- Home
- A-Z Publications
- Annual Review of Biomedical Engineering
- Previous Issues
- Volume 21, 2019
Annual Review of Biomedical Engineering - Volume 21, 2019
Volume 21, 2019
-
-
Exploring Dynamics and Structure of Biomolecules, Cryoprotectants, and Water Using Molecular Dynamics Simulations: Implications for Biostabilization and Biopreservation
Vol. 21 (2019), pp. 1–31More LessSuccessful stabilization and preservation of biological materials often utilize low temperatures and dehydration to arrest molecular motion. Cryoprotectants are routinely employed to help the biological entities survive the physicochemical and mechanical stresses induced by cold or dryness. Molecular interactions between biomolecules, cryoprotectants, and water fundamentally determine the outcomes of preservation. The optimization of assays using the empirical approach is often limited in structural and temporal resolution, whereas classical molecular dynamics simulations can provide a cost-effective glimpse into the atomic-level structure and interaction of individual molecules that dictate macroscopic behavior. Computational research on biomolecules, cryoprotectants, and water has provided invaluable insights into the development of new cryoprotectants and the optimization of preservation methods. We describe the rapidly evolving state of the art of molecular simulations of these complex systems, summarize the molecular-scale protective and stabilizing mechanisms, and discuss the challenges that motivate continued innovation in this field.
-
-
-
Current and Future Considerations in the Use of Mechanical Circulatory Support Devices: An Update, 2008–2018
Vol. 21 (2019), pp. 33–60More LessOur review in the 2008 volume of this journal detailed the use of mechanical circulatory support (MCS) for treatment of heart failure (HF). MCS initially utilized bladder-based blood pumps generating pulsatile flow; these pulsatile flow pumps have been supplanted by rotary blood pumps, in which cardiac support is generated via the high-speed rotation of computationally designed blading. Different rotary pump designs have been evaluated for their safety, performance, and efficacy in clinical trials both in the United States and internationally. The reduced size of the rotary pump designs has prompted research and development toward the design of MCS suitable for infants and children. The past decade has witnessed efforts focused on tissue engineering–based therapies for the treatment of HF. This review explores the current state and future opportunities of cardiac support therapies within our larger understanding of the treatment options for HF.
-
-
-
Prevention of Opioid Abuse and Treatment of Opioid Addiction: Current Status and Future Possibilities
Kinam Park, and Andrew OtteVol. 21 (2019), pp. 61–84More LessPrescription opioid medications have seen a dramatic rise in misuse and abuse, leading regulators and scientists to develop policies and abuse-deterrent technologies to combat the current opioid epidemic. These abuse-deterrent formulations (ADFs) are intended to deter physical and chemical tampering of opioid-based products, while still providing safe and effective delivery for therapeutic purposes. Even though formulations with varying abuse-deterrent technologies have been approved, questions remain about their effectiveness. While these formulations provide a single means to combat the epidemic, a greater emphasis should be placed on formulations for treatment of addiction and overdose to help those struggling with opioid dependence. This article analyzes various ADFs currently in clinical use and explores potential novel systems for treatment of addiction and prevention of overdose.
-
-
-
The Biocompatibility Challenges in the Total Artificial Heart Evolution
Vol. 21 (2019), pp. 85–110More LessThere are limited therapeutic options for final treatment of end-stage heart failure. Among them, implantation of a total artificial heart (TAH) is an acceptable strategy when suitable donors are not available. TAH development began in the 1930s, followed by a dramatic evolution of the actuation mechanisms operating the mechanical pumps. Nevertheless, the performance of TAHs has not yet been optimized, mainly because of the low biocompatibility of the blood-contacting surfaces. Low hemocompatibility, calcification, and sensitivity to infections seriously affect the success of TAHs. These unsolved issues have led to the withdrawal of many prototypes during preclinical phases of testing. This review offers a comprehensive analysis of the pathophysiological events that may occur in the materials that compose TAHs developed to date. In addition, this review illustrates bioengineering strategies to prevent these events and describes the most significant steps toward the achievement of a fully biocompatible TAH.
-
-
-
New Sensor and Wearable Technologies to Aid in the Diagnosis and Treatment Monitoring of Parkinson's Disease
Vol. 21 (2019), pp. 111–143More LessParkinson's disease (PD) is a degenerative disorder of the brain characterized by the impairment of the nigrostriatal system. This impairment leads to specific motor manifestations (i.e., bradykinesia, tremor, and rigidity) that are assessed through clinical examination, scales, and patient-reported outcomes. New sensor-based and wearable technologies are progressively revolutionizing PD care by objectively measuring these manifestations and improving PD diagnosis and treatment monitoring. However, their use is still limited in clinical practice, perhaps because of the absence of external validation and standards for their continuous use at home. In the near future, these systems will progressively complement traditional tools and revolutionize the way we diagnose and monitor patients with PD.
-
-
-
Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds
Vol. 21 (2019), pp. 145–169More LessChronic skin wounds are the leading cause of nontraumatic foot amputations worldwide and present a significant risk of morbidity and mortality due to the lack of efficient therapies. The intrinsic characteristics of hydrogels allow them to benefit cutaneous healing essentially by supporting a moist environment. This property has long been explored in wound management to aid in autolytic debridement. However, chronic wounds require additional therapeutic features that can be provided by a combination of hydrogels with biochemical mediators or cells, promoting faster and better healing. We survey hydrogel-based approaches with potential to improve the healing of chronic wounds by reviewing their effects as observed in preclinical models. Topics covered include strategies to ablate infection and resolve inflammation, the delivery of bioactive agents to accelerate healing, and tissue engineering approaches for skin regeneration. The article concludes by considering the relevance of treating chronic skin wounds using hydrogel-based strategies.
-
-
-
Biomaterials: Been There, Done That, and Evolving into the Future
Vol. 21 (2019), pp. 171–191More LessBiomaterials as we know them today had their origins in the late 1940s with off-the-shelf commercial polymers and metals. The evolution of materials for medical applications from these simple origins has been rapid and impactful. This review relates some of the early history; addresses concerns after two decades of development in the twenty-first century; and discusses how advanced technologies in both materials science and biology will address concerns, advance materials used at the biointerface, and improve outcomes for patients.
-
-
-
Frontiers of Medical Robotics: From Concept to Systems to Clinical Translation
Vol. 21 (2019), pp. 193–218More LessMedical robotics is poised to transform all aspects of medicine—from surgical intervention to targeted therapy, rehabilitation, and hospital automation. A key area is the development of robots for minimally invasive interventions. This review provides a detailed analysis of the evolution of interventional robots and discusses how the integration of imaging, sensing, and robotics can influence the patient care pathway toward precision intervention and patient-specific treatment. It outlines how closer coupling of perception, decision, and action can lead to enhanced dexterity, greater precision, and reduced invasiveness. It provides a critical analysis of some of the key interventional robot platforms developed over the years and their relative merit and intrinsic limitations. The review also presents a future outlook for robotic interventions and emerging trends in making them easier to use, lightweight, ergonomic, and intelligent, and thus smarter, safer, and more accessible for clinical use.
-
-
-
Challenges and Opportunities in the Design of Liver-on-Chip Microdevices
Vol. 21 (2019), pp. 219–239More LessThe liver is the central hub of xenobiotic metabolism and consequently the organ most prone to cosmetic- and drug-induced toxicity. Failure to detect liver toxicity or to assess compound clearance during product development is a major cause of postmarketing product withdrawal, with disastrous clinical and financial consequences. While small animals are still the preferred model in drug development, the recent ban on animal use in the European Union created a pressing need to develop precise and efficient tools to detect human liver toxicity during cosmetic development. This article includes a brief review of liver development, organization, and function and focuses on the state of the art of long-term cell culture, including hepatocyte cell sources, heterotypic cell–cell interactions, oxygen demands, and culture medium formulation. Finally, the article reviews emerging liver-on-chip devices and discusses the advantages and pitfalls of individual designs. The goal of this review is to provide a framework to design liver-on-chip devices and criteria with which to evaluate this emerging technology.
-
-
-
Programming Stimuli-Responsive Behavior into Biomaterials
Vol. 21 (2019), pp. 241–265More LessStimuli-responsive materials undergo triggered changes when presented with specific environmental cues. These dynamic systems can leverage biological signals found locally within the body as well as exogenous cues administered with spatiotemporal control, providing powerful opportunities in next-generation diagnostics and personalized medicine. Here, we review the synthetic and strategic advances used to impart diverse responsiveness to a wide variety of biomaterials. Categorizing systems on the basis of material type, number of inputs, and response mechanism, we examine past and ongoing efforts toward endowing biomaterials with customizable sensitivity. We draw an analogy to computer science, whereby a stimuli-responsive biomaterial transduces a set of inputs into a functional output as governed by a user-specified logical operator. We discuss Boolean and non-Boolean operations, as well as the various chemical and physical modes of signal transduction. Finally, we examine current limitations and promising directions in the ongoing development of programmable stimuli-responsive biomaterials.
-
-
-
Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis
Vol. 21 (2019), pp. 267–297More LessIn addition to their early-recognized functions in host defense and the clearance of apoptotic cell debris, macrophages play vital roles in tissue development, homeostasis, and repair. If misregulated, they steer the progression of many inflammatory diseases. Much progress has been made in understanding the mechanisms underlying macrophage signaling, transcriptomics, and proteomics, under physiological and pathological conditions. Yet, the detailed mechanisms that tune circulating monocytes/macrophages and tissue-resident macrophage polarization, differentiation, specification, and their functional plasticity remain elusive. We review how physical factors affect macrophage phenotype and function, including how they hunt for particles and pathogens, as well as the implications for phagocytosis, autophagy, and polarization from proinflammatory to prohealing phenotype. We further discuss how this knowledge can be harnessed in regenerative medicine and for the design of new drugs and immune-modulatory drug delivery systems, biomaterials, and tissue scaffolds.
-
-
-
Skin-Mountable Biosensors and Therapeutics: A Review
Vol. 21 (2019), pp. 299–323More LessMiniaturization of electronic components and advances in flexible and stretchable materials have stimulated the development of wearable health care systems that can reflect and monitor personal health status by health care professionals. New skin-mountable devices that offer seamless contact onto the human skin, even under large deformations by natural motions of the wearer, provide a route for both high-fidelity monitoring and patient-controlled therapy. This article provides an overview of several important aspects of skin-mountable devices and their applications in many medical settings and clinical practices. We comprehensively describe various transdermal sensors and therapeutic systems that are capable of detecting physical, electrophysiological, and electrochemical responses and/or providing electrical and thermal therapies and drug delivery services, and we discuss the current challenges, opportunities, and future perspectives in the field. Finally, we present ways to protect the embedded electronic components of skin-mountable devices from the environment by use of mechanically soft packaging materials.
-
-
-
Digital Manufacturing for Microfluidics
Vol. 21 (2019), pp. 325–364More LessThe microfluidics field is at a critical crossroads. The vast majority of microfluidic devices are presently manufactured using micromolding processes that work very well for a reduced set of biocompatible materials, but the time, cost, and design constraints of micromolding hinder the commercialization of many devices. As a result, the dissemination of microfluidic technology—and its impact on society—is in jeopardy. Digital manufacturing (DM) refers to a family of computer-centered processes that integrate digital three-dimensional (3D) designs, automated (additive or subtractive) fabrication, and device testing in order to increase fabrication efficiency. Importantly, DM enables the inexpensive realization of 3D designs that are impossible or very difficult to mold. The adoption of DM by microfluidic engineers has been slow, likely due to concerns over the resolution of the printers and the biocompatibility of the resins. In this article, we review and discuss the various printer types, resolution, biocompatibility issues, DM microfluidic designs, and the bright future ahead for this promising, fertile field.
-
-
-
Single-Cell Omics Analyses Enabled by Microchip Technologies
Vol. 21 (2019), pp. 365–393More LessSingle-cell omics studies provide unique information regarding cellular heterogeneity at various levels of the molecular biology central dogma. This knowledge facilitates a deeper understanding of how underlying molecular and architectural changes alter cell behavior, development, and disease processes. The emerging microchip-based tools for single-cell omics analysis are enabling the evaluation of cellular omics with high throughput, improved sensitivity, and reduced cost. We review state-of-the-art microchip platforms for profiling genomics, epigenomics, transcriptomics, proteomics, metabolomics, and multi-omics at single-cell resolution. We also discuss the background of and challenges in the analysis of each molecular layer and integration of multiple levels of omics data, as well as how microchip-based methodologies benefit these fields. Additionally, we examine the advantages and limitations of these approaches. Looking forward, we describe additional challenges and future opportunities that will facilitate the improvement and broad adoption of single-cell omics in life science and medicine.
-
-
-
Frontiers in Cryo Electron Microscopy of Complex Macromolecular Assemblies
Vol. 21 (2019), pp. 395–415More LessIn recent years, cryo electron microscopy (cryo-EM) technology has been transformed with the development of better instrumentation, direct electron detectors, improved methods for specimen preparation, and improved software for data analysis. Analyses using single-particle cryo-EM methods have enabled determination of structures of proteins with sizes smaller than 100 kDa and resolutions of ∼2 Å in some cases. The use of electron tomography combined with subvolume averaging is beginning to allow the visualization of macromolecular complexes in their native environment in unprecedented detail. As a result of these advances, solutions to many intractable challenges in structural and cell biology, such as analysis of highly dynamic soluble and membrane-embedded protein complexes or partially ordered protein aggregates, are now within reach. Recent reports of structural studies of G protein–coupled receptors, spliceosomes, and fibrillar specimens illustrate the progress that has been made using cryo-EM methods, and are the main focus of this review.
-
-
-
A Contemporary Look at Biomechanical Models of Myocardium
Vol. 21 (2019), pp. 417–442More LessUnderstanding and predicting the mechanical behavior of myocardium under healthy and pathophysiological conditions are vital to developing novel cardiac therapies and promoting personalized interventions. Within the past 30 years, various constitutive models have been proposed for the passive mechanical behavior of myocardium. These models cover a broad range of mathematical forms, microstructural observations, and specific test conditions to which they are fitted. We present a critical review of these models, covering both phenomenological and structural approaches, and their relations to the underlying structure and function of myocardium. We further explore the experimental and numerical techniques used to identify the model parameters. Next, we provide a brief overview of continuum-level electromechanical models of myocardium, with a focus on the methods used to integrate the active and passive components of myocardial behavior. We conclude by pointing to future directions in the areas of optimal form as well as new approaches for constitutive modeling of myocardium.
-
-
-
The Driving Force: Nuclear Mechanotransduction in Cellular Function, Fate, and Disease
Vol. 21 (2019), pp. 443–468More LessCellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, reacting to cytoskeletal forces and mediating downstream biochemical responses. The nucleus responds through a host of mechanisms, including partial unfolding, conformational changes, and phosphorylation of nuclear envelope proteins; modulation of nuclear import/export; and altered chromatin organization, resulting in transcriptional changes. It is unclear which of these events present direct mechanotransduction processes and which are downstream of other mechanotransduction pathways. We critically review and discuss the current evidence for nuclear mechanotransduction, particularly in the context of stem cell fate, a largely unexplored topic, and in disease, where an improved understanding of nuclear mechanotransduction is beginning to open new treatment avenues. Finally, we discuss innovative technological developments that will allow outstanding questions in the rapidly growing field of nuclear mechanotransduction to be answered.
-
-
-
Controlling Matter at the Molecular Scale with DNA Circuits
Vol. 21 (2019), pp. 469–493More LessIn recent years, a diverse set of mechanisms have been developed that allow DNA strands with specific sequences to sense information in their environment and to control material assembly, disassembly, and reconfiguration. These sequences could serve as the inputs and outputs for DNA computing circuits, enabling DNA circuits to act as chemical information processors to program complex behavior in chemical and material systems. This review describes processes that can be sensed and controlled within such a paradigm. Specifically, there are interfaces that can release strands of DNA in response to chemical signals, wavelengths of light, pH, or electrical signals, as well as DNA strands that can direct the self-assembly and dynamic reconfiguration of DNA nanostructures, regulate particle assemblies, control encapsulation, and manipulate materials including DNA crystals, hydrogels, and vesicles. These interfaces have the potential to enable chemical circuits to exert algorithmic control over responsive materials, which may ultimately lead to the development of materials that grow, heal, and interact dynamically with their environments.
-
-
-
The Meniscus in Normal and Osteoarthritic Tissues: Facing the Structure Property Challenges and Current Treatment Trends
Vol. 21 (2019), pp. 495–521More LessThe treatment of meniscus injuries has recently been facing a paradigm shift toward the field of tissue engineering, with the aim of regenerating damaged and diseased menisci as opposed to current treatment techniques. This review focuses on the structure and mechanics associated with the meniscus. The meniscus is defined in terms of its biological structure and composition. Biomechanics of the meniscus are discussed in detail, as an understanding of the mechanics is fundamental for the development of new meniscal treatment strategies. Key meniscal characteristics such as biological function, damage (tears), and disease are critically analyzed. The latest technologies behind meniscal repair and regeneration are assessed.
-
-
-
Intracranial Pressure and Intracranial Elastance Monitoring in Neurocritical Care
Vol. 21 (2019), pp. 523–549More LessPatients with acute brain injuries tend to be physiologically unstable and at risk of rapid and potentially life-threatening decompensation due to shifts in intracranial compartment volumes and consequent intracranial hypertension. Invasive intracranial pressure (ICP) monitoring therefore remains a cornerstone of modern neurocritical care, despite the attendant risks of infection and damage to brain tissue arising from the surgical placement of a catheter or pressure transducer into the cerebrospinal fluid or brain tissue compartments. In addition to ICP monitoring, tracking of the intracranial capacity to buffer shifts in compartment volumes would help in the assessment of patient state, inform clinical decision making, and guide therapeutic interventions. We review the anatomy, physiology, and current technology relevant to clinical management of patients with acute brain injury and outline unmet clinical needs to advance patient monitoring in neurocritical care.
-
Previous Volumes
-
Volume 26 (2024)
-
Volume 25 (2023)
-
Volume 24 (2022)
-
Volume 23 (2021)
-
Volume 22 (2020)
-
Volume 21 (2019)
-
Volume 20 (2018)
-
Volume 19 (2017)
-
Volume 18 (2016)
-
Volume 17 (2015)
-
Volume 16 (2014)
-
Volume 15 (2013)
-
Volume 14 (2012)
-
Volume 13 (2011)
-
Volume 12 (2010)
-
Volume 11 (2009)
-
Volume 10 (2008)
-
Volume 9 (2007)
-
Volume 8 (2006)
-
Volume 7 (2005)
-
Volume 6 (2004)
-
Volume 5 (2003)
-
Volume 4 (2002)
-
Volume 3 (2001)
-
Volume 2 (2000)
-
Volume 1 (1999)
-
Volume 0 (1932)