. AL2CO: calculation of positional conservation in a protein sequence alignment. Bioinformatics 17:700–12
    [Google Scholar]
  90. 90. 
    Timcenko M, Lyons JA, Januliene D, Ulstrup JJ, Dieudonne T et al. 2019. Structure and autoregulation of a P4-ATPase lipid flippase. Nature 571:366–70
    [Google Scholar]
  91. 91. 
    Tidow H, Poulsen LR, Andreeva A, Knudsen M, Hein KL et al. 2012. A bimodular mechanism of calcium control in eukaryotes. Nature 491:468–72
    [Google Scholar]
  92. 92. 
    Nitsche J, Josts I, Heidemann J, Mertens HD, Maric S et al. 2018. Structural basis for activation of plasma-membrane Ca2+-ATPase by calmodulin. Commun. Biol. 1:206
    [Google Scholar]
  93. 93. 
    Fuglsang AT, Visconti S, Drumm K, Jahn T, Stensballe A et al. 1999. Binding of 14–3–3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residues Tyr946-Thr-Val and requires phosphorylation of Thr947. J. Biol. Chem. 274:36774–80
    [Google Scholar]
  94. 94. 
    Piette AS, Derua R, Waelkens E, Boutry M, Duby G 2011. A phosphorylation in the C-terminal auto-inhibitory domain of the plant plasma membrane H+-ATPase activates the enzyme with no requirement for regulatory 14–3–3 proteins. J. Biol. Chem. 286:18474–82
    [Google Scholar]
  95. 95. 
    Gong D, Chi X, Ren K, Huang G, Zhou G et al. 2018. Structure of the human plasma membrane Ca2+-ATPase 1 in complex with its obligatory subunit neuroplastin. Nat. Commun. 9:3623
    [Google Scholar]
  96. 96. 
    Pedersen BP, Buch-Pedersen MJ, Morth JP, Palmgren MG, Nissen P 2007. Crystal structure of the plasma membrane proton pump. Nature 450:1111–14
    [Google Scholar]
  97. 97. 
    Mittag T, Orlicky S, Choy WY, Tang X, Lin H et al. 2008. Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. PNAS 105:17772–77
    [Google Scholar]
  98. 98. 
    Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO et al. 2018. Extreme disorder in an ultrahigh-affinity protein complex. Nature 555:61–66
    [Google Scholar]
  99. 99. 
    Wright PE, Dyson HJ. 2015. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16:18–29
    [Google Scholar]
  100. 100. 
    Hoshi T, Zagotta WN, Aldrich RW 1990. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–38
    [Google Scholar]
  101. 101. 
    Sørensen CS, Kjaergaard M. 2019. Effective concentrations enforced by intrinsically disordered linkers are governed by polymer physics. PNAS 116:23124–31
    [Google Scholar]
  102. 102. 
    Drachmann ND, Olesen C, Moller JV, Guo Z, Nissen P, Bublitz M 2014. Comparing crystal structures of Ca2+-ATPase in the presence of different lipids. FEBS J 281:4249–62
    [Google Scholar]
  103. 103. 
    Sonntag Y, Musgaard M, Olesen C, Schiott B, Moller JV et al. 2011. Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes. Nat. Commun. 2:304
    [Google Scholar]
  104. 104. 
    Norimatsu Y, Hasegawa K, Shimizu N, Toyoshima C 2017. Protein–phospholipid interplay revealed with crystals of a calcium pump. Nature 545:193–98
    [Google Scholar]
  105. 105. 
    Haviv H, Cohen E, Lifshitz Y, Tal DM, Goldshleger R, Karlish SJ 2007. Stabilization of Na+,K+-ATPase purified from Pichia pastoris membranes by specific interactions with lipids. Biochemistry 46:12855–67
    [Google Scholar]
  106. 106. 
    Cornelius F, Habeck M, Kanai R, Toyoshima C, Karlish SJ 2015. General and specific lipid–protein interactions in Na,K-ATPase. Biochim. Biophys. Acta Biomembr. 1848:1729–43
    [Google Scholar]
  107. 107. 
    Haviv H, Habeck M, Kanai R, Toyoshima C, Karlish SJ 2013. Neutral phospholipids stimulate Na,K-ATPase activity: a specific lipid-protein interaction. J. Biol. Chem. 288:10073–81
    [Google Scholar]
  108. 108. 
    Habeck M, Kapri-Pardes E, Sharon M, Karlish SJ 2017. Specific phospholipid binding to Na,K-ATPase at two distinct sites. PNAS 114:2904–9
    [Google Scholar]
  109. 109. 
    Subramani S, Perdreau-Dahl H, Morth JP 2016. The magnesium transporter A is activated by cardiolipin and is highly sensitive to free magnesium in vitro. eLife 5:e11407
    [Google Scholar]
  110. 110. 
    Blanco G. 2005. Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin. Nephrol. 25:292–303
    [Google Scholar]
  111. 111. 
    Rose CR, Konnerth A. 2001. NMDA receptor-mediated Na+ signals in spines and dendrites. J. Neurosci. 21:4207–14
    [Google Scholar]
  112. 112. 
    Keenan MJ, Niedergerke R. 1967. Intracellular sodium concentration and resting sodium fluxes of the frog heart ventricle. J. Physiol. 188:235–60
    [Google Scholar]
  113. 113. 
    Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M et al. 2014. Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia 62:608–22
    [Google Scholar]
  114. 114. 
    Sitsel A, De Raeymaecker J, Drachmann ND, Derua R, Smaardijk S et al. 2019. Structures of the heart specific SERCA2a Ca2+-ATPase. EMBO J 38:e100020
    [Google Scholar]
  115. 115. 
    Veshaguri S, Christensen SM, Kemmer GC, Ghale G, Moller MP et al. 2016. Direct observation of proton pumping by a eukaryotic P-type ATPase. Science 351:1469–73
    [Google Scholar]
  116. 116. 
    Toyoshima C, Nakasako M, Nomura H, Ogawa H 2000. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–55
    [Google Scholar]
  117. 117. 
    Skou JC. 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23:394–401
    [Google Scholar]
  118. 118. 
    Fernandez-Leiro R, Scheres SH. 2016. Unravelling biological macromolecules with cryo-electron microscopy. Nature 537:339–46
    [Google Scholar]
  119. 119. 
    Khoshouei M, Radjainia M, Baumeister W, Danev R 2017. Cryo-EM structure of haemoglobin at 3.2 Å determined with the Volta phase plate. Nat. Commun. 8:16099
    [Google Scholar]
  120. 120. 
    Stock C, Hielkema L, Tascon I, Wunnicke D, Oostergetel GT et al. 2018. Cryo-EM structures of KdpFABC suggest a K+ transport mechanism via two inter-subunit half-channels. Nat. Commun. 9:4971
    [Google Scholar]
  121. 121. 
    Hiraizumi M, Yamashita K, Nishizawa T, Nureki O 2019. Cryo-EM structures capture the transport cycle of the P4-ATPase flippase. Science 365:1149–55
    [Google Scholar]
  122. 122. 
    Dyla M, Andersen JL, Kjaergaard M, Birkedal V, Terry DS et al. 2016. Engineering a prototypic P-type ATPase Listeria monocytogenes Ca2+-ATPase 1 for single-molecule FRET studies. Bioconjugate Chem 27:2176–87
    [Google Scholar]
  123. 123. 
    Winters DL, Autry JM, Svensson B, Thomas DD 2008. Interdomain fluorescence resonance energy transfer in SERCA probed by cyan-fluorescent protein fused to the actuator domain. Biochemistry 47:4246–56
    [Google Scholar]
  124. 124. 
    Pallikkuth S, Blackwell DJ, Hu Z, Hou Z, Zieman DT et al. 2013. Phosphorylated phospholamban stabilizes a compact conformation of the cardiac calcium-ATPase. Biophys. J. 105:1812–21
    [Google Scholar]
  125. 125. 
    Raguimova ON, Smolin N, Bovo E, Bhayani S, Autry JM et al. 2018. Redistribution of SERCA calcium pump conformers during intracellular calcium signaling. J. Biol. Chem. 293:10843–56
    [Google Scholar]
  126. 126. 
    Tyagi S, Lemke EA. 2015. Single-molecule FRET and crosslinking studies in structural biology enabled by noncanonical amino acids. Curr. Opin. Struct. Biol. 32:66–73
    [Google Scholar]
  127. 127. 
    Fischer TD, Dash PK, Liu J, Waxham MN 2018. Morphology of mitochondria in spatially restricted axons revealed by cryo-electron tomography. PLOS Biol 16:e2006169
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-010611-112801
Loading
/content/journals/10.1146/annurev-biochem-010611-112801
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error