1932

Abstract

Successful stabilization and preservation of biological materials often utilize low temperatures and dehydration to arrest molecular motion. Cryoprotectants are routinely employed to help the biological entities survive the physicochemical and mechanical stresses induced by cold or dryness. Molecular interactions between biomolecules, cryoprotectants, and water fundamentally determine the outcomes of preservation. The optimization of assays using the empirical approach is often limited in structural and temporal resolution, whereas classical molecular dynamics simulations can provide a cost-effective glimpse into the atomic-level structure and interaction of individual molecules that dictate macroscopic behavior. Computational research on biomolecules, cryoprotectants, and water has provided invaluable insights into the development of new cryoprotectants and the optimization of preservation methods. We describe the rapidly evolving state of the art of molecular simulations of these complex systems, summarize the molecular-scale protective and stabilizing mechanisms, and discuss the challenges that motivate continued innovation in this field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-060418-052130
2019-06-04
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/21/1/annurev-bioeng-060418-052130.html?itemId=/content/journals/10.1146/annurev-bioeng-060418-052130&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Zylberberg C, Matosevic S 2016. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv 23:3319–29
    [Google Scholar]
  2. 2.
    Leader B, Baca QJ, Golan DE 2008. Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov. 7:21–39
    [Google Scholar]
  3. 3.
    Mazur P. 1970. Cryobiology: the freezing of biological systems. Science 168:939–49
    [Google Scholar]
  4. 4.
    Acker JP, McGann LE 2002. Innocuous intracellular ice improves survival of frozen cells. Cell Transplant 11:563–71
    [Google Scholar]
  5. 5.
    Rall WF, Fahy GM 1985. Ice-free cryopreservation of mouse embryos at −196 C by vitrification. Nature 313:573–75
    [Google Scholar]
  6. 6.
    Manuchehrabadi N, Gao Z, Zhang J, Ring HL, Shao Q et al. 2017. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci. Transl. Med. 9:eaah4586
    [Google Scholar]
  7. 7.
    Tang XC, Pikal MJ 2004. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm. Res. 21:191–200
    [Google Scholar]
  8. 8.
    Chakraborty N, Chang A, Elmoazzen H, Menze MA, Hand SC, Toner M 2011. A spin-drying technique for lyopreservation of mammalian cells. Ann. Biomed. Eng. 39:1582–91
    [Google Scholar]
  9. 9.
    Lovelock J, Bishop M 1959. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature 183:1394–95
    [Google Scholar]
  10. 10.
    Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S et al. 2000. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat. Biotechnol. 18:163–67
    [Google Scholar]
  11. 11.
    Crowe JH, Hoekstra FA, Crowe LM 1992. Anhydrobiosis. Annu. Rev. Physiol. 54:579–99
    [Google Scholar]
  12. 12.
    Colaco C, Sen S, Thangavelu M, Pinder S, Roser B 1992. Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Nat. Biotechnol. 10:1007–11
    [Google Scholar]
  13. 13.
    Duman JG. 2001. Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu. Rev. Physiol. 63:327–57
    [Google Scholar]
  14. 14.
    Fletcher GL, Hew CL, Davies PL 2001. Antifreeze proteins of teleost fishes. Annu. Rev. Physiol. 63:359–90
    [Google Scholar]
  15. 15.
    Congdon T, Notman R, Gibson MI 2013. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study. Biomacromolecules 14:1578–86
    [Google Scholar]
  16. 16.
    Burkey A, Riley CL, Wang LK, Hatridge TA, Lynd NA 2018. Understanding poly(vinyl alcohol)-mediated ice recrystallization inhibition through ice adsorption measurement and pH effects. Biomacromolecules 19:248–55
    [Google Scholar]
  17. 17.
    Carpenter JF, Hansen TN 1992. Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth. PNAS 89:8953–57
    [Google Scholar]
  18. 18.
    Deller RC, Vatish M, Mitchell DA, Gibson MI 2014. Synthetic polymers enable non-vitreous cellular cryopreservation by reducing ice crystal growth during thawing. Nat. Commun. 5:3244
    [Google Scholar]
  19. 19.
    Batta G, Kövér KE, Gervay J, Hornyák M, Roberts GM 1997. Temperature dependence of molecular conformation, dynamics, and chemical shift anisotropy of α,α-trehalose in D2O by NMR relaxation. J. Am. Chem. Soc. 119:1336–45
    [Google Scholar]
  20. 20.
    Giuffrida S, Cottone G, Cordone L 2006. Role of solvent on protein–matrix coupling in MbCO embedded in water–saccharide systems: a Fourier transform infrared spectroscopy study. Biophys. J. 91:968–80
    [Google Scholar]
  21. 21.
    Daley KR, Kubarych KJ 2017. An “iceberg” coating preserves bulk hydration dynamics in aqueous PEG solutions. J. Phys. Chem. B 121:10574–82
    [Google Scholar]
  22. 22.
    Mudalige A, Pemberton JE 2007. Raman spectroscopy of glycerol/D2O solutions. Vib. Spectrosc. 45:27–35
    [Google Scholar]
  23. 23.
    Towey J, Soper A, Dougan L 2012. Molecular insight into the hydrogen bonding and micro-segregation of a cryoprotectant molecule. J. Phys. Chem. B 116:13898–904Shows that a combination of EPSR and simulation propose glycerol readily substitutes for water in forming hydrogen bonds.
    [Google Scholar]
  24. 24.
    Olsson C, Jansson H, Youngs T, Swenson J 2016. Structure of aqueous trehalose solution by neutron diffraction and structural modeling. J. Phys. Chem. B 120:12669–78
    [Google Scholar]
  25. 25.
    Towey J, Soper A, Dougan L 2016. Low-density water structure observed in a nanosegregated cryoprotectant solution at low temperatures from 285 to 238 K. J. Phys. Chem. B 120:4439–48
    [Google Scholar]
  26. 26.
    Lerbret A, Affouard F, Heédoux A, Krenzlin S, Siepmann J et al. 2012. How strongly does trehalose interact with lysozyme in the solid state? Insights from molecular dynamics simulation and inelastic neutron scattering. J. Phys. Chem. B 116:11103–16Demonstrates that simulations provide evidence that lysozyme becomes more rigid in the presence of trehalose.
    [Google Scholar]
  27. 27.
    Dror RO, Dirks RM, Grossman J, Xu H, Shaw DE 2012. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41:429–52
    [Google Scholar]
  28. 28.
    Pagnotta S, McLain S, Soper A, Bruni F, Ricci M 2010. Water and trehalose: How much do they interact with each other. ? J. Phys. Chem. B 114:4904–8
    [Google Scholar]
  29. 29.
    Lee EH, Hsin J, Sotomayor M, Comellas G, Schulten K 2009. Discovery through the computational microscope. Structure 17:1295–306
    [Google Scholar]
  30. 30.
    Bottaro S, Lindorff-Larsen K 2018. Biophysical experiments and biomolecular simulations: a perfect match?. Science 361:355–60
    [Google Scholar]
  31. 31.
    Jorgensen WL, Tirado-Rives J 1996. Monte Carlo vs molecular dynamics for conformational sampling. J. Phys. Chem. 100:14508–13
    [Google Scholar]
  32. 32.
    Villa E, Sengupta J, Trabuco LG, LeBarron J, Baxter WT et al. 2009. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. PNAS 106:1063–68
    [Google Scholar]
  33. 33.
    Perilla J, Schulten K 2017. Physical properties of the HIV-1 capsid from all-atom molecular dynamics simualtions. Nat. Commun. 8:15959
    [Google Scholar]
  34. 34.
    Freddolino PL, Schulten K 2009. Common structural transitions in explicit-solvent simulations of villin headpiece folding. Biophys. J. 97:2338–47
    [Google Scholar]
  35. 35.
    Berber S, Kwon YK, Timánek D 2000. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84:4613–16
    [Google Scholar]
  36. 36.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al. 2004. Electric field effect in atomically thin carbon films. Science 306:666–69
    [Google Scholar]
  37. 37.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D et al. 2008. Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–7
    [Google Scholar]
  38. 38.
    Godwin RC, Melvin R, Salsbury FR 2015. Molecular dynamics simulations and computer-aided drug discovery. Computer-Aided Drug Discovery W Zhang pp.1–30 New York: Humana
    [Google Scholar]
  39. 39.
    Luzar A, Chandler D 1993. Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations. J. Chem. Phys. 98:8160–73
    [Google Scholar]
  40. 40.
    Weng L, Ziaei S, Elliott GD 2016. Effects of water on structure and dynamics of trehalose glasses at low water contents and its relationship to preservation outcomes. Sci. Rep. 6:28795Presents simulations that suggest a new working hypothesis for the nature of cell injury during drying.
    [Google Scholar]
  41. 41.
    Politi R, Sapir L, Harries D 2009. The impact of polyols on water structure in solution: a computational study. J. Phys. Chem. A 113:7548–55
    [Google Scholar]
  42. 42.
    Dashnau JL, Nucci NV, Sharp KA, Vanderkooi JM 2006. Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures. J. Phys. Chem. B 110:13670–77
    [Google Scholar]
  43. 43.
    Molinero V, Çaǧın T, Goddard WA III 2003. Sugar, water and free volume networks in concentrated sucrose solutions. Chem. Phys. Lett. 377:469–74
    [Google Scholar]
  44. 44.
    Conrad PB, de Pablo JJ 1999. Computer simulation of the cryoprotectant disaccharide α,α-trehalose in aqueous solution. J. Phys. Chem. A 103:4049–55
    [Google Scholar]
  45. 45.
    Weng L, Chen C, Zuo J, Li W 2011. Molecular dynamics study of effects of temperature and concentration on hydrogen-bond abilities of ethylene glycol and glycerol: implications for cryopreservation. J. Phys. Chem. A 115:4729–37
    [Google Scholar]
  46. 46.
    Borin IA, Skaf MS 1999. Molecular association between water and dimethyl sulfoxide in solution: a molecular dynamics simulation study. J. Chem. Phys. 110:6412–20
    [Google Scholar]
  47. 47.
    Lerbret A, Bordat P, Affouard F, Descamps M, Migliardo F 2005. How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations. J. Phys. Chem. B 109:11046–57
    [Google Scholar]
  48. 48.
    Egorov AV, Lyubartsev AP, Laaksonen A 2011. Molecular dynamics simulation study of glycerol–water liquid mixtures. J. Phys. Chem. B 115:14572–81
    [Google Scholar]
  49. 49.
    Weng L, Elliott GD 2014. Dynamic and thermodynamic characteristics associated with the glass transition of amorphous trehalose–water mixtures. Phys. Chem. Chem. Phys. 16:11555–65
    [Google Scholar]
  50. 50.
    Chen C, Li WZ, Song YC, Weng LD, Zhang N 2012. Concentration dependence of water self-diffusion coefficients in dilute glycerol–water binary and glycerol–water–sodium chloride ternary solutions and the insights from hydrogen bonds. Mol. Phys. 110:283–91
    [Google Scholar]
  51. 51.
    Ekdawi-Sever N, de Pablo JJ, Feick E, von Meerwall E 2003. Diffusion of sucrose and α,α-trehalose in aqueous solutions. J. Phys. Chem. A 107:936–43
    [Google Scholar]
  52. 52.
    Vaisman II, Berkowitz ML 1992. Local structural order and molecular associations in water–DMSO mixtures. Molecular dynamics study. J. Am. Chem. Soc. 114:7889–96
    [Google Scholar]
  53. 53.
    Vishnyakov A, Lyubartsev AP, Laaksonen A 2001. Molecular dynamics simulations of dimethyl sulfoxide and dimethyl sulfoxide–water mixture. J. Phys. Chem. A 105:1702–10
    [Google Scholar]
  54. 54.
    Mancera RL, Chalaris M, Refson K, Samios J 2004. Molecular dynamics simulation of dilute aqueous DMSO solutions: a temperature-dependence study of the hydrophobic and hydrophilic behaviour around DMSO. Phys. Chem. Chem. Phys. 6:94–102
    [Google Scholar]
  55. 55.
    Liu Q, Schmidt R, Teo B, Karplus P, Brady J 1997. Molecular dynamics studies of the hydration of α,α-trehalose. J. Am. Chem. Soc. 119:7851–62
    [Google Scholar]
  56. 56.
    Lee SL, Debenedetti PG, Errington JR 2005. A computational study of hydration, solution structure, and dynamics in dilute carbohydrate solutions. J. Chem. Phys. 122:204511
    [Google Scholar]
  57. 57.
    Lerbret A, Bordat P, Affouard F, Guinet Y, Hédoux A et al. 2005. Influence of homologous disaccharides on the hydrogen-bond network of water: complementary Raman scattering experiments and molecular dynamics simulations. Carbohydr. Res. 340:881–87
    [Google Scholar]
  58. 58.
    Caffarena ER, Grigera JR 1997. Glass transition in aqueous solutions of glucose: molecular dynamics simulation. Carbohydr. Res. 300:51–57
    [Google Scholar]
  59. 59.
    Simperler A, Kornherr A, Chopra R, Bonnet PA, Jones W et al. 2006. Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study. J. Phys. Chem. B 110:19678–84
    [Google Scholar]
  60. 60.
    Mandumpal JB, Kreck CA, Mancera RL 2011. A molecular mechanism of solvent cryoprotection in aqueous DMSO solutions. Phys. Chem. Chem. Phys. 13:3839–42
    [Google Scholar]
  61. 61.
    Gupta J, Nunes C, Jonnalagadda S 2013. A molecular dynamics approach for predicting the glass transition temperature and plasticization effect in amorphous pharmaceuticals. Mol. Pharm. 10:4136–45
    [Google Scholar]
  62. 62.
    Angell C. 2002. Liquid fragility and the glass transition in water and aqueous solutions. Chem. Rev. 102:2627–50
    [Google Scholar]
  63. 63.
    Angell CA. 2008. Insights into phases of liquid water from study of its unusual glass-forming properties. Science 319:582–87
    [Google Scholar]
  64. 64.
    Weng L, Elliott GD 2015. Local minimum in fragility for trehalose/glycerol mixtures: implications for biopharmaceutical stabilization. J. Phys. Chem. B 119:6820–27
    [Google Scholar]
  65. 65.
    Faraone A, Liu L, Mou C-Y, Yen C-W, Chen S-H 2004. Fragile-to-strong liquid transition in deeply supercooled confined water. J. Chem. Phys 121:10843–46
    [Google Scholar]
  66. 66.
    Ediger MD, Angell C, Nagel SR 1996. Supercooled liquids and glasses. J. Phys. Chem. 100:13200–12
    [Google Scholar]
  67. 67.
    Weng L, Elliott GD 2015. Distinctly different glass transition behaviors of trehalose mixed with Na2HPO4 or NaH2PO4: evidence for its molecular origin. Pharm. Res. 32:2217–28
    [Google Scholar]
  68. 68.
    Ohtake S, Schebor C, Palecek SP, de Pablo JJ 2004. Effect of pH, counter ion, and phosphate concentration on the glass transition temperature of freeze-dried sugar–phosphate mixtures. Pharm. Res. 21:1615–21
    [Google Scholar]
  69. 69.
    MacFarlane D, Pringle J, Annat G 2002. Reversible self-polymerizing high Tg lyoprotectants. Cryobiology 45:188–92
    [Google Scholar]
  70. 70.
    Weng L, Elliott GD 2014. Polymerization effect of electrolytes on hydrogen-bonding cryoprotectants: ion–dipole interactions between metal ions and glycerol. J. Phys. Chem. B 118:14546–54Presents simulations that reveal the Tg-enhancing role of divalent ions for glycerol through a polymerized interacting network.
    [Google Scholar]
  71. 71.
    Weng L, Stott SL, Toner M 2018. Molecular dynamics at the interface between ice and poly(vinyl alcohol) and ice recrystallization inhibition. Langmuir 34:5116–23Presents simulations that reveal the docking of PVA to ice lattice due to a geometrical match.
    [Google Scholar]
  72. 72.
    Chao H, Davies PL, Carpenter JF 1996. Effects of antifreeze proteins on red blood cell survival during cryopreservation. J. Exp. Biol. 199:2071–76
    [Google Scholar]
  73. 73.
    Nada H, Furukawa Y 2008. Growth inhibition mechanism of an ice–water interface by a mutant of winter flounder antifreeze protein: a molecular dynamics study. J. Phys. Chem. B 112:7111–19
    [Google Scholar]
  74. 74.
    Kuiper MJ, Morton CJ, Abraham SE, Gray-Weale A 2015. The biological function of an insect antifreeze protein simulated by molecular dynamics. eLife 4:e05142Provides molecular details about adsorption–inhibition by spruce budworm AFP.
    [Google Scholar]
  75. 75.
    Meister K, Ebbinghaus S, Xu Y, Duman JG, DeVries A et al. 2013. Long-range protein–water dynamics in hyperactive insect antifreeze proteins. PNAS 110:1617–22
    [Google Scholar]
  76. 76.
    Voets IK. 2017. From ice-binding proteins to bio-inspired antifreeze materials. Soft Matter 13:4808–23
    [Google Scholar]
  77. 77.
    Wierzbicki A, Taylor M, Knight C, Madura J, Harrington J, Sikes C 1996. Analysis of shorthorn sculpin antifreeze protein stereospecific binding to (2 −1 0) faces of ice. Biophys. J. 71:8–18
    [Google Scholar]
  78. 78.
    Nutt DR, Smith JC 2008. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. J. Am. Chem. Soc. 130:13066–73
    [Google Scholar]
  79. 79.
    Mastai Y, Rudloff J, Cölfen H, Antonietti M 2002. Control over the structure of ice and water by block copolymer additives. Chem. Phys. Chem. 3:119–23
    [Google Scholar]
  80. 80.
    Capicciotti CJ, Kurach JD, Turner TR, Mancini RS, Acker JP, Ben RN 2015. Small molecule ice recrystallization inhibitors enable freezing of human red blood cells with reduced glycerol concentrations. Sci. Rep. 5:9692
    [Google Scholar]
  81. 81.
    Geng H, Liu X, Shi G, Bai G, Ma J et al. 2017. Graphene oxide restricts growth and recrystallization of ice crystals. Angew. Chem. Int. Ed. 56:997–1001
    [Google Scholar]
  82. 82.
    Naullage PM, Lupi L, Molinero V 2017. Molecular recognition of ice by fully flexible molecules. J. Phys. Chem. C 121:26949–57
    [Google Scholar]
  83. 83.
    Maki LR, Galyan EL, Chang-Chien M-M, Caldwell DR 1974. Ice nucleation induced by Pseudomonassyringae. Appl. . Microbiol 28:456–59
    [Google Scholar]
  84. 84.
    Lindow S, Arny D, Upper C 1978. Erwiniaherbicola: a bacterial ice nucleus active in increasing frost injury to corn. Phytopathology 68:523–27
    [Google Scholar]
  85. 85.
    Weng L, Tessier SN, Swei A, Stott SL, Toner M 2017. Controlled ice nucleation using freeze-dried Pseudomonassyringae encapsulated in alginate beads. Cryobiology 75:1–6
    [Google Scholar]
  86. 86.
    Lee RE Jr., Costanzo JP 1998. Biological ice nucleation and ice distribution in cold-hardy ectothermic animals. Annu. Rev. Physiol. 60:55–72
    [Google Scholar]
  87. 87.
    Graether SP, Jia Z 2001. Modeling Pseudomonassyringae ice-nucleation protein as a β-helical protein. Biophys. J. 80:1169–73
    [Google Scholar]
  88. 88.
    Garnham CP, Campbell RL, Walker VK, Davies PL 2011. Novel dimeric β-helical model of an ice nucleation protein with bridged active sites. BMC Struct. Biol. 11:36
    [Google Scholar]
  89. 89.
    Pandey R, Usui K, Livingstone RA, Fischer SA, Pfaendtner J et al. 2016. Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci. Adv. 2:e1501630Using SFG and simulations, identifies patterns of ice-active sites within P. syringae to enhance ice nucleation.
    [Google Scholar]
  90. 90.
    Batchelor JD, Olteanu A, Tripathy A, Pielak GJ 2004. Impact of protein denaturants and stabilizers on water structure. J. Am. Chem. Soc. 126:1958–61
    [Google Scholar]
  91. 91.
    Hughes ZE, Mancera RL 2014. Molecular mechanism of the synergistic effects of vitrification solutions on the stability of phospholipid bilayers. Biophys. J. 106:2617–24Uses simulations to elucidate the synergistic effects of CPA cocktails on the stability of phospholipid bilayers.
    [Google Scholar]
  92. 92.
    Doxastakis M, Sum AK, de Pablo JJ 2005. Modulating membrane properties: the effect of trehalose and cholesterol on a phospholipid bilayer. J. Phys. Chem. B 109:24173–81
    [Google Scholar]
  93. 93.
    Skibinsky A, Venable RM, Pastor RW 2005. A molecular dynamics study of the response of lipid bilayers and monolayers to trehalose. Biophys. J. 89:4111–21
    [Google Scholar]
  94. 94.
    Leekumjorn S, Sum AK 2006. Molecular simulation study of structural and dynamic properties of mixed DPPC/DPPE bilayers. Biophys. J. 90:3951–65
    [Google Scholar]
  95. 95.
    Róg T, Vattulainen I, Bunker A, Karttunen M 2007. Glycolipid membranes through atomistic simulations: effect of glucose and galactose head groups on lipid bilayer properties. J. Phys. Chem. B 111:10146–54
    [Google Scholar]
  96. 96.
    Crowe JH, Crowe LM, Oliver AE, Tsvetkova N, Wolkers W, Tablin F 2001. The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43:89–105
    [Google Scholar]
  97. 97.
    Crowe JH, Crowe LM, Chapman D 1984. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–4
    [Google Scholar]
  98. 98.
    Crowe JH, Carpenter JF, Crowe LM 1998. The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60:73–103
    [Google Scholar]
  99. 99.
    Tsvetkova NM, Phillips BL, Crowe LM, Crowe JH, Risbud SH 1998. Effect of sugars on headgroup mobility in freeze-dried dipalmitoylphosphatidylcholine bilayers: solid-state 31P NMR and FTIR studies. Biophys. J. 75:2947–55
    [Google Scholar]
  100. 100.
    Luzardo MC, Amalfa F, Nuñez A, Diaz S, Biondi De Lopez A, Disalvo E 2000. Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers. Biophys. J. 78:2452–58
    [Google Scholar]
  101. 101.
    Ricker JV, Tsvetkova NM, Wolkers WF, Leidy C, Tablin F et al. 2003. Trehalose maintains phase separation in an air-dried binary lipid mixture. Biophys. J. 84:3045–51
    [Google Scholar]
  102. 102.
    Nakagaki M, Nagase H, Ueda H 1992. Stabilization of the lamellar structure of phosphatidylcholine by complex formation with trehalose. J. Membr. Sci. 73:173–80
    [Google Scholar]
  103. 103.
    Sum AK, Faller R, de Pablo JJ 2003. Molecular simulation study of phospholipid bilayers and insights of the interactions with disaccharides. Biophys. J. 85:2830–44
    [Google Scholar]
  104. 104.
    Pereira CS, Lins RD, Chandrasekhar I, Freitas LCG, Hünenberger PH 2004. Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. Biophys. J. 86:2273–85
    [Google Scholar]
  105. 105.
    Pereira CS, Hünenberger PH 2006. Interaction of the sugars trehalose, maltose and glucose with a phospholipid bilayer: a comparative molecular dynamics study. J. Phys. Chem. B 110:15572–81
    [Google Scholar]
  106. 106.
    Leekumjorn S, Sum AK 2008. Molecular dynamics study on the stabilization of dehydrated lipid bilayers with glucose and trehalose. J. Phys. Chem. B 112:10732–40
    [Google Scholar]
  107. 107.
    Hughes ZE, Malajczuk CJ, Mancera RL 2013. The effects of cryosolvents on DOPC-β-sitosterol bilayers determined from molecular dynamics simulations. J. Phys. Chem. B 117:3362–75
    [Google Scholar]
  108. 108.
    Malajczuk CJ, Hughes ZE, Mancera RL 2013. Molecular dynamics simulations of the interactions of DMSO, mono- and polyhydroxylated cryosolvents with a hydrated phospholipid bilayer. Biochim. Biophys. Acta Biomembr. 1828:2041–55
    [Google Scholar]
  109. 109.
    Notman R, Noro M, O'Malley B, Anwar J 2006. Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. J. Am. Chem. Soc. 128:13982–83
    [Google Scholar]
  110. 110.
    Gurtovenko AA, Anwar J 2007. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J. Phys. Chem. B 111:10453–60
    [Google Scholar]
  111. 111.
    Hughes ZE, Mark AE, Mancera RL 2012. Molecular dynamics simulations of the interactions of DMSO with DPPC and DOPC phospholipid membranes. J. Phys. Chem. B 116:11911–23
    [Google Scholar]
  112. 112.
    Gurtovenko AA, Onike OI, Anwar J 2008. Chemically induced phospholipid translocation across biological membranes. Langmuir 24:9656–60
    [Google Scholar]
  113. 113.
    Lin J, Novak B, Moldovan D 2012. Molecular dynamics simulation study of the effect of DMSO on structural and permeation properties of DMPC lipid bilayers. J. Phys. Chem. B 116:1299–308
    [Google Scholar]
  114. 114.
    Green JL, Angell CA 1989. Phase relations and vitrification in saccharide–water solutions and the trehalose anomaly. J. Phys. Chem. 93:2880–82
    [Google Scholar]
  115. 115.
    Belton P, Gil A 1994. IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme. Biopolymers 34:957–61
    [Google Scholar]
  116. 116.
    Xie G, Timasheff SN 1997. The thermodynamic mechanism of protein stabilization by trehalose. Biophys. Chem. 64:25–43
    [Google Scholar]
  117. 117.
    Timasheff SN. 2002. Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry 41:13473–82
    [Google Scholar]
  118. 118.
    Massari AM, Finkelstein IJ, McClain BL, Goj A, Wen X et al. 2005. The influence of aqueous versus glassy solvents on protein dynamics: vibrational echo experiments and molecular dynamics simulations. J. Am. Chem. Soc. 127:14279–89
    [Google Scholar]
  119. 119.
    Paul S, Paul S 2015. Exploring the counteracting mechanism of trehalose on urea conferred protein denaturation: a molecular dynamics simulation study. J. Phys. Chem. B 119:9820–34
    [Google Scholar]
  120. 120.
    Lins RD, Pereira CS, Hünenberger PH 2004. Trehalose–protein interaction in aqueous solution. Proteins Struct. Funct. Bioinf. 55:177–86
    [Google Scholar]
  121. 121.
    Corradini D, Strekalova EG, Stanley HE, Gallo P 2013. Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose. Sci. Rep. 3:1218
    [Google Scholar]
  122. 122.
    Lerbret A, Bordat P, Affouard F, Hedoux A, Guinet Y, Descamps M 2007. How do trehalose, maltose, and sucrose influence some structural and dynamical properties of lysozyme? Insight from molecular dynamics simulations. J. Phys. Chem. B 111:9410–20
    [Google Scholar]
  123. 123.
    Arsiccio A, Pisano R 2017. Stability of proteins in carbohydrates and other additives during freezing: the human growth hormone as a case study. J. Phys. Chem. B 121:8652–60
    [Google Scholar]
  124. 124.
    Cottone G, Cordone L, Ciccotti G 2001. Molecular dynamics simulation of carboxy-myoglobin embedded in a trehalose–water matrix. Biophys. J. 80:931–38
    [Google Scholar]
  125. 125.
    Cottone G, Ciccotti G, Cordone L 2002. Protein–trehalose–water structures in trehalose coated carboxy-myoglobin. J. Chem. Phys. 117:9862–66
    [Google Scholar]
  126. 126.
    Cottone G, Giuffrida S, Ciccotti G, Cordone L 2005. Molecular dynamics simulation of sucrose‐ and trehalose‐coated carboxy‐myoglobin. Proteins Struct. Funct. Bioinf. 59:291–302
    [Google Scholar]
  127. 127.
    Cottone G. 2007. A comparative study of carboxy myoglobin in saccharide–water systems by molecular dynamics simulation. J. Phys. Chem. B 111:3563–69
    [Google Scholar]
  128. 128.
    Cicerone MT, Soles CL 2004. Fast dynamics and stabilization of proteins: binary glasses of trehalose and glycerol. Biophys. J. 86:3836–45
    [Google Scholar]
  129. 129.
    Anopchenko A, Psurek T, VanderHart D, Douglas JF, Obrzut J 2006. Dielectric study of the antiplasticization of trehalose by glycerol. Phys. Rev. E 74:031501
    [Google Scholar]
  130. 130.
    Riggleman RA, de Pablo JJ 2008. Antiplasticization and local elastic constants in trehalose and glycerol mixtures. J. Chem. Phys. 128:224504
    [Google Scholar]
  131. 131.
    Roussenova M, Murith M, Alam A, Ubbink J 2010. Plasticization, antiplasticization, and molecular packing in amorphous carbohydrate–glycerol matrices. Biomacromolecules 11:3237–47
    [Google Scholar]
  132. 132.
    Lerbret A, Affouard F 2017. Molecular packing, hydrogen bonding, and fast dynamics in lysozyme/trehalose/glycerol and trehalose/glycerol glasses at low hydration. J. Phys. Chem. B 121:9437–51
    [Google Scholar]
  133. 133.
    Chang LL, Shepherd D, Sun J, Tang XC, Pikal MJ 2005. Effect of sorbitol and residual moisture on the stability of lyophilized antibodies: implications for the mechanism of protein stabilization in the solid state. J. Pharm. Sci. 94:1445–55
    [Google Scholar]
  134. 134.
    Cicerone MT, Douglas JF 2012. β-Relaxation governs protein stability in sugar–glass matrices. Soft Matter 8:2983–91
    [Google Scholar]
  135. 135.
    Cicerone MT, Tellington A, Trost L, Sokolov A 2003. Substantially improved stability. Bioprocess. Int. 1:36–47
    [Google Scholar]
  136. 136.
    Brownsey GJ, Noel TR, Parker R, Ring SG 2003. The glass transition behavior of the globular protein bovine serum albumin. Biophys. J. 85:3943–50
    [Google Scholar]
  137. 137.
    Grasmeijer N, Stankovic M, de Waard H, Frijlink HW, Hinrichs WL 2013. Unraveling protein stabilization mechanisms: vitrification and water replacement in a glass transition temperature controlled system. Biochim. Biophys. Acta Proteins Proteom. 1834:763–69
    [Google Scholar]
  138. 138.
    Paolantoni M, Comez L, Gallina M, Sassi P, Scarponi F et al. 2009. Light scattering spectra of water in trehalose aqueous solutions: evidence for two different solvent relaxation processes. J. Phys. Chem. B 113:7874–78
    [Google Scholar]
  139. 139.
    Lupi L, Comez L, Paolantoni M, Fioretto D, Ladanyi BM 2012. Dynamics of biological water: insights from molecular modeling of light scattering in aqueous trehalose solutions. J. Phys. Chem. B 116:7499–508
    [Google Scholar]
  140. 140.
    Fujita K, Forsyth M, MacFarlane DR, Reid RW, Elliott GD 2006. Unexpected improvement in stability and utility of cytochrome c by solution in biocompatible ionic liquids. Biotechnol. Bioeng. 94:1209–13
    [Google Scholar]
  141. 141.
    Gutiérrez MC, Ferrer ML, Yuste L, Rojo F, del Monte F 2010. Bacteria incorporation in deep-eutectic solvents through freeze-drying. Angew. Chem. Int. Ed. 49:2158–62
    [Google Scholar]
  142. 142.
    Mitchell DE, Clarkson G, Fox DJ, Vipond RA, Scott P, Gibson MI 2017. Antifreeze protein mimetic metallohelices with potent ice recrystallization inhibition activity. J. Am. Chem. Soc. 139:9835–38
    [Google Scholar]
  143. 143.
    Green RL, Warren GJ 1985. Physical and functional repetition in a bacterial ice nucleation gene. Nature 317:645–48
    [Google Scholar]
  144. 144.
    Wolber PK, Deininger CA, Southworth MW, Vandekerckhove J, Van Montagu M, Warren GJ 1986. Identification and purification of a bacterial ice-nucleation protein. PNAS 83:7256–60
    [Google Scholar]
  145. 145.
    Kajava AV, Lindow SE 1993. A model of the three-dimensional structure of ice nucleation proteins. J. Mol. Biol. 232:709–17
    [Google Scholar]
  146. 146.
    Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB et al. 2013. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Med. 10:584–90
    [Google Scholar]
  147. 147.
    Scheres SH. 2014. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3:e03665
    [Google Scholar]
  148. 148.
    Fahy GM. 2010. Cryoprotectant toxicity neutralization. Cryobiology 60:S45–53
    [Google Scholar]
  149. 149.
    De Vries AH, Mark AE, Marrink SJ 2004. Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail. J. Am. Chem. Soc 126:4488–89
    [Google Scholar]
  150. 150.
    Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH 2007. The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111:7812–24
    [Google Scholar]
  151. 151.
    Hughes ZE, Mancera RL 2013. Molecular dynamics simulations of mixed DOPC-β-sitosterol bilayers and their interactions with DMSO. Soft Matter 9:2920–35
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-060418-052130
Loading
/content/journals/10.1146/annurev-bioeng-060418-052130
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error