1932

Abstract

The functions of coat protein complex II (COPII) coats in cargo packaging and the creation of vesicles at the endoplasmic reticulum are conserved in eukaryotic protein secretion. Standard COPII vesicles, however, cannot handle the secretion of metazoan-specific cargoes such as procollagens, apolipoproteins, and mucins. Metazoans have thus evolved modules centered on proteins like TANGO1 (transport and Golgi organization 1) to engage COPII coats and early secretory pathway membranes to engineer a novel mode of cargo export at the endoplasmic reticulum.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-080120-022017
2021-06-20
2024-05-22
Loading full text...

Full text loading...

/deliver/fulltext/biochem/90/1/annurev-biochem-080120-022017.html?itemId=/content/journals/10.1146/annurev-biochem-080120-022017&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Caro LG, Palade GE. 1964. Protein synthesis, storage, and discharge in the pancreatic exocrine cell. An autoradiographic study. J. Cell Biol. 20:473–95
    [Google Scholar]
  2. 2. 
    Bard F, Casano L, Mallabiabarrena A, Wallace E, Saito K et al. 2006. Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439:7076604–7
    [Google Scholar]
  3. 3. 
    Smejkal GB, Fitzgerald C. 2017. Revised estimate of total collagen in the human body. Int. J. Proteom. Bioinform. 2:11–2
    [Google Scholar]
  4. 4. 
    Kadler KE. 2017. Fell Muir Lecture: collagen fibril formation in vitro and in vivo. Int. J. Exp. Pathol. 98:14–16
    [Google Scholar]
  5. 5. 
    Kirkness MW, Lehmann K, Forde NR. 2019. Mechanics and structural stability of the collagen triple helix. Curr. Opin. Chem. Biol. 53:98–105
    [Google Scholar]
  6. 6. 
    Brodsky B, Persikov AV. 2005. Molecular structure of the collagen triple helix. Adv. Protein Chem. 70:301–39
    [Google Scholar]
  7. 7. 
    Bella J. 2016. Collagen structure: new tricks from a very old dog. Biochem. J. 473:81001–25
    [Google Scholar]
  8. 8. 
    Lees JF, Bulleid NJ. 1994. The role of cysteine residues in the folding and association of the COOH-terminal propeptide of types I and III procollagen. J. Biol. Chem. 269:3924354–60
    [Google Scholar]
  9. 9. 
    Weinstock M, Leblond CP. 1974. Synthesis, migration, and release of precursor collagen by odontoblasts as visualized by radioautography after [3H]proline administration. J. Cell Biol. 60:192–127
    [Google Scholar]
  10. 10. 
    Canty EG, Lu Y, Meadows RS, Shaw MK, Holmes DF, Kadler KE. 2004. Coalignment of plasma membrane channels and protrusions (fibripositors) specifies the parallelism of tendon. J. Cell Biol. 165:4553–63
    [Google Scholar]
  11. 11. 
    Ishikawa Y, Bächinger HP. 2013. A molecular ensemble in the rER for procollagen maturation. Biochim. Biophys. Acta Mol. Cell Res. 1833:112479–91
    [Google Scholar]
  12. 12. 
    Ito S, Nagata K. 2019. Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. J. Biol. Chem. 294:62133–41
    [Google Scholar]
  13. 13. 
    Kadler KE, Hill A, Canty-Laird EG. 2008. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol. 20:5495–501
    [Google Scholar]
  14. 14. 
    Sweeney SM, Orgel JP, Fertala A, McAuliffe JD, Turner KR et al. 2008. Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J. Biol. Chem. 283:3021187–97
    [Google Scholar]
  15. 15. 
    Orgel JPRO, San Antonio JD, Antipova O 2011. Molecular and structural mapping of collagen fibril interactions. Connect. Tissue Res. 52:12–17
    [Google Scholar]
  16. 16. 
    Zeisberg M, Kalluri R. 2013. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am. J. Physiol. Cell Physiol. 304:3C216–25
    [Google Scholar]
  17. 17. 
    Iqbal J, Hussain MM. 2009. Intestinal lipid absorption. Am. J. Physiol. Endocrinol. Metab. 296:6E1183–94
    [Google Scholar]
  18. 18. 
    Jiang ZG, Liu Y, Hussain MM, Atkinson D, McKnight CJ. 2008. Reconstituting initial events during the assembly of apolipoprotein B-containing lipoproteins in a cell-free system. J. Mol. Biol. 383:51181–94
    [Google Scholar]
  19. 19. 
    Ruf H, Gould BJ. 1998. Size distributions of chylomicrons from human lymph from dynamic light scattering measurements. Eur. Biophys. J. 28:11–11
    [Google Scholar]
  20. 20. 
    Mansbach CM, Nevin P 1998. Intracellular movement of triacylglycerols in the intestine. J. Lipid Res. 39:5963–68
    [Google Scholar]
  21. 21. 
    Wagner CE, Wheeler KM, Ribbeck K. 2018. Mucins and their role in shaping the functions of mucus barriers. Annu. Rev. Cell Dev. Biol. 34:189–215
    [Google Scholar]
  22. 22. 
    Perez-Vilar J. 2007. Mucin granule intraluminal organization. Am. J. Respir. Cell Mol. Biol. 36:2183–90
    [Google Scholar]
  23. 23. 
    Cenci S, van Anken E, Sitia R. 2011. Proteostenosis and plasma cell pathophysiology. Curr. Opin. Cell Biol. 23:2216–22
    [Google Scholar]
  24. 24. 
    Balch WE, McCaffery JM, Plutner H, Farquhar MG. 1994. Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. Cell 76:5841–52
    [Google Scholar]
  25. 25. 
    Barlowe C. 1994. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:6895–907
    [Google Scholar]
  26. 26. 
    Nakano A, Brada D, Schekman R. 1988. A membrane glycoprotein, Sec12p, required for protein transport from the endoplasmic reticulum to the Golgi apparatus in yeast. J. Cell Biol. 107:3851–63
    [Google Scholar]
  27. 27. 
    Bi X, Corpina RA, Goldberg J. 2002. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature 419:6904271–77
    [Google Scholar]
  28. 28. 
    Bielli A, Haney CJ, Gabreski G, Watkins SC, Bannykh SI, Aridor M. 2005. Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. J. Cell Biol. 171:6919–24
    [Google Scholar]
  29. 29. 
    Nakano A, Muramatsu M. 1989. A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J. Cell Biol. 109:6, Part 1)2677–91
    [Google Scholar]
  30. 30. 
    Lederkremer GZ, Cheng Y, Petre BM, Vogan E, Springer S et al. 2001. Structure of the Sec23p/24p and Sec13p/31p complexes of COPII PNAS 981910704–9
    [Google Scholar]
  31. 31. 
    Stagg SM, LaPointe P, Razvi A, Gürkan C, Potter CS et al. 2008. Structural basis for cargo regulation of COPII coat assembly. Cell 134:3474–84
    [Google Scholar]
  32. 32. 
    Miller EA, Beilharz TH, Malkus PN, Lee MCS, Hamamoto S et al. 2003. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell 114:4497–509
    [Google Scholar]
  33. 33. 
    Kuehn MJ, Herrmann JM, Schekman R. 1998. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 391:6663187–90
    [Google Scholar]
  34. 34. 
    Sato K, Nakano A. 2005. Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis. Nat. Struct. Mol. Biol. 12:2167–74
    [Google Scholar]
  35. 35. 
    Sato K, Nakano A. 2004. Reconstitution of coat protein complex II (COPII) vesicle formation from cargo-reconstituted proteoliposomes reveals the potential role of GTP hydrolysis by Sar1p in protein sorting. J. Biol. Chem. 279:21330–35
    [Google Scholar]
  36. 36. 
    Campelo F, Malhotra V. 2012. Membrane fission: the biogenesis of transport carriers. Annu. Rev. Biochem. 81:407–27
    [Google Scholar]
  37. 37. 
    Connerly PL, Esaki M, Montegna EA, Strongin DE, Levi S et al. 2005. Sec16 is a determinant of transitional ER organization. Curr. Biol. 15:161439–47
    [Google Scholar]
  38. 38. 
    Watson P, Townley AK, Koka P, Palmer KJ, Stephens DJ. 2006. Sec16 defines endoplasmic reticulum exit sites and is required for secretory cargo export in mammalian cells. Traffic 7:121678–87
    [Google Scholar]
  39. 39. 
    Shaywitz DA, Espenshade PJ, Gimeno RE, Kaiser CA. 1997. COPII subunit interactions in the assembly of the vesicle coat. J. Biol. Chem. 272:4125413–16
    [Google Scholar]
  40. 40. 
    Supek F, Madden DT, Hamamoto S, Orci L, Schekman R. 2002. Sec16p potentiates the action of COPII proteins to bud transport vesicles. J. Cell Biol. 158:61029–38
    [Google Scholar]
  41. 41. 
    Bharucha N, Liu Y, Papanikou E, McMahon C, Esaki M et al. 2013. Sec16 influences transitional ER sites by regulating rather than organizing COPII. Mol. Biol. Cell 24:213406–19
    [Google Scholar]
  42. 42. 
    Schlacht A, Dacks JB. 2015. Unexpected ancient paralogs and an evolutionary model for the COPII coat complex. Genome Biol. Evol. 7:41098–109
    [Google Scholar]
  43. 43. 
    Antonny B, Madden D, Hamamoto S, Orci L, Schekman R. 2001. Dynamics of the COPII coat with GTP and stable analogues. Nat. Cell Biol. 3:6531–37
    [Google Scholar]
  44. 44. 
    Lord C, Bhandari D, Menon S, Ghassemian M, Nycz D et al. 2011. Sequential interactions with Sec23 control the direction of vesicle traffic. Nature 473:7346181–86
    [Google Scholar]
  45. 45. 
    Cai H, Yu S, Menon S, Cai Y, Lazarova D et al. 2007. TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature 445:7130941–44
    [Google Scholar]
  46. 46. 
    Shomron O, Nevo-Yassaf I, Aviad T, Yaffe Y, Zahavi EE et al. 2019. Uncoating of COPII from ER exit site membranes precedes cargo accumulation and membrane fission. bioRxiv 727107. https://doi.org/10.1101/727107
    [Crossref]
  47. 47. 
    Sharpe LJ, Luu W, Brown AJ. 2011. Akt phosphorylates Sec24: new clues into the regulation of ER-to-Golgi trafficking. Traffic 12:119–27
    [Google Scholar]
  48. 48. 
    Koreishi M, Yu S, Oda M, Honjo Y, Satoh A. 2013. CK2 phosphorylates Sec31 and regulates ER-to-Golgi trafficking. PLOS ONE 8:1e54382
    [Google Scholar]
  49. 49. 
    Fromme JC, Ravazzola M, Hamamoto S, Al-Balwi M, Eyaid W et al. 2007. The genetic basis of a craniofacial disease provides insight into COPII coat assembly. Dev. Cell 13:5623–34
    [Google Scholar]
  50. 50. 
    Boyadjiev SA, Fromme JC, Ben J, Chong SS, Nauta C et al. 2006. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nat. Genet. 38:101192–97
    [Google Scholar]
  51. 51. 
    Bhattacharya N, O'Donnell J, Stagg SM. 2012. The structure of the Sec13/31 COPII cage bound to Sec23. J. Mol. Biol. 420:4–5324–34
    [Google Scholar]
  52. 52. 
    Jin L, Pahuja KB, Wickliffe KE, Gorur A, Baumgartel C et al. 2012. Ubiquitin-dependent regulation of COPII coat size and function. Nature 482:7386495–500
    [Google Scholar]
  53. 53. 
    Gorur A, Yuan L, Kenny SJ, Baba S, Xu K, Schekman R. 2017. COPII-coated membranes function as transport carriers of intracellular procollagen I. J. Cell Biol. 216:61745–59
    [Google Scholar]
  54. 54. 
    Omari S, Makareeva E, Gorrell L, Jarnik M, Lippincott-Schwartz J, Leikin S. 2020. Mechanisms of procollagen and HSP47 sorting during ER-to-Golgi trafficking. Matrix Biol 93:7994
    [Google Scholar]
  55. 55. 
    Omari S, Makareeva E, Roberts-Pilgrim A, Mirigian L, Jarnik M et al. 2018. Noncanonical autophagy at ER exit sites regulates procollagen turnover. PNAS 115:43E10099–108
    [Google Scholar]
  56. 56. 
    Kim K, Park S, Kim J. 2018. Cullin3-RING ubiquitin ligases are intimately linked to the unfolded protein response of the endoplasmic reticulum. bioRxiv 428136. https://doi.org/10.1101/428136
    [Crossref]
  57. 57. 
    Malhotra V, Erlmann P. 2015. The pathway of collagen secretion. Annu. Rev. Cell Dev. Biol. 31:109–24
    [Google Scholar]
  58. 58. 
    Saito K, Chen M, Bard F, Chen S, Zhou H et al. 2009. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136:5891–902
    [Google Scholar]
  59. 59. 
    Clark EM, Link BA. 2020. Complementary and divergent roles for Ctage5 and Tango1 in zebrafish. bioRxiv 070664. https://doi.org/10.1101/2020.04.30.070664
    [Crossref]
  60. 60. 
    Wilson DG, Phamluong K, Li L, Sun M, Cao TC et al. 2011. Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse. J. Cell Biol. 193:5935–51
    [Google Scholar]
  61. 61. 
    Liu M, Feng Z, Ke H, Liu Y, Sun T et al. 2017. Tango1 spatially organizes ER exit sites to control ER export. J. Cell Biol. 216:41035–49
    [Google Scholar]
  62. 62. 
    Pastor-Pareja JC, Xu T. 2011. Shaping cells and organs in Drosophila by opposing roles of fat body-secreted Collagen IV and Perlecan. Dev. Cell 21:2245–56
    [Google Scholar]
  63. 63. 
    Rios-Barrera LD, Sigurbjornsdottir S, Baer M, Leptin M 2017. Dual function for Tango1 in secretion of bulky cargo and in ER-Golgi morphology. PNAS 114:48E10389–98
    [Google Scholar]
  64. 64. 
    Lekszas C, Foresti O, Raote I, Lietdke D, König E-M et al. 2020. Biallelic TANGO1 mutations cause a novel syndromal disease due to hampered cellular collagen secretion. eLife 9:e51319
    [Google Scholar]
  65. 65. 
    Reynolds HM, Zhang L, Tran DT, Ten Hagen KG 2019. Tango1 coordinates the formation of endoplasmic reticulum/Golgi docking sites to mediate secretory granule formation. J. Biol. Chem. 294:5119498–510
    [Google Scholar]
  66. 66. 
    Santos AJM, Nogueira C, Ortega-Bellido M, Malhotra V. 2016. TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. J. Cell Biol. 213:3343–54
    [Google Scholar]
  67. 67. 
    Pitman JL, Bonnet DJ, Curtiss LK, Gekakis N. 2011. Reduced cholesterol and triglycerides in mice with a mutation in Mia2, a liver protein that localizes to ER exit sites. J. Lipid Res. 52:101775–86
    [Google Scholar]
  68. 68. 
    Zhang F, Wang Y, Wang T, Yao L, Lam SM et al. 2018. cTAGE5/MEA6 plays a critical role in neuronal cellular components trafficking and brain development. PNAS 115:40E9449–58
    [Google Scholar]
  69. 69. 
    Fan J, Wang Y, Liu L, Zhang H, Zhang F et al. 2017. cTAGE5 deletion in pancreatic β cells impairs proinsulin trafficking and insulin biogenesis in mice. J. Cell Biol. 216:124153–64
    [Google Scholar]
  70. 70. 
    Kang T, Boland BB, Alarcon C, Grimsby JS, Rhodes CJ, Larsen MR. 2019. Proteomic analysis of restored insulin production and trafficking in obese diabetic mouse pancreatic islets following euglycemia. J. Proteome Res. 18:93245–58
    [Google Scholar]
  71. 71. 
    Tomoishi S, Fukushima S, Shinohara K, Katada T, Saito K. 2017. CREB3L2-mediated expression of Sec23A/Sec24D is involved in hepatic stellate cell activation through ER-Golgi transport. Sci. Rep. 7:17992
    [Google Scholar]
  72. 72. 
    Ishikawa T, Toyama T, Nakamura Y, Tamada K, Shimizu H et al. 2017. UPR transducer BBF2H7 allows export of type II collagen in a cargo- and developmental stage-specific manner. J. Cell Biol. 216:61761–74
    [Google Scholar]
  73. 73. 
    Maiers JL, Kostallari E, Mushref M, deAssuncao TM, Li H et al. 2017. The unfolded protein response mediates fibrogenesis and collagen I secretion through regulating TANGO1 in mice. Hepatology 65:3983–98
    [Google Scholar]
  74. 74. 
    Sepulveda D, Rojas-Rivera D, Rodríguez DA, Groenendyk J, Köhler A et al. 2018. Interactome screening identifies the ER luminal chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1α. Mol. Cell 69:2238–52.e7
    [Google Scholar]
  75. 75. 
    Yeung C-YC, Kadler KE. 2019. Importance of the circadian clock in tendon development. Curr. Top. Dev. Biol. 133:309–42
    [Google Scholar]
  76. 76. 
    Chang J, Garva R, Pickard A, Yeung C-YC, Mallikarjun V et al. 2020. Circadian control of the secretory pathway maintains collagen homeostasis. Nat. Cell Biol. 22:174–86
    [Google Scholar]
  77. 77. 
    Phillip JM, Aifuwa I, Walston J, Wirtz D. 2015. The mechanobiology of aging. Annu. Rev. Biomed. Eng. 17:113–41
    [Google Scholar]
  78. 78. 
    Salzer MC, Lafzi A, Berenguer-Llergo A, Youssif C, Castellanos A et al. 2018. Identity noise and adipogenic traits characterize dermal fibroblast aging. Cell 175:61575–90.e22
    [Google Scholar]
  79. 79. 
    Tiwari P, Kumar A, Das RN, Malhotra V, VijayRaghavan K. 2015. A tendon cell specific RNAi screen reveals novel candidates essential for muscle tendon interaction. PLOS ONE 10:10e0140976
    [Google Scholar]
  80. 80. 
    Lerner DW, McCoy D, Isabella AJ, Mahowald AP, Gerlach GF et al. 2013. A Rab10-dependent mechanism for polarized basement membrane secretion during organ morphogenesis. Dev. Cell 24:2159–68
    [Google Scholar]
  81. 81. 
    Zhang L, Syed ZA, van Dijk Härd I, Lim JM, Wells L, Ten Hagen KG 2014. O-glycosylation regulates polarized secretion by modulating Tango1 stability. PNAS 111:207296–301
    [Google Scholar]
  82. 82. 
    Lougheed JC, Holton JM, Alber T, Bazan JF, Handel TM 2001. Structure of melanoma inhibitory activity protein, a member of a recently identified family of secreted proteins. PNAS 98:105515–20
    [Google Scholar]
  83. 83. 
    Stoll R, Renner C, Zweckstetter M, Brüggert M, Ambrosius D et al. 2001. The extracellular human melanoma inhibitory activity (MIA) protein adopts an SH3 domain-like fold. EMBO J 20:3340–49
    [Google Scholar]
  84. 84. 
    Ishikawa Y, Ito S, Nagata K, Sakai LY, Bächinger HP 2016. Intracellular mechanisms of molecular recognition and sorting for transport of large extracellular matrix molecules. PNAS 113:41E6036–44
    [Google Scholar]
  85. 85. 
    Raote I, Ortega-Bellido M, Santos AJ, Foresti O, Zhang C et al. 2018. TANGO1 builds a machine for collagen export by recruiting and spatially organizing COPII, tethers and membranes. eLife 7:e32723
    [Google Scholar]
  86. 86. 
    Saito K, Yamashiro K, Ichikawa Y, Erlmann P, Kontani K et al. 2011. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol. Biol. Cell 22:132301–8
    [Google Scholar]
  87. 87. 
    Ma W, Goldberg J 2016. TANGO1/cTAGE5 receptor as a polyvalent template for assembly of large COPII coats. PNAS 113:3610061–66
    [Google Scholar]
  88. 88. 
    Maeda M, Katada T, Saito K. 2017. TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion. J. Cell Biol. 216:61731–43
    [Google Scholar]
  89. 89. 
    Saito K, Yamashiro K, Shimazu N, Tanabe T, Kontani K, Katada T. 2014. Concentration of Sec12 at ER exit sites via interaction with cTAGE5 is required for collagen export. J. Cell Biol. 206:6751–62
    [Google Scholar]
  90. 90. 
    Sasaki N, Shiraiwa M, Maeda M, Yorimitsu T, Sato K et al. 2018. cTAGE5 acts as a Sar1 GTPase regulator for collagen export. bioRxiv 452904. https://doi.org/10.1101/452904
    [Crossref]
  91. 91. 
    Itzhak DN, Tyanova S, Cox J, Borner GH. 2016. Global, quantitative and dynamic mapping of protein subcellular localization. eLife 5:e16950
    [Google Scholar]
  92. 92. 
    Saito K, Maeda M. 2019. Not just a cargo receptor for large cargoes; an emerging role of TANGO1 as an organizer of ER exit sites. J. Biochem. 166:2115–19
    [Google Scholar]
  93. 93. 
    Hutchings J, Zanetti G. 2019. Coat flexibility in the secretory pathway: a role in transport of bulky cargoes. Curr. Opin. Cell Biol. 59:104–11
    [Google Scholar]
  94. 94. 
    Stancheva VG, Li X-H, Hutchings J, Gomez-Navarro N, Santhanam B et al. 2020. Combinatorial multivalent interactions drive cooperative assembly of the COPII coat. J. Cell Biol. 219:e202007135
    [Google Scholar]
  95. 95. 
    Hammond AT, Glick BS. 2000. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol. Biol. Cell 11:93013–30
    [Google Scholar]
  96. 96. 
    Bannykh SI, Rowe T, Balch WE. 1996. The organization of endoplasmic reticulum export complexes. J. Cell Biol. 135:119–35
    [Google Scholar]
  97. 97. 
    Zeuschner D, Geerts WJC, van Donselaar E, Humbel BM, Slot JW et al. 2006. Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat. Cell Biol. 8:4377–83
    [Google Scholar]
  98. 98. 
    Forster R, Weiss M, Zimmermann T, Reynaud EG, Verissimo F et al. 2006. Secretory cargo regulates the turnover of COPII subunits at single ER exit sites. Curr. Biol. 16:2173–79
    [Google Scholar]
  99. 99. 
    Stephens DJ, Lin-Marq N, Pagano A, Pepperkok R, Paccaud JP. 2000. COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. J. Cell Sci. 113:Part 122177–85
    [Google Scholar]
  100. 100. 
    Farhan H, Weiss M, Tani K, Kaufman RJ, Hauri H-P. 2008. Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load. EMBO J 27:152043–54
    [Google Scholar]
  101. 101. 
    Koide T, Nishikawa Y, Asada S, Yamazaki CM, Takahara Y et al. 2006. Specific recognition of the collagen triple helix by chaperone HSP47: II. The HSP47-binding structural motif in collagens and related proteins. J. Biol. Chem. 281:1611177–85
    [Google Scholar]
  102. 102. 
    Widmer C, Gebauer JM, Brunstein E, Rosenbaum S, Zaucke F et al. 2012. Molecular basis for the action of the collagen-specific chaperone Hsp47/SERPINH1 and its structure-specific client recognition. PNAS 109:3313243–47
    [Google Scholar]
  103. 103. 
    Maeda M, Komatsu Y, Saito K. 2020. Mitotic ER exit site disassembly and reassembly are regulated by the phosphorylation status of TANGO1. Dev. Cell 55:2237–50.e5
    [Google Scholar]
  104. 104. 
    Raote I, Ortega Bellido M, Pirozzi M, Zhang C, Melville D et al. 2017. TANGO1 assembles into rings around COPII coats at ER exit sites. J. Cell Biol. 216:4901–9
    [Google Scholar]
  105. 105. 
    Raote I, Chabanon M, Walani N, Arroyo M, Garcia-Parajo MF et al. 2019. A physical mechanism of TANGO1-mediated bulky cargo export. eLife 9:e59426
    [Google Scholar]
  106. 106. 
    Okamoto M, Kurokawa K, Matsuura-Tokita K, Saito C, Hirata R, Nakano A. 2012. High-curvature domains of the ER are important for the organization of ER exit sites in Saccharomyces cerevisiae. J. Cell Sci. 125:143412–20
    [Google Scholar]
  107. 107. 
    Raote I, Ernst AM, Campelo F, Rothman JE, Pincet F, Malhotra V. 2020. TANGO1 membrane helices create a lipid diffusion barrier at curved membranes. eLife 9:e57822
    [Google Scholar]
  108. 108. 
    Avinoam O, Schorb M, Beese CJ, Briggs JAG, Kaksonen M. 2015. Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Science 348:62411369–72
    [Google Scholar]
  109. 109. 
    Peotter J, Kasberg W, Pustova I, Audhya A. 2019. COPII-mediated trafficking at the ER/ERGIC interface. Traffic 20:7491–503
    [Google Scholar]
  110. 110. 
    Hanna MG, Peotter JL, Frankel EB, Audhya A. 2018. Membrane transport at an organelle interface in the early secretory pathway: Take your coat off and stay a while: evolution of the metazoan early secretory pathway. BioEssays 40:71800004
    [Google Scholar]
  111. 111. 
    McCaughey J, Miller VJ, Stevenson NL, Brown AK, Budnik A et al. 2016. TFG promotes organization of transitional ER and efficient collagen secretion. Cell Rep. 15:81648–59
    [Google Scholar]
  112. 112. 
    Witte K, Schuh AL, Hegermann J, Sarkeshik A, Mayers JR et al. 2011. TFG-1 function in protein secretion and oncogenesis. Nat. Cell Biol. 13:5550–58
    [Google Scholar]
  113. 113. 
    Ren Y, Yip CK, Tripathi A, Huie D, Jeffrey PD et al. 2009. A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1. Cell 139:61119–29
    [Google Scholar]
  114. 114. 
    Balasubramanian M, Hurst J, Brown S, Bishop NJ, Arundel P et al. 2017. Compound heterozygous variants in NBAS as a cause of atypical osteogenesis imperfecta. Bone 94:65–74
    [Google Scholar]
  115. 115. 
    Venditti R, Scanu T, Santoro M, Di Tullio G, Spaar A et al. 2012. Sedlin controls the ER export of procollagen by regulating the Sar1 cycle. Science 337:61021668–72
    [Google Scholar]
  116. 116. 
    Mumm S, Christie PT, Finnegan P, Jones J, Dixon PH et al. 2000. A five-base pair deletion in the sedlin gene causes spondyloepiphyseal dysplasia tarda in a six-generation Arkansas kindred. J. Clin. Endocrinol. Metab. 85:93343–47
    [Google Scholar]
  117. 117. 
    Zhang Z, Bai M, Barbosa GO, Chen A, Wei Y et al. 2020. Broadly conserved roles of TMEM131 family proteins in intracellular collagen assembly and secretory cargo trafficking. Sci. Adv. 6:7eaay7667
    [Google Scholar]
  118. 118. 
    Nogueira C, Erlmann P, Villeneuve J, Santos AJ, Martinez-Alonso E et al. 2014. SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. eLife 3:e02784
    [Google Scholar]
  119. 119. 
    Santos AJM, Raote I, Scarpa M, Brouwers N, Malhotra V. 2015. TANGO1 recruits ERGIC membranes to the endoplasmic reticulum for procollagen export. eLife 4:e10982
    [Google Scholar]
  120. 120. 
    Kurokawa K, Suda Y, Nakano A. 2016. Sar1 localizes at the rims of COPII-coated membranes in vivo. . J. Cell Sci. 129:173231–37
    [Google Scholar]
  121. 121. 
    Iwasaki H, Yorimitsu T, Sato K. 2017. Microscopy analysis of reconstituted COPII coat polymerization and Sec16 dynamics. J. Cell Sci. 130:172893–902
    [Google Scholar]
  122. 122. 
    Raote I, Malhotra V. 2019. Protein transport by vesicles and tunnels. J. Cell Biol. 218:3737–39
    [Google Scholar]
  123. 123. 
    McCaughey J, Stephens DJ. 2019. ER-to-Golgi transport: a sizeable problem. Trends Cell Biol 29:12940–53
    [Google Scholar]
  124. 124. 
    McCaughey J, Stevenson NL, Cross S, Stephens DJ. 2018. ER-to-Golgi trafficking of procollagen in the absence of large carriers. J. Cell Biol. 218:3929–48
    [Google Scholar]
  125. 125. 
    Mironov AA, Mironov AA Jr., Beznoussenko GV, Trucco A, Lupetti P et al. 2003. ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev. Cell 5:4583–94
    [Google Scholar]
  126. 126. 
    Roy Chowdhury S, Bhattacharjee C, Casler JC, Jain BK, Glick BS, Bhattacharyya D 2020. ER arrival sites associate with ER exit sites to create bidirectional transport portals. J. Cell Biol. 219:4e201902114
    [Google Scholar]
  127. 127. 
    Westrate LM, Hoyer MJ, Nash MJ, Voeltz GK. 2020. Vesicular and uncoated Rab1-dependent cargo carriers facilitate ER to Golgi transport. J. Cell Sci. 133:jcs.239814
    [Google Scholar]
  128. 128. 
    Martínez-Menárguez JA, Geuze HJ, Slot JW, Klumperman J. 1999. Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. Cell 98:181–90
    [Google Scholar]
  129. 129. 
    Kim J, Hamamoto S, Ravazzola M, Orci L, Schekman R. 2005. Uncoupled packaging of amyloid precursor protein and presenilin 1 into coat protein complex II vesicles. J. Biol. Chem. 280:97758–68
    [Google Scholar]
  130. 130. 
    Peter F, Nuoffer C, Pind SN, Balch WE. 1994. Guanine nucleotide dissociation inhibitor is essential for Rab1 function in budding from the endoplasmic reticulum and transport through the Golgi stack. J. Cell Biol. 126:61393–406
    [Google Scholar]
  131. 131. 
    Peter F, Plutner H, Zhu H, Kreis TE Balch WE. 1993. β-COP is essential for transport of protein from the endoplasmic reticulum to the Golgi in vitro. J. Cell Biol. 122:61155–67
    [Google Scholar]
  132. 132. 
    Lindsey JD, Ellisman MH. 1985. The neuronal endomembrane system. I. Direct links between rough endoplasmic reticulum and the cis element of the Golgi apparatus. J. Neurosci. 5:123111–23
    [Google Scholar]
  133. 133. 
    Stinchcombe JC, Nomoto H, Cutler DF, Hopkins CR. 1995. Anterograde and retrograde traffic between the rough endoplasmic reticulum and the Golgi complex. J. Cell Biol. 131:61387–401
    [Google Scholar]
  134. 134. 
    Sesso A, de Faria FP, Iwamura ES, Corrêa H. 1994. A three-dimensional reconstruction study of the rough ER-Golgi interface in serial thin sections of the pancreatic acinar cell of the rat. J. Cell Sci. 107:Part 3517–28
    [Google Scholar]
  135. 135. 
    Morré DJ, Keenan TW, Mollenhauer HH. 1971. Golgi apparatus function in membrane transformations and product compartmentalization: studies with cell fractions isolated from rat liver. Adv. Cytopharmacol. 1:159–82
    [Google Scholar]
  136. 136. 
    Claude A 1970. Growth and differentiation of cytoplasmic membranes in the course of lipoprotein granule synthesis in the hepatic cell: I. Elaboration of elements of the Golgi complex. J. Cell Biol. 47:3745–66
    [Google Scholar]
  137. 137. 
    daSilva LLP, Snapp EL, Denecke J, Lippincott-Schwartz J, Hawes C, Brandizzi F. 2004. Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16:71753–71
    [Google Scholar]
  138. 138. 
    Robinson DG, Brandizzi F, Hawes C, Nakano A. 2015. Vesicles versus tubes: Is endoplasmic reticulum-Golgi transport in plants fundamentally different from other eukaryotes?. Plant Physiol. 168:2393–406
    [Google Scholar]
  139. 139. 
    Kurokawa K, Okamoto M, Nakano A. 2014. Contact of cis-Golgi with ER exit sites executes cargo capture and delivery from the ER. Nat. Commun. 5:3653
    [Google Scholar]
  140. 140. 
    Glick BS. 2014. Integrated self-organization of transitional ER and early Golgi compartments. BioEssays 36:2129–33
    [Google Scholar]
  141. 141. 
    Ito Y, Uemura T, Shoda K, Fujimoto M, Ueda T, Nakano A. 2012. cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells. Mol. Biol. Cell 23:163203–14
    [Google Scholar]
  142. 142. 
    Ito Y, Uemura T, Nakano A. 2018. The Golgi entry core compartment functions as a COPII-independent scaffold for ER-to-Golgi transport in plant cells. J. Cell Sci. 131:2jcs203893
    [Google Scholar]
  143. 143. 
    Ma W, Goldberg E, Goldberg J. 2017. ER retention is imposed by COPII protein sorting and attenuated by 4-phenylbutyrate. eLife 6:e26624
    [Google Scholar]
  144. 144. 
    Gomez-Navarro N, Melero A, Li X-H, Boulanger J, Kukulski W, Miller EA. 2020. Cargo crowding contributes to sorting stringency in COPII vesicles. J. Cell Biol. 219:7e201806038
    [Google Scholar]
  145. 145. 
    Miller E, Antonny B, Hamamoto S, Schekman R. 2002. Cargo selection into COPII vesicles is driven by the Sec24p subunit. EMBO J 21:226105–13
    [Google Scholar]
  146. 146. 
    Ishikawa Y, Holden P, Bächinger HP. 2017. Heat shock protein 47 and 65-kDa FK506-binding protein weakly but synergistically interact during collagen folding in the endoplasmic reticulum. J. Biol. Chem. 292:4217216–24
    [Google Scholar]
  147. 147. 
    Stevenson NL, Dylan JMB, Hammond CL, Stephens DJ. 2020. Giantin is required for intracellular N-terminal processing of type I procollagen. bioRxiv 115279. https://doi.org/10.1101/2020.05.25.115279
    [Crossref]
  148. 148. 
    Gan W, Zhang C, Siu KY, Satoh A, Tanner JA, Yu S. 2017. ULK1 phosphorylates Sec23A and mediates autophagy-induced inhibition of ER-to-Golgi traffic. BMC Cell Biol 18:122
    [Google Scholar]
  149. 149. 
    Dudognon P, Maeder-Garavaglia C, Carpentier J-L, Paccaud J-P. 2004. Regulation of a COPII component by cytosolic O-glycosylation during mitosis. FEBS Lett. 561:1–344–50
    [Google Scholar]
  150. 150. 
    Aguilera-Gomez A, van Oorschot MM, Veenendaal T, Rabouille C. 2016. vivo vizualisation of mono-ADP-ribosylation by dPARP16 upon amino-acid starvation. eLife 5:e21475
    [Google Scholar]
  151. 151. 
    Cohen M, Stutz F, Belgareh N, Haguenauer-Tsapis R, Dargemont C. 2003. Ubp3 requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein, Sec23. Nat. Cell Biol. 5:7661–67
    [Google Scholar]
  152. 152. 
    Murakami A, Kimura K, Nakano A. 1999. The inactive form of a yeast casein kinase I suppresses the secretory defect of the sec12 mutant. Implication of negative regulation by the Hrr25 kinase in the vesicle budding from the endoplasmic reticulum. J. Biol. Chem. 274:63804–10
    [Google Scholar]
  153. 153. 
    Centonze FG, Reiterer V, Nalbach K, Saito K, Pawlowski K et al. 2019. LTK is an ER-resident receptor tyrosine kinase that regulates secretion. J. Cell Biol. 218:82470–80
    [Google Scholar]
  154. 154. 
    Subramanian A, Capalbo A, Iyengar NR, Rizzo R, di Campli A et al. 2019. Auto-regulation of secretory flux by sensing and responding to the folded cargo protein load in the endoplasmic reticulum. Cell 176:61461–76.e23
    [Google Scholar]
  155. 155. 
    Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A et al. 2013. Autophagosomes form at ER-mitochondria contact sites. Nature 495:7441389–93
    [Google Scholar]
  156. 156. 
    Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y et al. 2001. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol. Biol. Cell 12:113690–702
    [Google Scholar]
  157. 157. 
    Graef M, Friedman JR, Graham C, Babu M, Nunnari J. 2013. ER exit sites are physical and functional core autophagosome biogenesis components. Mol. Biol. Cell 24:182918–31
    [Google Scholar]
  158. 158. 
    Ge L, Zhang M, Kenny SJ, Liu D, Maeda M et al. 2017. Remodeling of ER-exit sites initiates a membrane supply pathway for autophagosome biogenesis. EMBO Rep 18:91586–603
    [Google Scholar]
  159. 159. 
    Bienkowski RS, Baum BJ, Crystal RG. 1978. Fibroblasts degrade newly synthesised collagen within the cell before secretion. Nature 276:5686413–16
    [Google Scholar]
  160. 160. 
    Palade G. 1975. Intracellular aspects of the process of protein synthesis. Science 189:4200347–58
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-080120-022017
Loading
/content/journals/10.1146/annurev-biochem-080120-022017
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error