1932

Abstract

Knowledge-based biomedical data science involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey recent progress in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as progress on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing to construct knowledge graphs, and the expansion of novel knowledge-based approaches to clinical and biological domains.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biodatasci-010820-091627
2020-07-20
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/biodatasci/3/1/annurev-biodatasci-010820-091627.html?itemId=/content/journals/10.1146/annurev-biodatasci-010820-091627&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hunter LE. 2017. Knowledge-based biomedical data science. Data Sci 1:1–219–25
    [Google Scholar]
  2. 2. 
    Davis R, Shrobe H, Szolovits P 1993. What is a knowledge representation. ? AI Mag 14:117–33
    [Google Scholar]
  3. 3. 
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al. 2000. Gene Ontology: tool for the unification of biology. Nat. Genet. 25:125–29
    [Google Scholar]
  4. 4. 
    Berners-Lee T, Fielding RT, Masinter L 2005. Uniform resource identifier (URI): generic syntax Unpublished Memo., Internet Eng. Task Force Fremont, CA: https://tools.ietf.org/html/rfc3986
    [Google Scholar]
  5. 5. 
    SPARQL (SPARQL Protoc. RDF Query Lang.) Work. Group 2013. SPARQL 1.1 protocol Web Resour., World Wide Web Consort https://www.w3.org/TR/sparql11-protocol/
    [Google Scholar]
  6. 6. 
    W3C (World Wide Web Consort.) 2004. OWL Web Ontology Language overview Web Resour., World Wide Web Consort https://www.w3.org/TR/owl-features/
    [Google Scholar]
  7. 7. 
    Krötzsch M, Simancik F, Horrocks I 2012. A description logic primer. arXiv:1201.4089 [cs.AI]
  8. 8. 
    Ruttenberg A, Clark T, Bug W, Samwald M, Bodenreider O et al. 2007. Advancing translational research with the Semantic Web. BMC Bioinform 8:Suppl. 3S2
    [Google Scholar]
  9. 9. 
    Singhal A. 2012. Introducing the Knowledge Graph: things, not strings. Google Blog May 16. https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
    [Google Scholar]
  10. 10. 
    Ehrlinger L, Wöß W. 2016. Towards a definition of knowledge graphs. Proceedings of the Posters and Demos Track of 12th International Conference on Semantic Systems (2016 SEMANTiCS) CEUR Workshop Proc .
    [Google Scholar]
  11. 11. 
    L, Zhou T. 2011. Link prediction in complex networks: a survey. Physica A 390:61150–70
    [Google Scholar]
  12. 12. 
    Kazakov Y, Krötzsch M, Simancik F 2012. ELK reasoner: architecture and evaluation. Proceedings of the OWL Reasoner Evaluation Workshop (ORE 2012) I Horrocks, M Yatskevich, E Jimenez-Ruiz CEUR Workshop Proc.
    [Google Scholar]
  13. 13. 
    Glimm B, Horrocks I, Motik B, Stoilos G, Wang Z 2014. HermiT: an OWL 2 reasoner. J. Autom. Reason. 53:3245–69
    [Google Scholar]
  14. 14. 
    Nickel M, Murphy K, Tresp V, Gabrilovich E 2016. A review of relational machine learning for knowledge graphs. Proc. IEEE 104:111–33
    [Google Scholar]
  15. 15. 
    Wang X, Wang Y, Gao C, Lin K, Li Y 2018. Automatic diagnosis with efficient medical case searching based on evolving graphs. IEEE Access 6:53307–18
    [Google Scholar]
  16. 16. 
    Gene Ontol. Consort 2009. Introduction to GO annotations Web Resource, Gene Ontol Consort: http://geneontology.org/docs/go-annotations/
    [Google Scholar]
  17. 17. 
    Thomas PD, Hill DP, Mi H, Osumi-Sutherland D, Van Auken K et al. 2019. Gene Ontology Causal Activity Modeling (GO-CAM) moves beyond GO annotations to structured descriptions of biological functions and systems. Nat. Genet. 51:1429–33
    [Google Scholar]
  18. 18. 
    Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M et al. 2018. The Reactome pathway Knowledgebase. Nucleic Acids Res 46:D1D649–55
    [Google Scholar]
  19. 19. 
    Kilicoglu H, Shin D, Fiszman M, Rosemblat G, Rindflesch TC 2012. SemMedDB: a PubMed-scale repository of biomedical semantic predications. Bioinformatics 28:233158–60
    [Google Scholar]
  20. 20. 
    Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M et al. 2006. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:Suppl. 1D668–72
    [Google Scholar]
  21. 21. 
    Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3:160018
    [Google Scholar]
  22. 22. 
    Rigden DJ, Fernández XM. 2019. The 26th annual Nucleic Acids Research database issue and Molecular Biology Database Collection. Nucleic Acids Res 47:D1D1–7
    [Google Scholar]
  23. 23. 
    Cormont S, Vandenbussche P-Y, Buemi A, Delahousse J, Lepage E, Charlet J 2011. Implementation of a platform dedicated to the biomedical analysis terminologies management. AMIA Annu. Symp. Proc. 2011:1418–27
    [Google Scholar]
  24. 24. 
    Chen Q, Li B. 2018. Retrieval method of electronic medical records based on rules and knowledge graph. Proceedings of the 2018 International Conference on Electronic Business Atlanta, GA: Assoc. Inform. Syst.
    [Google Scholar]
  25. 25. 
    Liu X, Jin J, Wang Q, Ruan T, Zhou Y et al. 2018. PatientEG dataset: bringing event graph model with temporal relations to electronic medical records. arXiv:1812.09905 [cs.CY]
  26. 26. 
    Liu Z, Peng E, Yan S, Li G, Hao T 2018. T-Know: a knowledge graph-based question answering and information retrieval system for traditional Chinese medicine. Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations15–19 New York: Assoc. Comput. Linguist.
    [Google Scholar]
  27. 27. 
    Ruan T, Huang Y, Liu X, Xia Y, Gao J 2019. QAnalysis: a question-answer driven analytic tool on knowledge graphs for leveraging electronic medical records for clinical research. BMC Med. Inform. Decis. Making 19:182
    [Google Scholar]
  28. 28. 
    Mohammadhassanzadeh H, Abidi SR, Van Woensel W, Abidi SSR 2018. Investigating plausible reasoning over knowledge graphs for semantics-based health data analytics. Proceedings of the IEEE 27th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises148–53 Los Alamitos, CA: IEEE Comput. Soc.
    [Google Scholar]
  29. 29. 
    Schwertner MA, Rigo SJ, Araújo DA, Silva AB, Eskofier B 2019. Fostering natural language question answering over knowledge bases in oncology EHR. Proceedings of the IEEE 32nd International Symposium on Computer-Based Medical Systems501–6 New York: IEEE
    [Google Scholar]
  30. 30. 
    Bakal G, Talari P, Kakani EV, Kavuluru R 2018. Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations. J. Biomed. Inform. 82:189–99
    [Google Scholar]
  31. 31. 
    Reumann M, Giovannini A, Nadworny B, Auer C, Girardi I, Marchiori C 2018. Cognitive DDx assistant in rare diseases. Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society3244–47 New York: IEEE
    [Google Scholar]
  32. 32. 
    Bobed C, Douze L, Ferré S, Marcilly R 2018. Sparklis over PEGASE knowledge graph: a new tool for pharmacovigilance. Proceedings of the 2018 International Conference on Semantic Web Applications and Tools for Life Sciences (SWAT4LS) CJO Baker, A Waagmeester, A Splendiani, AD Beyan, MS Marshall CEUR Workshop Proc.
    [Google Scholar]
  33. 33. 
    Kamdar MR, Hamamsy T, Shelton S, Vala A, Eftimov T et al. 2019. A knowledge graph-based approach for exploring the U.S. opioid epidemic. arXiv:1905.11513 [cs.CY]
    [Google Scholar]
  34. 34. 
    Biswas S, Mitra P, Rao KS 2019. Relation prediction of co-morbid diseases using knowledge graph completion. IEEE/ACM Trans. Comput. Biol. Bioinform. In press
    [Google Scholar]
  35. 35. 
    Alshahrani M, Khan MA, Maddouri O, Kinjo AR, Queralt-Rosinach N, Hoehndorf R 2017. Neuro-symbolic representation learning on biological knowledge graphs. Bioinformatics 33:172723–30
    [Google Scholar]
  36. 36. 
    Callahan TJ, Baumgartner WA, Bada M, Stefanski AL, Tripodi I et al. 2017. OWL-NETS: transforming OWL representations for improved network inference. Proc. Pac. Symp. Biocomput. 23:133–44
    [Google Scholar]
  37. 37. 
    Livingston KM, Bada M, Baumgartner WA Jr., Hunter LE 2015. KaBOB: ontology-based semantic integration of biomedical databases. BMC Bioinform 16:126
    [Google Scholar]
  38. 38. 
    Neil D, Briody J, Lacoste A, Sim A, Creed P, Saffari A 2018. Interpretable graph convolutional neural networks for inference on noisy knowledge graphs. arXiv:1812.00279 [cs.LG]
  39. 39. 
    Aziguli ZY, Xie Y, Xu Y, Chen Y 2017. Structural technology research on symptom data of Chinese medicine. Proceedings of the IEEE 19th International Conference on e-Health Networking, Applications and Services New York: IEEE
    [Google Scholar]
  40. 40. 
    Shang J, Xiao C, Ma T, Li H, Sun J 2019. GAMENet: graph augmented memory networks for recommending medication combination. Proceedings of the 33rd AAAI Conference on Artificial Intelligence1126–33 Palo Alto, CA: Assoc. Adv. Artif. Intell.
    [Google Scholar]
  41. 41. 
    Huang EW, Wang S, Zhai C 2017. VisAGE: integrating external knowledge into electronic medical record visualization. Proc. Pac. Symp. Biocomput. 23:578–89
    [Google Scholar]
  42. 42. 
    Singh A, Rawlings CJ, Hassani-Pak K 2018. KnetMaps: a BioJS component to visualize biological knowledge networks. F1000Research 7:1651
    [Google Scholar]
  43. 43. 
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:112498–504
    [Google Scholar]
  44. 44. 
    Queralt-Rosinach N, Stupp GS, Li TS, Mayers M, Hoatlin ME et al. 2019. Structured reviews for data and knowledge driven research. bioRxiv 729475. https://doi.org/10.1101/729475
    [Crossref]
  45. 45. 
    Tripodi IJ, Callahan TJ, Westfall JT, Meitzer NS, Dowell RD, Hunter LE 2019. Applying knowledge-driven mechanistic inference to toxicogenomics. bioRxiv 782011. https://doi.org/10.1101/782011
    [Crossref]
  46. 46. 
    Smaili FZ, Gao X, Hoehndorf R 2019. OPA2Vec: combining formal and informal content of biomedical ontologies to improve similarity-based prediction. Bioinformatics 35:122133–40
    [Google Scholar]
  47. 47. 
    Celebi R, Yasar E, Uyar H, Gumus O, Dikenelli O, Dumontier M 2018. Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction using Linked Open Data. Proceedings of the 2018 International Conference on Semantic Web Applications and Tools for Healthcare and Life Sciences CJO Baker, A Waagmeester, A Splendiani, AD Beyan, MS Marshall CEUR Workshop Proc.
    [Google Scholar]
  48. 48. 
    Crichton G, Guo Y, Pyysalo S, Korhonen A 2018. Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches. BMC Bioinform 19:1176
    [Google Scholar]
  49. 49. 
    Hamilton W, Bajaj P, Zitnik M, Jurafsky D, Leskovec J 2018. Embedding logical queries on knowledge graphs. Advances in Neural Information Processing Systems 31 S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, R Garnett 2026–37 Red Hook, NY: Curran Assoc.
    [Google Scholar]
  50. 50. 
    Jiang J, Wang H, Xie J, Guo X, Guan Y, Yu Q 2018. Medical knowledge embedding based on recursive neural network for multi-disease diagnosis. arXiv:1809.08422 [cs.AI]
  51. 51. 
    Karim MR, Cochez M, Jares JB, Uddin M, Beyan O, Decker S 2019. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics113–23 New York: Assoc. Comput. Mach.
    [Google Scholar]
  52. 52. 
    Mohamed SK, Nounu A, Nováček V 2019. Drug target discovery using knowledge graph embeddings. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing11–18 New York: Assoc. Comput. Mach.
    [Google Scholar]
  53. 53. 
    Sadeghi A, Lehmann J. 2019. Linking physicians to medical research results via knowledge graph embeddings and Twitter. arXiv:1908.02571 [cs.SI]
  54. 54. 
    Womack F, McClelland J, Koslicki D 2019. Leveraging distributed biomedical knowledge sources to discover novel uses for known drugs. bioRxiv 765305. https://doi.org/10.1101/765305
    [Crossref]
  55. 55. 
    Sang S, Yang Z, Liu X, Wang L, Lin H et al. 2019. GrEDeL: a knowledge graph embedding based method for drug discovery from biomedical literatures. IEEE Access 7:8404–15
    [Google Scholar]
  56. 56. 
    Tripodi I, Cohen KB, Hunter LE 2017. A semantic knowledge-base approach to drug-drug interaction discovery. Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine X Hu, Y Gong, C-R Shyu, D Korkin, Y Bromberg, et al. 1123–26 New York: IEEE
    [Google Scholar]
  57. 57. 
    Li L, Wang P, Wang Y, Jiang J, Tang B et al. 2019. PrTransH: embedding probabilistic medical knowledge from real world EMR data. arXiv:1909.00672 [cs.AI]
  58. 58. 
    Yue X, Wang Z, Huang J, Parthasarathy S, Moosavinasab S et al. 2019. Graph embedding on biomedical networks: methods, applications, and evaluations. arXiv:1906.05017 [cs.LG]
  59. 59. 
    Callahan TJ. 2019. PheKnowLator http://doi.org/10.5281/zenodo.3401437
    [Crossref] [Google Scholar]
  60. 60. 
    Deng Y, Li Y, Shen Y, Du N, Fan W et al. 2018. MedTruth: a semi-supervised approach to discovering knowledge condition information from multi-source medical data. arXiv:1809.10404 [cs.DB]
  61. 61. 
    Morton K, Wang P, Bizon C, Cox S, Balhoff J et al. 2019. ROBOKOP: an abstraction layer and user interface for knowledge graphs to support question answering. Bioinformatics 2019:btz604
    [Google Scholar]
  62. 62. 
    Wright D, Katsis Y, Mehta R, Hsu C-N 2019. NormCo: deep disease normalization for biomedical knowledge base construction Paper presented at Automated Knowledge Base Construction Conference (AKBC 2019) Amherst, MA: May 20
    [Google Scholar]
  63. 63. 
    Luan Y, He L, Ostendorf M, Hajishirzi H 2018. Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. arXiv:1808.09602 [cs.CL]
  64. 64. 
    Zhang N, Deng S, Sun Z, Wang G, Chen X et al. 2019. Long-tail relation extraction via knowledge graph embeddings and graph convolution networks. arXiv:1903.01306 [cs.IR]
  65. 65. 
    Duque A, Stevenson M, Martinez-Romo J, Araujo L 2018. Co-occurrence graphs for word sense disambiguation in the biomedical domain. Artif. Intell. Med. 87:9–19
    [Google Scholar]
  66. 66. 
    Jin Z, Zhang Y, Kuang H, Yao L, Zhang W, Pan Y 2019. Named entity recognition in traditional Chinese medicine clinical cases combining BiLSTM-CRF with knowledge graph. Knowledge Science, Engineering, and Management C Douligeris, D Karagiannis, D Apostolou 537–48 Cham, Switz.: Springer
    [Google Scholar]
  67. 67. 
    Logan R, Liu NF, Peters ME, Gardner M, Singh S 2019. Barack's wife Hillary: using knowledge graphs for fact-aware language modeling. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics A Korhonen, D Traum, L Màrquez 5962–71 New York: Assoc. Comput. Linguist.
    [Google Scholar]
  68. 68. 
    Wang Z, Xu S, Zhu L 2018. Semantic relation extraction aware of N-gram features from unstructured biomedical text. J. Biomed. Inform. 86:59–70
    [Google Scholar]
  69. 69. 
    Xie Y, Yan C, Zhang D 2018. Personalized diagnostic modal discovery of traditional Chinese medicine knowledge graph. Proceedings of the 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery1096–103 New York: IEEE
    [Google Scholar]
  70. 70. 
    Gao Z, Fu G, Ouyang C, Tsutsui S, Liu X et al. 2019. edge2vec: representation learning using edge semantics for biomedical knowledge discovery. BMC Bioinform 20:1306
    [Google Scholar]
  71. 71. 
    Su C, Tong J, Zhu Y, Cui P, Wang F 2018. Network embedding in biomedical data science. Brief. Bioinform. 2018:bby117
    [Google Scholar]
  72. 72. 
    Sang S, Yang Z, Wang L, Liu X, Lin H, Wang J 2018. SemaTyP: a knowledge graph based literature mining method for drug discovery. BMC Bioinform 19:1193
    [Google Scholar]
  73. 73. 
    Vlietstra WJ, Vos R, Sijbers AM, van Mulligen EM, Kors JA 2018. Using predicate and provenance information from a knowledge graph for drug efficacy screening. J. Biomed. Semant. 9:123
    [Google Scholar]
  74. 74. 
    Wang Q, Wang T, Xu C 2018. Using a knowledge graph for hypernymy detection between Chinese symptoms. Proceedings of the Tenth International Conference on Advanced Computational Intelligence601–6 New York: IEEE
    [Google Scholar]
  75. 75. 
    Zhang D, He D, Zou N, Zhou X, Pei F 2018. Automatic relationship verification in online medical knowledge base: a large scale study in SemMedDB. Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicinepp. 1673–80 New York: IEEE
    [Google Scholar]
  76. 76. 
    Perez N, Cuadros M, Rigau G 2018. Biomedical term normalization of EHRs with UMLS. arXiv:1802.02870 [cs.CL]
  77. 77. 
    Sharma S, Santra B, Jana A, Santosh TYSS, Ganguly N, Goyal P 2019. Incorporating domain knowledge into medical NLI using knowledge graphs. arXiv:1909.00160v1 [cs.CL]
  78. 78. 
    Wang X, Li Q, Ding X, Zhang G, Weng L, Ding M 2019. A new method for complex triplet extraction of biomedical texts. Knowledge Science, Engineering, and Management C Douligeris, D Karagiannis, D Apostolou 146–58 Cham, Switz.: Springer
    [Google Scholar]
  79. 79. 
    Huang L, Yu C, Chi Y, Qi X, Xu H 2019. Towards smart healthcare management based on knowledge graph technology. Proceedings of the 2019 8th International Conference on Software and Computer Applications330–37 New York: Assoc. Comput. Mach.
    [Google Scholar]
  80. 80. 
    Fauqueur J, Thillaisundaram A, Togia T 2019. Constructing large scale biomedical knowledge bases from scratch with rapid annotation of interpretable patterns. arXiv:1907.01417 [cs.CL]
  81. 81. 
    Cong Q, Feng Z, Li F, Zhang L, Rao G, Tao C 2018. Constructing biomedical knowledge graph based on SemMedDB and linked open data. Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine H Zheng, X Hu, Z Callejas, H Schmidt, D Griol, et al. 1628–31 New York: IEEE
    [Google Scholar]
  82. 82. 
    Brandizi M, Singh A, Rawlings C, Hassani-Pak K 2018. Towards FAIRer biological knowledge networks using a hybrid linked data and graph database approach. J. Integr. Bioinform. 15:320180023
    [Google Scholar]
  83. 83. 
    Biomedical Data Transl. Consort 2019. Toward a universal biomedical data translator. Clin. Transl. Sci. 12:286–90
    [Google Scholar]
  84. 84. 
    Al-Nagdawi A. 2019. Building the ultimate nexus of knowledge for biomedical dataWeb Resource, Univ. Calif. San Franc. https://precisionmedicine.ucsf.edu/building-ultimate-nexus-knowledge-biomedical-data
    [Google Scholar]
  85. 85. 
    Nelson CA, Butte AJ, Baranzini SE 2019. Integrating biomedical research and electronic health records to create knowledge-based biologically meaningful machine-readable embeddings. Nat. Commun. 10:13045
    [Google Scholar]
  86. 86. 
    UCSF (Univ. Calif. San Franc.) 2019. What is SPOKE?Web Resource, Univ. Calif. San Franc. https://spoke.ucsf.edu/
    [Google Scholar]
  87. 87. 
    Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL et al. 2017. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife 6:e26726
    [Google Scholar]
  88. 88. 
    Yuan J, Jin Z, Guo H, Jin H, Zhang X et al. 2019. Constructing biomedical domain-specific knowledge graph with minimum supervision. Knowl. Inform. Syst. https://doi.org/10.1007/s10115-019-01351-4
    [Crossref] [Google Scholar]
  89. 89. 
    NCATS (Natl. Cent. Adv. Transl. Sci.) 2019. Biomedical Data Translator: development Notice Funding Oppor NOT-TR-19-028, Natl. Cent. Adv. Transl. Sci., Bethesda, MD. https://ncats.nih.gov/files/NCATS-Translator-FY20-COMBINED-FOA-FINAL.pdf
    [Google Scholar]
  90. 90. 
    Google 2019. Welcome to Data Commons http://datacommons.org
    [Google Scholar]
  91. 91. 
    Belleau F, Nolin M-A, Tourigny N, Rigault P, Morissette J 2008. Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform. 41:5706–16
    [Google Scholar]
  92. 92. 
    Nolin M-A, Ansell P, Belleau F, Idehen K, Rigault P et al. 2008. Bio2RDF network of linked data Paper presented at Semantic Web Challenge: International Semantic Web Conference (ISWC 2008) Karlsruhe, Ger.: Oct 26–30
    [Google Scholar]
  93. 93. 
    Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J et al. 2017. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res 45:D1D833–39
    [Google Scholar]
  94. 94. 
    Messina A, Pribadi H, Stichbury J, Bucci M, Klarman S, Urso A 2018. BioGrakn: a knowledge graph-based semantic database for biomedical sciences. Complex, Intelligent, and Software Intensive Systems L Barolli, O Terzo 299–309 Cham, Switz.: Springer
    [Google Scholar]
  95. 95. 
    Lossio-Ventura JA, Hogan W, Modave F, Guo Y, He Z et al. 2018. OC-2-KB: integrating crowdsourcing into an obesity and cancer knowledge base curation system. BMC Med. Inform. Decis. Making 18:Suppl. 255
    [Google Scholar]
  96. 96. 
    Ali M, Hoyt CT, Domingo-Fernández D, Lehmann J, Jabeen H 2019. BioKEEN: a library for learning and evaluating biological knowledge graph embeddings. Bioinformatics 35:183538–40
    [Google Scholar]
  97. 97. 
    Musen MA, Protégé Team 2015. The Protégé Project: a look back and a look forward. AI Matters 1:44–12
    [Google Scholar]
  98. 98. 
    Systap LLC. 2013. The bigdata® RDF database. White Pap., BlazeGraph Database, Washington, DC. https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
  99. 99. 
    Smith B, Ashburner M, Rosse C, Bard J, Bug W et al. 2007. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25:111251–55
    [Google Scholar]
  100. 100. 
    RDF Data Access Work. Group 2008. SPARQL query language for RDF Web Resour., World Wide Web Consort https://www.w3.org/TR/rdf-sparql-query/
    [Google Scholar]
  101. 101. 
    Page RDM 2019. Ozymandias: a biodiversity knowledge graph. PeerJ 7:e6739
    [Google Scholar]
  102. 102. 
    Page R. 2018. Liberating links between datasets using lightweight data publishing: an example using plant names and the taxonomic literature. Biodivers. Data J. 6:e27539
    [Google Scholar]
  103. 103. 
    Senderov V, Simov K, Franz N, Stoev P, Catapano T et al. 2018. OpenBiodiv-O: ontology of the OpenBiodiv knowledge management system. J. Biomed. Semant. 9:15
    [Google Scholar]
  104. 104. 
    Badal VD, Wright D, Katsis Y, Kim H-C, Swafford AD et al. 2019. Challenges in the construction of knowledge bases for human microbiome-disease associations. Microbiome 7:1129
    [Google Scholar]
  105. 105. 
    Ammar W, Groeneveld D, Bhagavatula C, Beltagy I, Crawford M et al. 2018. Construction of the literature graph in Semantic Scholar. arXiv:1805.02262 [cs.CL]
  106. 106. 
    Auer S, Kovtun V, Prinz M, Kasprzik A, Stocker M, Vidal ME 2018. Towards a knowledge graph for science. Proceedings of the 8th International Conference on Web Intelligence, Mining and SemanticsArt. 1. New York: Assoc. Comput. Mach.
    [Google Scholar]
  107. 107. 
    Dai Q, Inoue N, Reisert P, Takahashi R, Inui K 2019. Distantly supervised biomedical knowledge acquisition via knowledge graph based attention. Proceedings of the Workshop on Extracting Structured Knowledge from Scientific Publications1–10 New York: Assoc. Comput. Mach.
    [Google Scholar]
  108. 108. 
    Jiang T, Zhao T, Qin B, Liu T, Chawla NV, Jiang M 2019. The role of “condition”: a novel scientific knowledge graph representation and construction model. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining1634–42 New York: Assoc. Comput. Mach.
    [Google Scholar]
  109. 109. 
    Buscaldi D, Dessì D, Motta E, Osborne F, Reforgiato Recupero D 2019. Mining scholarly publications for scientific knowledge graph construction. Proceedings of the Extended Semantic Web Conference P Hitzler, S Kirrane, O Hartig, V de Boer, M-E Vidal 8–12 Cham, Switz.: Springer
    [Google Scholar]
  110. 110. 
    Tennakoon C, Zaki N, Arnaout H, Elbassuoni S, El-Hajj W, Al Jaberi A 2019. Biological knowledge graph construction, search, and navigation. Leveraging Biomedical and Healthcare Data F Kobeissy, A Alawieh, FA Zaraket, K Wang 107–20 London: Academic
    [Google Scholar]
  111. 111. 
    Cheng B, Zhang Y, Cai D, Qiu W, Shi D 2018. Construction of traditional Chinese medicine knowledge graph using data mining and expert knowledge. IEEE International Conference on Network Infrastructure and Digital Content209–13 New York: IEEE
    [Google Scholar]
  112. 112. 
    Gong F, Chen Y, Wang H, Lu H 2019. On building a diabetes centric knowledge base via mining the web. BMC Med. Inform. Decis. Making 19:Suppl. 249
    [Google Scholar]
  113. 113. 
    Gyrard A, Gaur M, Shekarpour S, Thirunarayan K, Sheth A 2018. Personalized health knowledge graph. Proceedings of the 1st Workshop on Contextualized Knowledge Graphs http://knoesis.wright.edu/sites/default/files/personalized-asthma-obesity%20%2814%29.pdf
    [Google Scholar]
  114. 114. 
    Wang H, Miao X, Yang P 2018. Design and implementation of personal health record systems based on knowledge graph. Proceedings of the 9th International Conference on Information Technology in Medicine and Education133–36 Los Alamitos, CA: IEEE Comput. Soc.
    [Google Scholar]
  115. 115. 
    Gao M, Wang R, Suny D, Li G 2018. Intelligent healthcare knowledge resources in Chinese: a survey. Proceedings of the 15th International Symposium on Pervasive Systems, Algorithms and Networks318–24 Los Alamitos, CA: IEEE Comput. Soc.
    [Google Scholar]
  116. 116. 
    Li D. 2018. Modelling online user behavior for medical knowledge learning. Ind. Manag. Data Syst. 118:4889–911
    [Google Scholar]
  117. 117. 
    Nordon G, Koren G, Shalev V, Kimelfeld B, Shalit U, Radinsky K 2019. Building causal graphs from medical literature and electronic medical records. Proceedings of the 33rd AAAI Conference on Artificial Intelligence1102–9 Palo Alto, CA: Assoc. Adv. Artif. Intell.
    [Google Scholar]
  118. 118. 
    Xia E, Sun W, Mei J, Xu E, Wang K, Qin Y 2018. Mining disease-symptom relation from massive biomedical literature and its application in severe disease diagnosis. AMIA Annu. Symp. Proc. 2018:1118–26
    [Google Scholar]
  119. 119. 
    Fang Y, Wang H, Wang L, Di R, Song Y 2019. Diagnosis of COPD based on a knowledge graph and integrated model. IEEE Access 7:46004–13
    [Google Scholar]
  120. 120. 
    Zhang H, He X, Harrison T, Bian J 2019. Aero: an evidence-based semantic web knowledge base of cancer behavioral risk factors. Proceedings of the 4th International Workshop on Semantics-Powered Data Mining and Analytics Z He, J Bian, C Tao, R Zhang 7–11 CEUR Workshop Proc.
    [Google Scholar]
  121. 121. 
    He X, Zhang R, Rizvi R, Vasilakes J, Yang X et al. 2019. ALOHA: developing an interactive graph-based visualization for dietary supplement knowledge graph through user-centered design. BMC Med. Inform. Decis. Making 19:Suppl. 4150
    [Google Scholar]
  122. 122. 
    Nordon G, Koren G, Shalev V, Horvitz E, Radinsky K 2019. Separating wheat from chaff: joining biomedical knowledge and patient data for repurposing medications. Proceedings of the 33rd AIAA Conference on Artificial Intelligence9565–72 Palo Alto, CA: Assoc. Adv. Artif. Intell.
    [Google Scholar]
  123. 123. 
    Shen Y, Yuan K, Dai J, Tang B, Yang M, Lei K 2019. KGDDS: a system for drug-drug similarity measure in therapeutic substitution based on knowledge graph curation. J. Med. Syst. 43:492
    [Google Scholar]
  124. 124. 
    Agibetov A, Jiménez-Ruiz E, Ondrésik M, Solimando A, Banerjee I et al. 2018. Supporting shared hypothesis testing in the biomedical domain. J. Biomed. Semantics 9:19
    [Google Scholar]
/content/journals/10.1146/annurev-biodatasci-010820-091627
Loading
/content/journals/10.1146/annurev-biodatasci-010820-091627
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error