1932

Abstract

Cellular behavior is continuously affected by microenvironmental forces through the process of mechanotransduction, in which mechanical stimuli are rapidly converted to biochemical responses. Mounting evidence suggests that the nucleus itself is a mechanoresponsive element, reacting to cytoskeletal forces and mediating downstream biochemical responses. The nucleus responds through a host of mechanisms, including partial unfolding, conformational changes, and phosphorylation of nuclear envelope proteins; modulation of nuclear import/export; and altered chromatin organization, resulting in transcriptional changes. It is unclear which of these events present direct mechanotransduction processes and which are downstream of other mechanotransduction pathways. We critically review and discuss the current evidence for nuclear mechanotransduction, particularly in the context of stem cell fate, a largely unexplored topic, and in disease, where an improved understanding of nuclear mechanotransduction is beginning to open new treatment avenues. Finally, we discuss innovative technological developments that will allow outstanding questions in the rapidly growing field of nuclear mechanotransduction to be answered.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-060418-052139
2019-06-04
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/21/1/annurev-bioeng-060418-052139.html?itemId=/content/journals/10.1146/annurev-bioeng-060418-052139&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wang N, Tytell JD, Ingber DE 2009. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10:75–82
    [Google Scholar]
  2. 2.
    Doyle AD, Yamada KM. 2016. Mechanosensing via cell–matrix adhesions in 3D microenvironments. Exp. Cell Res. 343:60–66
    [Google Scholar]
  3. 3.
    Cho S, Irianto J, Discher DE 2017. Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216:305–15
    [Google Scholar]
  4. 4.
    Jaalouk DE, Lammerding J. 2009. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10:63–73
    [Google Scholar]
  5. 5.
    Wang N, Butler JP, Ingber DE 1993. Mechanotransduction across the cell surface and through the cytoskleton. Science 260:1124–27
    [Google Scholar]
  6. 6.
    Martinac B. 2004. Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci. 117:2449–60
    [Google Scholar]
  7. 7.
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474:179–83
    [Google Scholar]
  8. 8.
    Driscoll TP, Cosgrove BD, Heo S-J, Shurden ZE, Mauck RL 2015. Cytoskeletal to nuclear strain transfer regulates YAP signaling in mesenchymal stem cells. Biophys. J. 108:2783–93
    [Google Scholar]
  9. 9.
    González JM, Navarro-Puche A, Casar B, Crespo P, Andrés V 2008. Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. J. Cell Biol. 183:653–66
    [Google Scholar]
  10. 10.
    Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R et al. 2014. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16:376–81
    [Google Scholar]
  11. 11.
    Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP et al. 2013. Nuclear Lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104
    [Google Scholar]
  12. 12.
    Guilluy C, Burridge K. 2015. Nuclear mechanotransduction: forcing the nucleus to respond. Nucleus 6:19–22
    [Google Scholar]
  13. 13.
    Szczesny SE, Mauck RL. 2017. The nuclear option: evidence implicating the cell nucleus in mechanotransduction. J. Biomech. Eng. 139:021006
    [Google Scholar]
  14. 14.
    Kirby TJ, Lammerding J. 2018. Emerging views of the nucleus as a cellular mechanosensor. Nat. Cell Biol. 20:373–81
    [Google Scholar]
  15. 15.
    Soheilypour M, Peyro M, Jahed Z, Mofrad MRK 2016. On the nuclear pore complex and its roles in nucleo-cytoskeletal coupling and mechanobiology. Cell. Mol. Bioeng. 9:217–26
    [Google Scholar]
  16. 16.
    Turgay Y, Eibauer M, Goldman AE, Shimi T, Khayat M et al. 2017. The molecular architecture of lamins in somatic cells. Nature 543:261–64
    [Google Scholar]
  17. 17.
    Yang SH, Chang SY, Yin L, Tu Y, Hu Y et al. 2011. An absence of both lamin B1 and lamin B2 in keratinocytes has no effect on cell proliferation or the development of skin and hair. Hum. Mol. Genet. 20:3537–44
    [Google Scholar]
  18. 18.
    Kim Y, Zheng X, Zheng Y 2013. Proliferation and differentiation of mouse embryonic stem cells lacking all lamins. Cell Res 23:1420–23
    [Google Scholar]
  19. 19.
    Shimi T, Kittisopikul M, Tran J, Goldman AE, Adam SA et al. 2015. Structural organization of nuclear lamins A, C, B1, and B2 revealed by superresolution microscopy. Mol. Biol. Cell 26:4075–86
    [Google Scholar]
  20. 20.
    Xie W, Chojnowski A, Boudier T, Lim JSY, Ahmed S et al. 2016. A-type lamins form distinct filamentous networks with differential nuclear pore complex associations. Curr. Biol. 26:2651–58
    [Google Scholar]
  21. 21.
    Dorner D, Gotzmann J, Foisner R 2007. Nucleoplasmic lamins and their interaction partners, LAP2α, Rb, and BAF, in transcriptional regulation. FEBS J 274:1362–73
    [Google Scholar]
  22. 22.
    Gerace L, Blum A, Blobel G 1978. Immunocytochemical localization of the major polypeptides of the nuclear pore complex–lamina fraction: interphase and mitotic distribution. J. Cell Biol. 79:546–66
    [Google Scholar]
  23. 23.
    Gruenbaum Y, Foisner R. 2015. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 84:131–64
    [Google Scholar]
  24. 24.
    de Leeuw R, Gruenbaum Y, Medalia O 2018. Nuclear lamins: thin filaments with major functions. Trends Cell Biol 28:34–45
    [Google Scholar]
  25. 25.
    Kourmouli N, Dialynas G, Petraki C, Pyrpasopoulou A, Singh PB et al. 2001. Binding of heterochromatin protein 1 to the nuclear envelope is regulated by a soluble form of tubulin. J. Biol. Chem. 276:13007–14
    [Google Scholar]
  26. 26.
    Gurudatta BV, Shashidhara LS, Parnaik VK 2010. Lamin C and chromatin organization in Drosophila. J. . Genet 89:37–49
    [Google Scholar]
  27. 27.
    Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP 2002. Nuclear lamins: building blocks of nuclear architecture. Genes Dev 16:533–47
    [Google Scholar]
  28. 28.
    Holaska JM, Lee KK, Kowalski AK, Wilson KL 2003. Transcriptional repressor germ cell-less (GCL) and barrier to autointegration factor (BAF) compete for binding to Emerin in vitro. J. Biol. Chem. 278:6969–75
    [Google Scholar]
  29. 29.
    Guo Y, Kim Y, Shimi T, Goldman RD, Zheng Y 2014. Concentration-dependent lamin assembly and its roles in the localization of other nuclear proteins. Mol. Biol. Cell 25:1287–97
    [Google Scholar]
  30. 30.
    Vaughan A, Alvarez-Reyes M, Bridger JM, Broers JL, Ramaekers FC et al. 2001. Both Emerin and Lamin C depend on Lamin A for localization at the nuclear envelope. J. Cell Sci. 114:2577–90
    [Google Scholar]
  31. 31.
    Lammerding J, Hsiao J, Schulze PC, Kozlov S, Stewart CL, Lee RT 2005. Abnormal nuclear shape and impaired mechanotransduction in Emerin-deficient cells. J. Cell Biol. 170:781–91
    [Google Scholar]
  32. 32.
    Shimi T, Pfleghaar K, Kojima S, Pack C-G, Solovei I et al. 2008. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22:3409–21
    [Google Scholar]
  33. 33.
    Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T et al. 2004. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Investig. 113:370–78
    [Google Scholar]
  34. 34.
    Dechat T, Adam SA, Taimen P, Shimi T, Goldman RD 2010. Nuclear lamins. Cold Spring Harb. Perspect. Biol. 2:1–23
    [Google Scholar]
  35. 35.
    Lombardi ML, Jaalouk DE, Shanahan CM, Burke B, Roux KJ, Lammerding J 2011. The interaction between nesprins and SUN proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem. 286:26743–53
    [Google Scholar]
  36. 36.
    Khatau SB, Hale CM, Stewart-Hutchinson PJ, Patel MS, Stewart CL et al. 2009. A perinuclear actin cap regulates nuclear shape. PNAS 106:19017–22
    [Google Scholar]
  37. 37.
    Kim JK, Louhghalam A, Lee G, Schafer BW, Wirtz D, Kim DH 2017. Nuclear Lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat. Commun. 8:2123
    [Google Scholar]
  38. 38.
    Nikolova V, Leimena C, Mcmahon AC, Tan JC, Chandar S et al. 2004. Defects in nuclear structure and function promote dilated cardiomyopathy in Lamin A/C–deficient mice. J. Clin. Investig. 113:357–69
    [Google Scholar]
  39. 39.
    Chandar S, Yeo LS, Leimena C, Tan JC, Xiao XH et al. 2010. Effects of mechanical stress and carvedilol in Lamin A/C–deficient dilated cardiomyopathy. Circ. Res. 106:573–82
    [Google Scholar]
  40. 40.
    McGregor AL, Hsia CR, Lammerding J 2016. Squish and squeeze—the nucleus as a physical barrier during migration in confined environments. Curr. Opin. Cell Biol. 40:32–40
    [Google Scholar]
  41. 41.
    Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C et al. 2006. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172:41–53
    [Google Scholar]
  42. 42.
    Tapley EC, Starr DA. 2013. Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope. Curr. Opin. Cell Biol. 25:57–62
    [Google Scholar]
  43. 43.
    Horn HF. 2014. LINC complex proteins in development and disease. Curr. Top. Dev. Biol. 109:287–321
    [Google Scholar]
  44. 44.
    Rothballer A, Kutay U. 2013. The diverse functional LINCs of the nuclear envelope to the cytoskeleton and chromatin. Chromosoma 122:415–29
    [Google Scholar]
  45. 45.
    Banerjee I, Zhang J, Moore-Morris T, Pfeiffer E, Buchholz KS et al. 2014. Targeted ablation of Nesprin 1 and Nesprin 2 from murine myocardium results in cardiomyopathy, altered nuclear morphology and inhibition of the biomechanical gene response. PLOS Genet 10:e1004114
    [Google Scholar]
  46. 46.
    Isermann P, Lammerding J. 2013. Nuclear mechanics and mechanotransduction in health and disease. Curr. Biol. 23:R1113–21
    [Google Scholar]
  47. 47.
    Shiu J-Y, Aires L, Lin Z, Vogel V 2018. Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction. Nat. Cell Biol. 20:262–71
    [Google Scholar]
  48. 48.
    Lele TP, Dickinson RB, Gundersen GG 2018. Mechanical principles of nuclear shaping and positioning. J. Cell Biol. 217:3330
    [Google Scholar]
  49. 49.
    Tariq Z, Zhang H, Chia-Liu A, Shen Y, Gete Y et al. 2017. Lamin A and microtubules collaborate to maintain nuclear morphology. Nucleus 8:433–46
    [Google Scholar]
  50. 50.
    Dahl KN, Kahn SM, Wilson KL, Discher DE 2004. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117:4779–86
    [Google Scholar]
  51. 51.
    Stephens AD, Banigan EJ, Adam SA, Goldman RD, Marko JF 2017. Chromatin and Lamin A determine two different mechanical response regimes of the cell nucleus. Mol. Biol. Cell 28:1984–96
    [Google Scholar]
  52. 52.
    Stephens AD, Banigan EJ, Marko JF 2018. Separate roles for chromatin and lamins in nuclear mechanics. Nucleus 9:119–24
    [Google Scholar]
  53. 53.
    Schreiner SM, Koo PK, Zhao Y, Mochrie SGJ, King MC 2015. The tethering of chromatin to the nuclear envelope supports nuclear mechanics. Nat. Commun. 6:7159
    [Google Scholar]
  54. 54.
    Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE 2007. Physical plasticity of the nucleus in stem cell differentiation. PNAS 104:15619–24
    [Google Scholar]
  55. 55.
    Lammerding J, Fong LG, Ji JY, Reue K, Stewart CL et al. 2006. Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281:25768–80
    [Google Scholar]
  56. 56.
    De Vos WH, Houben F, Kamps M, Malhas A, Verheyen F et al. 2011. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum. Mol. Genet. 20:4175–86
    [Google Scholar]
  57. 57.
    Broers JLV, Peeters EAG, Kuijpers HJH, Endert J, Bouten CVC et al. 2004. Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum. Mol. Genet. 13:2567–80
    [Google Scholar]
  58. 58.
    Buxboim A, Swift J, Irianto J, Spinler KR, Dingal PCDP et al. 2014. Matrix elasticity regulates Lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 24:1909–17
    [Google Scholar]
  59. 59.
    Enyedi B, Niethammer P. 2017. Nuclear membrane stretch and its role in mechanotransduction. Nucleus 8:156–61
    [Google Scholar]
  60. 60.
    Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M et al. 2017. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171:1397–410
    [Google Scholar]
  61. 61.
    Mazzanti M, Bustamante JO, Oberleithner H 2001. Electrical dimension of the nuclear envelope. Physiol. Rev. 81:1–19
    [Google Scholar]
  62. 62.
    Santella L, Carafoli E. 1997. Calcium signaling in the cell nucleus. FASEB J 11:1091–109
    [Google Scholar]
  63. 63.
    Malviya AN, Rogue PJ. 1998. “Tell me where is calcium bred”: clarifying the roles of nuclear calcium. Cell 92:17–23
    [Google Scholar]
  64. 64.
    Itano N, Okamoto S-I, Zhang D, Lipton SA, Ruoslahti E 2003. Cell spreading controls endoplasmic and nuclear calcium: a physical gene regulation pathway from the cell surface to the nucleus. PNAS 100:5181–86
    [Google Scholar]
  65. 65.
    Enyedi B, Jelcic M, Niethammer P 2016. The cell nucleus serves as a mechanotransducer of tissue damage–induced inflammation. Cell 165:1160–70
    [Google Scholar]
  66. 66.
    Cho W, Stahelin R. 2005. Membrane–protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol. Struct. 34:119–51
    [Google Scholar]
  67. 67.
    Tamada M, Sheetz MP, Sawada Y 2004. Activation of a signaling cascade by cytoskeleton stretch. Dev. Cell 7:709–18
    [Google Scholar]
  68. 68.
    Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R et al. 2006. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127:1015–26
    [Google Scholar]
  69. 69.
    Pasapera AM, Schneider IC, Rericha E, Schlaepfer DD, Waterman CM 2010. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188:877–90
    [Google Scholar]
  70. 70.
    Kochin V, Shimi T, Torvaldson E, Adam SA, Goldman A et al. 2014. Interphase phosphorylation of Lamin A. J. Cell Sci. 127:2683–96
    [Google Scholar]
  71. 71.
    Ihalainen TO, Aires L, Herzog FA, Schwartlander R, Moeller J, Vogel V 2015. Differential basal-to-apical accessibility of Lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nat. Mater. 14:1252–61
    [Google Scholar]
  72. 72.
    Li Y, Chu JS, Kurpinski K, Li X, Bautista DM et al. 2011. Biophysical regulation of histone acetylation in mesenchymal stem cells. Biophys. J. 100:1902–9
    [Google Scholar]
  73. 73.
    Jain N, Iyer KV, Kumar A, Shivashankar GV 2013. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. PNAS 110:11349–54
    [Google Scholar]
  74. 74.
    Le HQ, Ghatak S, Yeung CYC, Tellkamp F, Günschmann C et al. 2016. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat. Cell Biol. 18:864–75
    [Google Scholar]
  75. 75.
    Heo S-J, Thorpe SD, Driscoll TP, Duncan RL, Lee DA, Mauck RL 2015. Biophysical regulation of chromatin architecture instills a mechanical memory in mesenchymal stem cells. Sci. Rep. 5:16895
    [Google Scholar]
  76. 76.
    Heo SJ, Han WM, Szczesny SE, Cosgrove BD, Elliott DM et al. 2016. Mechanically induced chromatin condensation requires cellular contractility in mesenchymal stem cells. Biophys. J. 111:864–74
    [Google Scholar]
  77. 77.
    Iyer KV, Pulford S, Mogilner A, Shivashankar GV 2012. Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport. Biophys. J. 103:1416–28
    [Google Scholar]
  78. 78.
    Maharana S, Iyer KV, Jain N, Nagarajan M, Wang Y, Shivashankar GV 2016. Chromosome intermingling—the physical basis of chromosome organization in differentiated cells. Nucleic Acids Res 44:5148–60
    [Google Scholar]
  79. 79.
    Wang Y, Nagarajan M, Uhler C, Shivashankar GV 2017. Orientation and repositioning of chromosomes correlate with cell geometry–dependent gene expression. Mol. Biol. Cell 28:1997–2009
    [Google Scholar]
  80. 80.
    Kim DI, Birendra KC, Roux KJ 2015. Making the LINC: SUN and KASH protein interactions. Biol. Chem. 396:295–310
    [Google Scholar]
  81. 81.
    Kim DH, Wirtz D. 2015. Cytoskeletal tension induces the polarized architecture of the nucleus. Biomaterials 48:161–72
    [Google Scholar]
  82. 82.
    Tajik A, Zhang Y, Wei F, Sun J, Jia Q et al. 2016. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15:1287–96
    [Google Scholar]
  83. 83.
    Lattanzi G, Cenni V, Marmiroli S, Capanni C, Mattioli E et al. 2003. Association of emerin with nuclear and cytoplasmic actin is regulated in differentiating myoblasts. Biochem. Biophys. Res. Commun. 303:764–70
    [Google Scholar]
  84. 84.
    de Lanerolle P, Serebryannyy L 2011. Nuclear actin and myosins: life without filaments. Nat. Cell Biol. 13:1282–88
    [Google Scholar]
  85. 85.
    Olson EN, Nordheim A. 2010. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat. Rev. Mol. Cell Biol. 11:353–65
    [Google Scholar]
  86. 86.
    Baarlink C, Wang H, Grosse R 2013. Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340:864–67
    [Google Scholar]
  87. 87.
    Plessner M, Melak M, Chinchilla P, Baarlink C, Grosse R 2015. Nuclear F-actin formation and reorganization upon cell spreading. J. Biol. Chem. 290:11209–16
    [Google Scholar]
  88. 88.
    Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J 2013. Lamin A/C and Emerin regulate MLK1/SRF activity by modulating actin dynamics. Nature 497:507–11
    [Google Scholar]
  89. 89.
    Shao X, Li Q, Mogilner A, Bershadsky AD, Shivashankar GV 2015. Mechanical stimulation induces formin-dependent assembly of a perinuclear actin rim. PNAS 112:E2595–601
    [Google Scholar]
  90. 90.
    Engler AJ, Sen S, Sweeney HL, Discher DE 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:677–89
    [Google Scholar]
  91. 91.
    Lee J, Abdeen AA, Zhang D, Kilian KA 2013. Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34:8140–48
    [Google Scholar]
  92. 92.
    Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA et al. 2016. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15:326–34
    [Google Scholar]
  93. 93.
    Heo SJ, Driscoll TP, Thorpe SD, Nerurkar NL, Baker BM et al. 2016. Differentiation alters stem cell nuclear architecture, mechanics, and mechano-sensitivity. eLife 5:e18207
    [Google Scholar]
  94. 94.
    Li E. 2002. Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3:662–73
    [Google Scholar]
  95. 95.
    Labrador M, Corces VG. 2002. Setting the boundaries of chromatin domains and nuclear organization. Cell 111:151–54
    [Google Scholar]
  96. 96.
    West AG, Fraser P. 2005. Remote control of gene transcription. Hum. Mol. Genet. 14:R101–11
    [Google Scholar]
  97. 97.
    Constantinescu D, Gray HL, Sammak PJ, Schatten GP, Csoka AB 2006. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24:177–85
    [Google Scholar]
  98. 98.
    Melcer S, Hezroni H, Rand E, Nissim-Rafinia M, Skoultchi A et al. 2012. Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation. Nat. Commun. 3:910
    [Google Scholar]
  99. 99.
    Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SWM, Solovei I et al. 2010. Molecular maps of the reorganization of genome–nuclear lamina interactions during differentiation. Mol. Cell 38:603–13
    [Google Scholar]
  100. 100.
    Jung H-J, Tatar A, Tu Y, Nobumori C, Yang SH et al. 2014. An absence of nuclear lamins in keratinocytes leads to ichthyosis, defective epidermal barrier function, and intrusion of nuclear membranes and endoplasmic reticulum into the nuclear chromatin. Mol. Cell. Biol. 34:4534–44
    [Google Scholar]
  101. 101.
    Murphy WL, McDevitt TC, Engler AJ 2014. Materials as stem cell regulators. Nat. Mater. 13:547–57
    [Google Scholar]
  102. 102.
    Gotic I, Schmidt WM, Biadasiewicz K, Leschnik M, Spilka R et al. 2010. Loss of LAP2α delays satellite cell differentiation and affects postnatal fiber–type determination. Stem Cells 28:480–88
    [Google Scholar]
  103. 103.
    Gesson K, Vidak S, Foisner R 2014. Lamina-associated polypeptide (LAP)2α and nucleoplasmic lamins in adult stem cell regulation and disease. Semin. Cell Dev. Biol. 29:116–24
    [Google Scholar]
  104. 104.
    Gilbert HTJ, Mallikarjun V, Dobre O, Jackson MR, Pedley R et al. 2018. Nuclear decoupling, through regulation of the LINC complex, is part of a rapid, protein-level cellular response to high-intensity mechanical loading. bioRxiv 317404. https://doi.org/10.1101/317404
    [Crossref]
  105. 105.
    Yang Y, Qu R, Fan T, Zhu X, Feng Y et al. 2018. Cross-talk between microtubules and the linker of nucleoskeleton complex plays a critical role in the adipogenesis of human adipose-derived stem cells. Stem Cell Res. Ther. 9:125
    [Google Scholar]
  106. 106.
    Chowdhury F, Na S, Li D, Poh Y-C, Tanaka TS et al. 2010. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat. Mater. 9:82–88
    [Google Scholar]
  107. 107.
    Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R et al. 2014. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus. Nat. Cell Biol. 16:376–81
    [Google Scholar]
  108. 108.
    Yang C, Tibbitt MW, Basta L, Anseth KS 2014. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13:645–52
    [Google Scholar]
  109. 109.
    Padiath QS, Saigoh K, Schiffmann R, Asahara H, Yamada T et al. 2006. Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat. Genet. 38:1114–23
    [Google Scholar]
  110. 110.
    Hegele RA, Cao H, Liu DM, Costain GA, Charlton-Menys V et al. 2006. Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy. Am. J. Hum. Genet. 79:383–89
    [Google Scholar]
  111. 111.
    Simon DN, Wilson KL. 2013. Partners and post-translational modifications of nuclear lamins. Chromosoma 122:13–31
    [Google Scholar]
  112. 112.
    Vigouroux C, Auclair M, Dubosclard E, Pouchelet M, Capeau J et al. 2001. Nuclear envelope disorganization in fibroblasts from lipodystrophic patients with heterozygous R482Q/W mutations in the lamin A/C gene. J. Cell Sci. 114:4459–68
    [Google Scholar]
  113. 113.
    Novelli G, Muchir A, Sangiuolo F, Helbling-Leclerc A, D'Apice MR et al. 2002. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am. J. Hum. Genet. 71:426–31
    [Google Scholar]
  114. 114.
    Muchir A, Medioni J, Laluc M, Massart C, Arimura T et al. 2004. Nuclear envelope alterations in fibroblasts from patients with muscular dystrophy, cardiomyopathy, and partial lipodystrophy carrying lamin A/C gene mutations. Muscle Nerve 30:444–50
    [Google Scholar]
  115. 115.
    Zwerger M, Jaalouk DE, Lombardi ML, Isermann P, Mauermann M et al. 2013. Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum. Mol. Genet. 22:2335–49
    [Google Scholar]
  116. 116.
    Earle AJ, Kirby TJ, Fedorchak G, Isermann P, Patel J et al. 2018. Mutant lamins cause mechanically-induced nuclear envelope rupture, DNA damage, and DNA-PK activation in muscle. bioRxiv 364778. https://doi.org/10.1101/364778
    [Crossref]
  117. 117.
    Cenni V, Sabatelli P, Mattioli E, Marmiroli S, Capanni C et al. 2005. Lamin A N-terminal phosphorylation is associated with myoblast activation: impairment in Emery–Dreifuss muscular dystrophy. J. Med. Genet. 42:214–20
    [Google Scholar]
  118. 118.
    Fidziańska A, Bilińska ZT, Tesson F, Wagner T, Walski M et al. 2008. Obliteration of cardiomyocyte nuclear architecture in a patient with LMNA gene mutation. J. Neurol. Sci. 271:91–96
    [Google Scholar]
  119. 119.
    Gupta P, Bilinska ZT, Sylvius N, Boudreau E, Veinot JP et al. 2010. Genetic and ultrastructural studies in dilated cardiomyopathy patients: a large deletion in the Lamin A/C gene is associated with cardiomyocyte nuclear envelope disruption. Basic Res. Cardiol. 105:365–77
    [Google Scholar]
  120. 120.
    Chen C-Y, Chi Y-H, Mutalif RA, Starost MF, Myers TG et al. 2012. Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell 149:565–77
    [Google Scholar]
  121. 121.
    Hale CM, Shrestha AL, Khatau SB, Stewart-Hutchinson PJ, Hernandez L et al. 2008. Dysfunctional connections between the nucleus and the actin and microtubule networks in laminopathic models. Biophys. J. 95:5462–75
    [Google Scholar]
  122. 122.
    Arsenovic PT, Ramachandran I, Bathula K, Zhu R, Narang JD et al. 2016. Nesprin-2G, a component of the nuclear LINC complex, is subject to myosin-dependent tension. Biophys. J. 110:34–43
    [Google Scholar]
  123. 123.
    Houben F, Willems CHMP, Declercq ILJ, Hochstenbach K, Kamps MA et al. 2009. Disturbed nuclear orientation and cellular migration in A-type lamin deficient cells. Biochim. Biophys. Acta 1793:312–24
    [Google Scholar]
  124. 124.
    Folker ES, Ostlund C, Luxton GWG, Worman HJ, Gundersen GG 2011. Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. PNAS 108:131–36
    [Google Scholar]
  125. 125.
    Mattioli E, Columbaro M, Capanni C, Maraldi NM, Cenni V et al. 2011. Prelamin A–mediated recruitment of SUN1 to the nuclear envelope directs nuclear positioning in human muscle. Cell Death Differ 18:1305–15
    [Google Scholar]
  126. 126.
    Bertrand AT, Ziaei S, Ehret C, Duchemin H, Mamchaoui K et al. 2014. Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J. Cell Sci. 127:2873–84
    [Google Scholar]
  127. 127.
    Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N et al. 1999. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147:913–20
    [Google Scholar]
  128. 128.
    Verga L, Concardi M, Pilotto A, Bellini O, Pasotti M et al. 2003. Loss of lamin A/C expression revealed by immuno-electron microscopy in dilated cardiomyopathy with atrioventricular block caused by LMNA gene defects. Virchows Arch 443:664–71
    [Google Scholar]
  129. 129.
    Al-Haboubi T, Shumaker DK, Köser J, Wehnert M, Fahrenkrog B 2011. Distinct association of the nuclear pore protein Nup153 with A- and B-type lamins. Nucleus 2:500–9
    [Google Scholar]
  130. 130.
    Kalverda B, Pickersgill H, Shloma VV, Fornerod M 2010. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140:360–71
    [Google Scholar]
  131. 131.
    Buchwalter AL, Liang Y, Hetzer MW 2014. Nup50 is required for cell differentiation and exhibits transcription-dependent dynamics. Mol. Biol. Cell 25:2472–84
    [Google Scholar]
  132. 132.
    Mewborn SK, Puckelwartz MJ, Abuisneineh F, Fahrenbach JP, Zhang Y et al. 2010. Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLOS ONE 5:e14342
    [Google Scholar]
  133. 133.
    Mattout A, Pike BL, Towbin BD, Bank EM, Gonzalez-Sandoval A et al. 2011. An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity. Curr. Biol. 21:1603–14
    [Google Scholar]
  134. 134.
    Zuela N, Dorfman J, Gruenbaum Y 2017. Global transcriptional changes caused by an EDMD mutation correlate to tissue specific disease phenotypes in C. elegans. . Nucleus 8:60–69
    [Google Scholar]
  135. 135.
    Van Berlo JH, Voncken JW, Kubben N, Broers JLV, Duisters R et al. 2005. A-type lamins are essential for TGF-β1 induced PP2A to dephosphorylate transcription factors. Hum. Mol. Genet. 14:2839–49
    [Google Scholar]
  136. 136.
    Bernasconi P, Carboni N, Ricci G, Siciliano G, Politano L et al. 2018. Elevated TGF β2 serum levels in Emery–Dreifuss muscular dystrophy: implications for myocyte and tenocyte differentiation and fibrogenic processes. Nucleus 9:292–304
    [Google Scholar]
  137. 137.
    Frock RL, Kudlow BA, Evans AM, Jameson SA, Hauschka SD, Kennedy BK 2006. Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev 20:486–500
    [Google Scholar]
  138. 138.
    Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T et al. 2007. Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery–Dreifuss muscular dystrophy. J. Clin. Investig. 117:1282–93
    [Google Scholar]
  139. 139.
    Muchir A, Wu W, Choi JC, Iwata S, Morrow J et al. 2012. Abnormal p38 mitogen-activated protein kinase signaling in dilated cardiomyopathy caused by Lamin A/C gene mutation. Hum. Mol. Genet. 21:4325–33
    [Google Scholar]
  140. 140.
    Le Dour C, Macquart C, Sera F, Homma S, Bonne G et al. 2017. Decreased WNT/β-catenin signalling contributes to the pathogenesis of dilated cardiomyopathy caused by mutations in the Lamin A/C gene. Hum. Mol. Genet. 26:333–43
    [Google Scholar]
  141. 141.
    Favreau C, Higuet D, Courvalin J-C, Buendia B 2004. Expression of a mutant lamin A that causes Emery–Dreifuss muscular dystrophy inhibits in vitro differentiation of C2C12 myoblasts. Mol. Cell. Biol. 24:1481–92
    [Google Scholar]
  142. 142.
    Melcon G, Kozlov S, Cutler DA, Sullivan T, Hernandez L et al. 2006. Loss of emerin at the nuclear envelope disrupts the Rb1/E2F and MyoD pathways during muscle regeneration. Hum. Mol. Genet. 15:637–51
    [Google Scholar]
  143. 143.
    Park S-J, Gavrilova O, Brown AL, Soto JE, Bremner S et al. 2017. DNA-PK promotes the mitochondrial, metabolic, and physical decline that occurs during aging. Cell Metab 25:1135–46
    [Google Scholar]
  144. 144.
    Chung JH. 2018. The role of DNA-PK in aging and energy metabolism. FEBS J 285:1959–72
    [Google Scholar]
  145. 145.
    Azibani F, Muchir A, Vignier N, Bonne G, Bertrand AT 2014. Striated muscle laminopathies. Semin. Cell Dev. Biol. 29:107–15
    [Google Scholar]
  146. 146.
    Laurini E, Martinelli V, Lanzicher T, Puzzi L, Borin D et al. 2018. Biomechanical defects and rescue of cardiomyocytes expressing pathologic nuclear lamins. Cardiovasc. Res. 114:846–57
    [Google Scholar]
  147. 147.
    Natl. Inst. Health 2017. A study of ARRY-371797 in patients with LMNA-related dilated cardiomyopathy. https://clinicaltrials.gov/ct2/show/NCT02057341
  148. 148.
    Roux KJ, Kim DI, Raida M, Burke B 2012. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196:801–10
    [Google Scholar]
  149. 149.
    Schopp IM, Amaya Ramirez CC, Debeljak J, Kreibich E, Skribbe M et al. 2017. Split-BioID: a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. Nat. Commun. 8:15690
    [Google Scholar]
  150. 150.
    Dekker J, Belmont AS, Guttman M, Leshyk VO, Lis JT et al. 2017. The 4D nucleome project. Nature 549:219–26
    [Google Scholar]
  151. 151.
    McCord RP, Nazario-Toole A, Zhang H, Chines PS, Zhan Y et al. 2013. Correlated alterations in genome organization, histone methylation, and DNA–Lamin A/C interactions in Hutchinson–Gilford progeria syndrome. Genome Res 23:260–69
    [Google Scholar]
  152. 152.
    Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S, Pederson T 2015. Multicolor CRISPR labeling of chromosomal loci in human cells. PNAS 112:3002–7
    [Google Scholar]
  153. 153.
    Shao S, Zhang W, Hu H, Xue B, Qin J et al. 2016. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res 44:e86
    [Google Scholar]
  154. 154.
    Bhattacharya D, Talwar S, Mazumder A, Shivashankar GV 2009. Spatio-temporal plasticity in chromatin organization in mouse cell differentiation and during Drosophila embryogenesis. Biophys. J. 96:3832–39
    [Google Scholar]
  155. 155.
    Ramdas NM, Shivashankar GV. 2015. Cytoskeletal control of nuclear morphology and chromatin organization. J. Mol. Biol. 427:695–706
    [Google Scholar]
  156. 156.
    Harkness T, McNulty JD, Prestil R, Seymour SK, Klann T et al. 2015. High-content imaging with micropatterned multiwell plates reveals influence of cell geometry and cytoskeleton on chromatin dynamics. Biotechnol. J. 10:1555–67
    [Google Scholar]
  157. 157.
    Hayashi-Takanaka Y, Yamagata K, Wakayama T, Stasevich TJ, Kainuma T et al. 2011. Tracking epigenetic histone modifications in single cells using Fab-based live endogenous modification labeling. Nucleic Acids Res 39:6475–88
    [Google Scholar]
  158. 158.
    Sasaki K, Ito T, Nishino N, Khochbin S, Yoshida M 2009. Real-time imaging of histone H4 hyperacetylation in living cells. PNAS 106:16257–62
    [Google Scholar]
  159. 159.
    Ito T, Umehara T, Sasaki K, Nakamura Y, Nishino N et al. 2011. Real-time imaging of histone H4K12–specific acetylation determines the modes of action of histone deacetylase and bromodomain inhibitors. Chem. Biol. 18:495–507
    [Google Scholar]
  160. 160.
    Llères D, James J, Swift S, Norman DG, Lamond AI 2009. Quantitative analysis of chromatin compaction in living cells using FLIM-FRET. J. Cell Biol. 187:481–96
    [Google Scholar]
  161. 161.
    Spagnol ST, Dahl KN. 2016. Spatially resolved quantification of chromatin condensation through differential local rheology in cell nuclei fluorescence lifetime imaging. PLOS ONE 11:e0154639
    [Google Scholar]
  162. 162.
    Vishwasrao HD, Trifilieff P, Kandel ER 2012. In vivo imaging of the actin polymerization state with two-photon fluorescence anisotropy. Biophys. J. 102:1204–14
    [Google Scholar]
  163. 163.
    Maffioletti SM, Sarcar S, Henderson ABH, Mannhardt I, Pinton L et al. 2018. Three-dimensional human iPSC-derived artificial skeletal muscles model muscular dystrophies and enable multilineage tissue engineering. Cell Rep 23:899–908
    [Google Scholar]
  164. 164.
    van Spreeuwel ACC, Bax NAM, Bastiaens AJ, Foolen J, Loerakker S et al. 2014. The influence of matrix (an)isotropy on cardiomyocyte contraction in engineered cardiac microtissues. Integr. Biol. 6:422–29
    [Google Scholar]
  165. 165.
    Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L et al. 2018. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556:239–43
    [Google Scholar]
  166. 166.
    Legant WR, Pathak A, Yang MT, Deshpande VS, McMeeking RM, Chen CS 2009. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. PNAS 106:10097–102
    [Google Scholar]
  167. 167.
    Abilez OJ, Tzatzalos E, Yang H, Zhao MT, Jung G et al. 2018. Passive stretch induces structural and functional maturation of engineered heart muscle as predicted by computational modeling. Stem Cells 36:265–77
    [Google Scholar]
  168. 168.
    Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T et al. 2017. Defined engineered human myocardium with advanced maturation for applications in heart failure modelling and repair. Circulation 135:1832–47
    [Google Scholar]
  169. 169.
    Sakar MS, Neal D, Boudou T, Borochin MA, Li Y et al. 2012. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab Chip 12:4976
    [Google Scholar]
  170. 170.
    Long C, Li H, Tiburcy M, Rodriguez-Caycedo C, Kyrychenko V et al. 2018. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci. Adv. 4:eaap9004
    [Google Scholar]
  171. 171.
    Balikov DA, Brady SK, Ko UH, Shin JH, de Pereda JM et al. 2017. The nesprin–cytoskeleton interface probed directly on single nuclei is a mechanically rich system. Nucleus 8:534–47
    [Google Scholar]
  172. 172.
    Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M et al. 2010. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–66
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-060418-052139
Loading
/content/journals/10.1146/annurev-bioeng-060418-052139
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error