1932

Abstract

Biomaterials as we know them today had their origins in the late 1940s with off-the-shelf commercial polymers and metals. The evolution of materials for medical applications from these simple origins has been rapid and impactful. This review relates some of the early history; addresses concerns after two decades of development in the twenty-first century; and discusses how advanced technologies in both materials science and biology will address concerns, advance materials used at the biointerface, and improve outcomes for patients.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-062117-120940
2019-06-04
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/21/1/annurev-bioeng-062117-120940.html?itemId=/content/journals/10.1146/annurev-bioeng-062117-120940&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ratner BD, Hoffman AS, Schoen F, Lemons J 2013. Biomaterials Science: An Introduction to Materials in Medicine Amsterdam: Elsevier. , 3rd ed..
    [Google Scholar]
  2. 2.
    Ratner BD, Bryant SJ. 2004. Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6:41–75
    [Google Scholar]
  3. 3.
    Rob C. 1958. Vascular surgery. Modern Trends in Surgical Materials L Gillis 175–85 London: Butterworth & Co.
    [Google Scholar]
  4. 4.
    Wichterle O, Lim D. 1960. Hydrophilic gels for biological use. Nature 185:117–18
    [Google Scholar]
  5. 5.
    Sharp PA, Langer R. 2011. Promoting convergence in biomedical science. Science 333:527
    [Google Scholar]
  6. 6.
    Homsy CA. 1970. Bio-compatibility in selection of materials for implantation. J. Biomed. Mater. Res. 4:341–56
    [Google Scholar]
  7. 7.
    Williams DF 1987. Definitions in Biomaterials (Progress in Biomedical Engineering) Amsterdam: Elsevier
    [Google Scholar]
  8. 8.
    Sussman EM, Halpin MC, Muster J, Moon RT, Ratner BD 2014. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42:1508–16
    [Google Scholar]
  9. 9.
    Voorhees AB, Jaretzki A, Blakemore AH 1952. The use of tubes constructed from vinyon “N” cloth in bridging arterial defects. Ann. Surg. 135:332–36
    [Google Scholar]
  10. 10.
    Ratner BD. 1993. The blood compatibility catastrophe. J. Biomed. Mater. Res. 27:283–87
    [Google Scholar]
  11. 11.
    Ratner BD. 2007. The catastrophe revisited: blood compatibility in the 21st century. Biomaterials 28:5144–47
    [Google Scholar]
  12. 12.
    Sefton MV, Gemmell CH, Gorbet MB 2000. What really is blood compatibility?. J. Biomater. Sci. Polym. Ed. 11:1165–82
    [Google Scholar]
  13. 13.
    Gilding DK, Reed AM. 1979. Biodegradable polymers for use in surgery—polyglycolic/poly(lactic acid) homo- and copolymers. 1. Polymer 20:1459–64
    [Google Scholar]
  14. 14.
    Vert M, Li S, Garreau H 1992. New insights on the degradation of bioresorbable polymeric devices based on lactic and glycolic acids. Clin. Mater. 10:3–8
    [Google Scholar]
  15. 15.
    Treiser M, Abramson S, Langer R, Kohn J 2013. Degradable and resorbable biomaterials. See Ref 1179–95
  16. 16.
    Ulery BD, Nair LS, Laurencin CT 2011. Biomedical applications of biodegradable polymers. J. Polym. Sci. B 49:832–64
    [Google Scholar]
  17. 17.
    Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A 2010. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–44
    [Google Scholar]
  18. 18.
    Kočka V, Widimský P. 2011. The bioresorbable stent in perspective—how much of an advance is it?. Interv. Cardiol. Rev. 9:23–25
    [Google Scholar]
  19. 19.
    Bowen PK, Shearier ER, Zhao S, Guillory RJ 2nd, Zhao F et al. 2016. Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn alloys. Adv. Healthc. Mater. 5:1121–40
    [Google Scholar]
  20. 20.
    Li H, Zheng Y, Qin L 2014. Progress of biodegradable metals. Prog. Nat. Sci. Mater. Int. 24:414–22
    [Google Scholar]
  21. 21.
    Jones JR. 2013. Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–86
    [Google Scholar]
  22. 22.
    Kuhn W, Hargitay B, Katchalsky A, Eisenberg H 1950. Reversible dilation and contraction by changing the state of ionization of high–polymer acid networks. Nature 165:514–16
    [Google Scholar]
  23. 23.
    Kost J, Horbett TA, Ratner BD, Singh M 1985. Glucose-sensitive membranes containing glucose oxidase: activity, swelling and permeability studies. J. Biomed. Mater. Res. 19:1117–33
    [Google Scholar]
  24. 24.
    Dong LC, Hoffman AS. 1987. Thermally reversible hydrogels. Swelling characteristics and activities of copoly(N-isopropylacrylamide-acrylamide) gels containing immobilized asparaginase. Reversible Polymeric Gels and Related Systems PS Russo 236–44 Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  25. 25.
    Wei M, Gao Y, Li X, Serpe MJ 2017. Stimuli-responsive polymers and their applications. Polym. Chem. 8:127–43
    [Google Scholar]
  26. 26.
    James HP, John R, Alex A, Anoop KR 2014. Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm. Sin. B 4:120–27
    [Google Scholar]
  27. 27.
    Ding Z, Long CJ, Hayashi Y, Bulmus EV, Hoffman AS, Stayton PS 1999. Temperature control of biotin binding and release with a streptavidin–poly(N-isopropylacrylamide) site-specific conjugate. Bioconjug. Chem. 10:395–400
    [Google Scholar]
  28. 28.
    Hoare T, Santamaria J, Goya GF, Irusta F, Lin D et al. 2009. A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett 9:3651–57
    [Google Scholar]
  29. 29.
    Kost J, Noecker R, Kunica E, Langer R 1985. Magnetically controlled release systems: effect of polymer deposition. J. Biomed. Mater. Res. 19:935–40
    [Google Scholar]
  30. 30.
    Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y 1990. Thermo-responsive polymeric surfaces: control of attachment and detachment of cultured cells. Makromol. Chem. Rapid Commun. 11:571–76
    [Google Scholar]
  31. 31.
    Cheng X, Wang Y, Hanein Y, Bohringer KF, Ratner BD 2004. Novel cell patterning using microheater-controlled thermoresponsive plasma films. J. Biomed. Mater. Res. 70:A159–68
    [Google Scholar]
  32. 32.
    Yamato M, Okano T. 2004. Cell sheet engineering. Mater. Today 7:42–47
    [Google Scholar]
  33. 33.
    Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K et al. 2004. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N. Engl. J. Med. 351:1187–96
    [Google Scholar]
  34. 34.
    Badeau BA, Comerford MP, Arakawa CK, Shadish JA, Deforest CA 2018. Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat. Chem. 10:251–58
    [Google Scholar]
  35. 35.
    Ratner BD, Horbett TA, Hoffman AS, Hauschka SD 1975. Cell adhesion to polymeric materials: implications with respect to biocompatibility. J. Biomed. Mater. Res. 9:407–22
    [Google Scholar]
  36. 36.
    Merrill EW, Salzman EW. 1983. Polyethylene oxide as a biomaterial. ASAIO J 6:60–64
    [Google Scholar]
  37. 37.
    Nagaoka S, Mori Y, Takiuchi H, Yokota K, Tanzawa H, Nishiumi S 1983. Interaction between blood components and hydrogels with poly(oxyethylene) chains. Polymers as Biomaterials SW Shalaby, AS Hoffman, BD Ratner, TA Horbett 361–74 Berlin: Springer
    [Google Scholar]
  38. 38.
    Zhang Z, Zhang M, Chen S, Horbett TA, Ratner BD, Jiang S 2008. Blood compatibility of surfaces with superlow protein adsorption. Biomaterials 29:4285–91
    [Google Scholar]
  39. 39.
    Li L, Chen S, Zheng J, Ratner BD, Jiang S 2005. Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. J. Phys. Chem. B 109:2934–41
    [Google Scholar]
  40. 40.
    Prime KL, Whitesides GM. 1993. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J. Am. Chem. Soc. 115:10714–21
    [Google Scholar]
  41. 41.
    Herrwerth S, Eck W, Reinhardt S, Grunze M 2003. Factors that determine the protein resistance of oligoether self-assembled monolayers—internal hydrophilicity, terminal hydrophilicity, and lateral packing density. J. Am. Chem. Soc. 125:9359–66
    [Google Scholar]
  42. 42.
    Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM 2001. A survey of structure–property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–20
    [Google Scholar]
  43. 43.
    Schlenoff JB. 2014. Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30:9625–36
    [Google Scholar]
  44. 44.
    Goda T, Ishihara K, Miyahara Y 2015. Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science. J. Appl. Polym. Sci. 132:app.41766
    [Google Scholar]
  45. 45.
    Zhang L, Cao Z, Bai T, Carr L, Ella-Menye J-R et al. 2013. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31:553–56
    [Google Scholar]
  46. 46.
    Chen S, Cao Z, Jiang S 2009. Ultra-low fouling peptide surfaces derived from natural amino acids. Biomaterials 58:5892–96
    [Google Scholar]
  47. 47.
    Elwing H, Welin S, Askendal A, Nilsson U, Lundstrom I 1987. A wettability gradient method for studies of macromolecular interactions at the liquid/solid interface. J. Colloid Interface Sci. 119:203–10
    [Google Scholar]
  48. 48.
    Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DIC et al. 1994. Engineering cell shape and function. Science 264:696–98
    [Google Scholar]
  49. 49.
    Kumar A, Whitesides GM. 1998. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink“ followed by chemical etching. Appl. Phys. Lett. 63:2002–4
    [Google Scholar]
  50. 50.
    Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ 1989. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:223–35
    [Google Scholar]
  51. 51.
    Alhaque S, Themis M, Rashidi H 2018. Three-dimensional cell culture: from evolution to revolution. Philos. Trans. R. Soc. Lond. B 373:20170216
    [Google Scholar]
  52. 52.
    Simian M, Bissell MJ. 2017. Organoids: a historical perspective of thinking in three dimensions. J. Cell Biol. 216:31–40
    [Google Scholar]
  53. 53.
    Ishida S. 2018. Organs-on-a-chip: current applications and consideration points for in vitro ADME-Tox studies. Drug Metab. Pharmacokinet. 33:49–54
    [Google Scholar]
  54. 54.
    Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R et al. 1994. Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068–77
    [Google Scholar]
  55. 55.
    Mao M, He J, Li X, Zhang B, Lei Q et al. 2017. The emerging frontiers and applications of high-resolution 3D printing. Micromachines 8:113
    [Google Scholar]
  56. 56.
    Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR et al. 2015. Additive manufacturing. Continuous liquid interface production of 3D objects. Science 347:1349–52
    [Google Scholar]
  57. 57.
    Xu T, Jin J, Gregory C, Hickman JJ, Boland T 2005. Inkjet printing of viable mammalian cells. Biomaterials 26:93–99
    [Google Scholar]
  58. 58.
    Zhang B, Luo Y, Ma L, Gao L, Li Y et al. 2018. 3D bioprinting: an emerging technology full of opportunities and challenges. Bio-Design Manuf 1:2–13
    [Google Scholar]
  59. 59.
    Murphy SV, Atala A. 2014. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–85
    [Google Scholar]
  60. 60.
    Roohani-Esfahani SI, Newman P, Zreiqat H 2016. Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci. Rep. 6:19468
    [Google Scholar]
  61. 61.
    Wang J-S, Matyjaszewski K. 1995. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 117:5614–15
    [Google Scholar]
  62. 62.
    Boyer C, Bulmus V, Davis TP, Ladmiral V, Liu J, Perrier SB 2009. Bioapplications of RAFT polymerization. Chem. Rev. 109:5402–36
    [Google Scholar]
  63. 63.
    Hong D, Hung HC, Wu K, Lin X, Sun F et al. 2017. Achieving ultralow fouling under ambient conditions via surface-initiated ARGET ATRP of carboxybetaine. ACS Appl. Mater. Interfaces 9:9255–59
    [Google Scholar]
  64. 64.
    Atzet S, Curtin S, Trinh P, Bryant S, Ratner B 2008. Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds. Biomacromolecules 9:3370–77
    [Google Scholar]
  65. 65.
    Das D, Srinivasan S, Kelly AM, Chiu DY, Daugherty BK et al. 2016. RAFT polymerization of ciprofloxacin prodrug monomers for the controlled intracellular delivery of antibiotics. Polym. Chem. 7:826–37
    [Google Scholar]
  66. 66.
    Kolb HC, Finn MG, Sharpless KB 2001. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40:2004–21
    [Google Scholar]
  67. 67.
    Iha RK, Wooley KL, Nyström AM, Burke DJ, Kade MJ, Hawker CJ 2009. Applications of orthogonal and “click” chemistries in the synthesis of functional soft materials. Chem. Rev. 109:5620–86
    [Google Scholar]
  68. 68.
    Chang PV, Prescher JA, Sletten EM, Baskin JM, Miller IA et al. 2010. Copper-free click chemistry in living animals. PNAS 107:1821–26
    [Google Scholar]
  69. 69.
    Yannas IV, Burke JF. 1980. Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res. 14:65–81
    [Google Scholar]
  70. 70.
    Vacanti CA, Vacanti JP. 1991. Functional organ replacement: the new technology of tissue engineering. Surgical Technology International MH Braverman, RL Tawes 43–49 London: Century
    [Google Scholar]
  71. 71.
    Langer R, Vacanti JP. 1993. Tissue engineering. Science 260:920–26
    [Google Scholar]
  72. 72.
    Badylak SF, Lantz GC, Coffey A, Geddes LA 1989. Small intestinal submucosa as a large diameter vascular graft in the dog. J. Surg. Res. 47:74–80
    [Google Scholar]
  73. 73.
    Atala A, Lanza R, MikosAG, Nerem R, ed 2019. Principles of Regenerative Medicine Amsterdam: Elsevier. , 3rd ed..
    [Google Scholar]
  74. 74.
    Vorotnikova E, McIntosh D, Dewilde A, Zhang J, Reing JE et al. 2010. Extracellular matrix–derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol 29:690–700
    [Google Scholar]
  75. 75.
    Badylak SF. 2014. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann. Biomed. Eng. 42:1517–27
    [Google Scholar]
  76. 76.
    Badylak SF, Taylor D, Uygun K 2011. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13:27–53
    [Google Scholar]
  77. 77.
    White LJ, Taylor AJ, Faulk DM, Keane TJ, Saldin LT et al. 2017. The impact of detergents on the tissue decellularization process: a ToF-SIMS study. Acta Biomater 50:207–19
    [Google Scholar]
  78. 78.
    Badylak SF. 2007. The extracellular matrix as a biologic scaffold material. Biomaterials 28:3587–93
    [Google Scholar]
  79. 79.
    Anderson JM, Miller KM. 1984. Biomaterial biocompatibility and the macrophage. Biomaterials 5:5–10
    [Google Scholar]
  80. 80.
    Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA et al. 2010. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. PNAS 107:15211–16
    [Google Scholar]
  81. 81.
    Marshall AJ, Irvin CA, Barker T, Sage EH, Hauch KD, Ratner BD 2004. Biomaterials with tightly controlled pore size that promote vascular in-growth. ACS Polym. Prepr. 45:100–1
    [Google Scholar]
  82. 82.
    Stachelek SJ, Finley MJ, Alferiev IS, Wang F, Tsai RK et al. 2011. The effect of CD47 modified polymer surfaces on inflammatory cell attachment and activation. Biomaterials 32:4317–26
    [Google Scholar]
  83. 83.
    Gifford R, Batchelor MM, Lee Y, Gokulrangan G, Meyerhoff ME, Wilson GS 2005. Mediation of in vivo glucose sensor inflammatory response via nitric oxide release. J. Biomed. Mater. Res. 75:A755–66
    [Google Scholar]
  84. 84.
    Shin JH, Schoenfisch MH. 2006. Improving the biocompatibility of in vivo sensors via nitric oxide release. Analyst 131:609–15
    [Google Scholar]
  85. 85.
    Vegas AJ, Veiseh O, Doloff JC, Ma M, Tam HH et al. 2016. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34:345–52
    [Google Scholar]
  86. 86.
    Hsieh CYC, Hu F-W, Chen W-S, Tsai W-B 2014. Reducing the foreign body reaction by surface modification with collagen/hyaluronic acid multilayered films. ISRN Biomater 2014:718432
    [Google Scholar]
  87. 87.
    Spiller KL, Nassiri S, Witherel CE, Anfang RR, Ng J et al. 2015. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials 37:194–207
    [Google Scholar]
  88. 88.
    Veiseh O, Doloff JC, Ma M, Vegas AJ, Tam HH et al. 2015. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14:643–51
    [Google Scholar]
  89. 89.
    Ingber DE, Jamieson JD. 1985. Cells as tensegrity structures: architectural regulation of histodifferentiation by physical forces transduced over basement membrane. Gene Expression During Normal and Malignant Differentiation LC Andersson, CG Gahmberg, P Ekblom 13–32 London: Academic
    [Google Scholar]
  90. 90.
    Engler AJ, Sen S, Sweeney HL, Discher DE 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:677–89
    [Google Scholar]
  91. 91.
    Yang MT, Sniadecki NJ, Chen CS 2007. Geometric considerations of micro- to nanoscale elastomeric post arrays to study cellular traction forces. Adv. Mater. 19:3119–23
    [Google Scholar]
  92. 92.
    Wang N, Butler JP, Ingber DE 1993. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–27
    [Google Scholar]
  93. 93.
    Di Cio S, Gautrot JE 2016. Cell sensing of physical properties at the nanoscale: mechanisms and control of cell adhesion and phenotype. Acta Biomater 30:26–48
    [Google Scholar]
  94. 94.
    Timmis J, Hart E, Hone A, Neal M, Robins A et al. 2008. Immuno-engineering. Proceedings of the IFIP International Conference on Biologically Inspired Collaborative Computing M Hinchley, A Pagnoni, FR Rammig, H Schmeck 3–17 Berlin: Springer
    [Google Scholar]
  95. 95.
    Sica A, Mantovani A. 2012. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Investig. 122:787–95
    [Google Scholar]
  96. 96.
    Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF 2012. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33:3792–802
    [Google Scholar]
  97. 97.
    Murray PJ. 2017. Macrophage polarization. Annu. Rev. Physiol. 79:541–66
    [Google Scholar]
  98. 98.
    Sadtler K, Estrellas K, Allen BW, Wolf MT, Fan H et al. 2016. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 352:366–70
    [Google Scholar]
  99. 99.
    Radic MZ, Bowlin GL. 2014. Innate immunity response to tissue engineering templates: the determinant. J. Tissue Sci. Eng. 5:e529
    [Google Scholar]
  100. 100.
    Zhou J, Tsai Y-T, Weng H, Tang EN, Nair A et al. 2012. Real-time detection of implant-associated neutrophil responses using a formyl peptide receptor–targeting NIR nanoprobe. Int. J. Nanomed. 7:2057–68
    [Google Scholar]
  101. 101.
    Parveen S, Misra R, Sahoo SK 2012. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8:147–66
    [Google Scholar]
  102. 102.
    Das S, Baker AB. 2016. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front. Bioeng. Biotechnol. 4:82
    [Google Scholar]
  103. 103.
    Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J et al. 2009. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood–brain barrier. Cancer Res 69:6200–7
    [Google Scholar]
  104. 104.
    Feltz KP, Growney Kalaf EA, Chen C, Martin RS, Sell SA 2017. A review of electrospinning manipulation techniques to direct fiber deposition and maximize pore size. Electrospinning 1:3–16
    [Google Scholar]
  105. 105.
    Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L 2016. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release 235:34–47
    [Google Scholar]
  106. 106.
    Avan I, Hall CD, Katritzky AR 2014. Peptidomimetics via modifications of amino acids and peptide bonds. Chem. Soc. Rev. 43:3575–94
    [Google Scholar]
  107. 107.
    Teng P, Niu Z, She F, Zhou M, Sang P et al. 2018. Hydrogen-bonding-driven 3D supramolecular assembly of peptidomimetic zipper. J. Am. Chem. Soc. 140:5661–65
    [Google Scholar]
  108. 108.
    Sato K, Hendricks MP, Palmer LC, Stupp SI 2018. Peptide supramolecular materials for therapeutics. Chem. Soc. Rev. 47:7539–51
    [Google Scholar]
  109. 109.
    Ohtake T. 2018. Bottom-up approaches for material and device designing using practical aspects of self-assembled molecular architectures. Mol. Syst. Des. Eng. 3:804–18
    [Google Scholar]
  110. 110.
    Boekhoven J, Stupp SI. 2014. 25th anniversary article: Supramolecular materials for regenerative medicine. Adv. Mater. 26:1642–59
    [Google Scholar]
  111. 111.
    Lvov Y, Decher G, Mohwald H 1993. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir 9:481–86
    [Google Scholar]
  112. 112.
    Borges J, Mano JF. 2014. Molecular interactions driving the layer-by-layer assembly of multilayers. Chem. Rev. 114:8883–942
    [Google Scholar]
  113. 113.
    Gentile P, Carmagnola I, Nardo T, Chiono V 2015. Layer-by-layer assembly for biomedical applications in the last decade. Nanotechnology 26:422001
    [Google Scholar]
  114. 114.
    Gu L, Deng ZJ, Roy S, Hammond PT 2017. A combination RNAi–chemotherapy layer-by-layer nanoparticle for systemic targeting of KRAS/P53 with cisplatin to treat non–small cell lung cancer. Clin. Cancer Res. 23:7312–23
    [Google Scholar]
  115. 115.
    Chang TM. 1964. Semipermeable microcapsules. Sci. Mag. 146:524–25
    [Google Scholar]
  116. 116.
    Gharapetian H, Maleki M, Davies NA, Sun AM 1986. Polyacrylate membranes for encapsulation of viable cells. ACS Polym. Mater. 54:114–18
    [Google Scholar]
  117. 117.
    Orive G, Santos E, Poncelet D, Hernandez RM, Pedraz JL et al. 2015. Cell encapsulation: technical and clinical advances. Trends Pharmacol. Sci. 36:537–46
    [Google Scholar]
  118. 118.
    Gurruchaga H, Saenz del Burgo L, Ciriza J, Orive G, Hernandez RM, Pedraz JL 2015. Advances in cell encapsulation technology and its application in drug delivery. Expert Opin. Drug Deliv. 12:1251–67
    [Google Scholar]
  119. 119.
    Rokstad AM, Lacik I, de Vos P, Strand BL 2014. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv. Drug Deliv. Rev. 67/68:111–30
    [Google Scholar]
  120. 120.
    Elliott Donaghue I, Tam R, Sefton MV, Shoichet MS 2014. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system. J. Control. Release 190:219–27
    [Google Scholar]
  121. 121.
    Reichart B, Niemann H, Chavakis T, Denner J, Jaeckel E et al. 2015. Xenotransplantation of porcine islet cells as a potential option for the treatment of type 1 diabetes in the future. Horm. Metab. Res. 47:31–35
    [Google Scholar]
  122. 122.
    Vansteensel MJ, Pels EGM, Bleichner MG, Branco MP, Denison T et al. 2016. Fully implanted brain–computer interface in a locked-in patient with ALS. N. Engl. J. Med. 375:2060–66
    [Google Scholar]
  123. 123.
    Prodanov D, Delbeke J. 2016. Mechanical and biological interactions of implants with the brain and their impact on implant design. Front. Neurosci. 10:11
    [Google Scholar]
  124. 124.
    Groothuis J, Ramsey NF, Ramakers GM, van der Plasse G 2014. Physiological challenges for intracortical electrodes. Brain Stimul 7:1–6
    [Google Scholar]
  125. 125.
    Bhise NS, Ribas J, Manoharan V, Zhang YS, Polini A et al. 2014. Organ-on-a-chip platforms for studying drug delivery systems. J. Control. Release 190:82–93
    [Google Scholar]
  126. 126.
    Bovard D, Iskandar A, Luettich K, Hoeng J, Peitsch MC 2017. Organs-on-a-chip. Toxicol. Res. Appl. 1: https://doi.org/10.1177/2397847317726351
    [Crossref] [Google Scholar]
  127. 127.
    Verhulsel M, Vignes M, Descroix S, Malaquin L, Vignjevic DM, Viovy JL 2014. A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials 35:1816–32
    [Google Scholar]
  128. 128.
    Long TJ, Sprenger CC, Plymate SR, Ratner BD 2014. Prostate cancer xenografts engineered from 3D precision-porous poly(2-hydroxyethyl methacrylate) hydrogels as models for tumorigenesis and dormancy escape. Biomaterials 35:8164–74
    [Google Scholar]
  129. 129.
    Bokros JC. 1977. Carbon biomedical devices. Carbon 15:355–71
    [Google Scholar]
  130. 130.
    Saito N, Haniu H, Usui Y, Aoki K, Hara K et al. 2014. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem. Rev. 114:6040–79
    [Google Scholar]
  131. 131.
    Thompson BC, Murray E, Wallace GG 2015. Graphite oxide to graphene. Biomaterials to bionics. Adv. Mater. 27:7563–82
    [Google Scholar]
  132. 132.
    Henry S, McAllister DV, Allen MG, Prausnitz MR 1998. Microfabricated microneedles: a novel approach to transdermal drug delivery. J. Pharm. Sci. 87:922–25
    [Google Scholar]
  133. 133.
    Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF 2016. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater. Sci. Eng. 104:1–32
    [Google Scholar]
  134. 134.
    Collins JM, Reizes O, Dempsey MK 2016. Healthcare commercialization programs: improving the efficiency of translating healthcare innovations from academia into practice. IEEE J. Transl. Eng. Health Med. 4:3500107
    [Google Scholar]
  135. 135.
    Meyers AD, Pruthi S. 2011. Academic entrepreneurship, entrepreneurial universities and biotechnology. J. Commer. Biotechnol. 17:349–57
    [Google Scholar]
  136. 136.
    Ball P. 2015. From academic discovery to industrial applications: innovation and success in materials science and engineering. Mater. Res. Soc. Bull. 40:1177–87
    [Google Scholar]
  137. 137.
    Knothe Tate ML, Detamore M, Capadona JR, Woolley A, Knothe U 2016. Engineering and commercialization of human–device interfaces, from bone to brain. Biomaterials 95:35–46
    [Google Scholar]
  138. 138.
    Chin CD, Linder V, Sia SK 2012. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:2118–34
    [Google Scholar]
  139. 139.
    Rasmussen TE, Eliason JL. 2017. Military–civilian partnership in device innovation. J. Trauma Acute Care Surg. 83:732–35
    [Google Scholar]
  140. 140.
    Emmert MY, Fioretta ES, Hoerstrup SP 2017. Translational challenges in cardiovascular tissue engineering. J. Cardiovasc. Transl. Res. 10:139–49
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-062117-120940
Loading
/content/journals/10.1146/annurev-bioeng-062117-120940
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error