- Home
- A-Z Publications
- Annual Review of Biomedical Engineering
- Previous Issues
- Volume 18, 2016
Annual Review of Biomedical Engineering - Volume 18, 2016
Volume 18, 2016
-
-
Tissue Patterning: Translating Design Principles from In Vivo to In Vitro
Vol. 18 (2016), pp. 1–24More LessRecapitulating the architecture of native tissue remains a significant challenge, impeding the progress of engineering tissues. Imposing appropriate organization is especially challenging in tissues that contain multiple cellular components in complex structural units. One solution is to mimic developmental processes in embryos. In an embryo, cells are organized by tissue patterning, whereby induction of fate-determining genes is spatially controlled to generate patterns of cell differentiation and maturation. Following patterning, the imposed cell organization is further reinforced by implementation of compartment boundaries, which prevent intermingling of cells from distinct phenotypic domains, thereby ensuring preservation of proper cell organization in growing and reorganizing tissues. Both morphogenic processes utilize a conserved set of fundamental principles, the implementation of which leads to highly regulated cell organization. In this article, we review these patterning principles in vivo and reflect on the progress made by tissue engineers in mimicking tissue patterning ex vivo.
-
-
-
Rational Design of Targeted Next-Generation Carriers for Drug and Vaccine Delivery
Vol. 18 (2016), pp. 25–49More LessPattern recognition receptors on innate immune cells play an important role in guiding how cells interact with the rest of the organism and in determining the direction of the downstream immune response. Recent advances have elucidated the structure and function of these receptors, providing new opportunities for developing targeted drugs and vaccines to treat infections, cancers, and neurological disorders. C-type lectin receptors, Toll-like receptors, and folate receptors have attracted interest for their ability to endocytose their ligands or initiate signaling pathways that influence the immune response. Several novel technologies are being developed to engage these receptors, including recombinant antibodies, adoptive immunotherapy, and chemically modified antigens and drug delivery vehicles. These active targeting technologies will help address current challenges facing drug and vaccine delivery and lead to new tools to treat human diseases.
-
-
-
Drugging Membrane Protein Interactions
Hang Yin, and Aaron D. FlynnVol. 18 (2016), pp. 51–76More LessThe majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind cells to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art of high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets.
-
-
-
Lensless Imaging and Sensing
Aydogan Ozcan, and Euan McLeodVol. 18 (2016), pp. 77–102More LessHigh-resolution optical microscopy has traditionally relied on high-magnification and high–numerical aperture objective lenses. In contrast, lensless microscopy can provide high-resolution images without the use of any focusing lenses, offering the advantages of a large field of view, high resolution, cost-effectiveness, portability, and depth-resolved three-dimensional (3D) imaging. Here we review various approaches to lensless imaging, as well as its applications in biosensing, diagnostics, and cytometry. These approaches include shadow imaging, fluorescence, holography, superresolution 3D imaging, iterative phase recovery, and color imaging. These approaches share a reliance on computational techniques, which are typically necessary to reconstruct meaningful images from the raw data captured by digital image sensors. When these approaches are combined with physical innovations in sample preparation and fabrication, lensless imaging can be used to image and sense cells, viruses, nanoparticles, and biomolecules. We conclude by discussing several ways in which lensless imaging and sensing might develop in the near future.
-
-
-
The Virtual Physiological Human: Ten Years After
Vol. 18 (2016), pp. 103–123More LessBiomedical research and clinical practice are struggling to cope with the growing complexity that the progress of health care involves. The most challenging diseases, those with the largest socioeconomic impact (cardiovascular conditions; musculoskeletal conditions; cancer; metabolic, immunity, and neurodegenerative conditions), are all characterized by a complex genotype–phenotype interaction and by a “systemic” nature that poses a challenge to the traditional reductionist approach. In 2005 a small group of researchers discussed how the vision of computational physiology promoted by the Physiome Project could be translated into clinical practice and formally proposed the term Virtual Physiological Human. Our knowledge about these diseases is fragmentary, as it is associated with molecular and cellular processes on the one hand and with tissue and organ phenotype changes (related to clinical symptoms of disease conditions) on the other. The problem could be solved if we could capture all these fragments of knowledge into predictive models and then compose them into hypermodels that help us tame the complexity that such systemic behavior involves. In 2005 this was simply not possible—the necessary methods and technologies were not available. Now, 10 years later, it seems the right time to reflect on the original vision, the results achieved so far, and what remains to be done.
-
-
-
The Lymphatic System in Disease Processes and Cancer Progression
Vol. 18 (2016), pp. 125–158More LessAdvances in our understanding of the structure and function of the lymphatic system have made it possible to identify its role in a variety of disease processes. Because it is involved not only in fluid homeostasis but also in immune cell trafficking, the lymphatic system can mediate and ultimately alter immune responses. Our rapidly increasing knowledge of the molecular control of the lymphatic system will inevitably lead to new and effective therapies for patients with lymphatic dysfunction. In this review, we discuss the molecular and physiological control of lymphatic vessel function and explore how the lymphatic system contributes to many disease processes, including cancer and lymphedema.
-
-
-
Engineered Models of Confined Cell Migration
Vol. 18 (2016), pp. 159–180More LessCells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell–substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact.
-
-
-
Immune Tolerance for Autoimmune Disease and Cell Transplantation
Vol. 18 (2016), pp. 181–205More LessThe undesired destruction of healthy cells, either endogenous or transplanted, by the immune system results in the loss of tissue function or limits strategies to restore tissue function. Current therapies typically involve nonspecific immunosuppression that may prevent the appropriate response to an antigen, thereby decreasing humoral immunity and increasing the risks of patient susceptibility to opportunistic infections, viral reactivation, and neoplasia. The induction of antigen-specific immunological tolerance to block undesired immune responses to self- or allogeneic antigens, while maintaining the integrity of the remaining immune system, has the potential to transform the current treatment of autoimmune disease and serve as a key enabling technology for therapies based on cell transplantation.
-
-
-
Implications of Lymphatic Transport to Lymph Nodes in Immunity and Immunotherapy
Vol. 18 (2016), pp. 207–233More LessAdaptive immune response consists of many highly regulated, multistep cascades that protect against infection while preserving the health of autologous tissue. The proper initiation, maintenance, and resolution of such responses require the precise coordination of molecular and cellular signaling over multiple time and length scales orchestrated by lymphatic transport. In order to investigate these functions and manipulate them for therapy, a comprehensive understanding of how lymphatics influence immune physiology is needed. This review presents the current mechanistic understanding of the role of the lymphatic vasculature in regulating biomolecule and cellular transport from the interstitium, peripheral tissue immune surveillance, the lymph node stroma and microvasculature, and circulating lymphocyte homing to lymph nodes. This review also discusses the ramifications of lymphatic transport in immunity as well as tolerance and concludes with examples of how lymphatic-mediated targeting of lymph nodes has been exploited for immunotherapy applications.
-
-
-
Lubrication of Articular Cartilage
Vol. 18 (2016), pp. 235–258More LessThe major synovial joints such as hips and knees are uniquely efficient tribological systems, able to articulate over a wide range of shear rates with a friction coefficient between the sliding cartilage surfaces as low as 0.001 up to pressures of more than 100 atm. No human-made material can match this. The means by which such surfaces maintain their very low friction has been intensively studied for decades and has been attributed to fluid-film and boundary lubrication. Here, we focus especially on the latter: the reduction of friction by molecular layers at the sliding cartilage surfaces. In particular, we discuss such lubrication in the light of very recent advances in our understanding of boundary effects in aqueous media based on the paradigms of hydration lubrication and of the synergism between different molecular components of the synovial joints (namely hyaluronan, lubricin, and phospholipids) in enabling this lubrication.
-
-
-
Innovative Tools and Technology for Analysis of Single Cells and Cell–Cell Interaction
Vol. 18 (2016), pp. 259–284More LessHeterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell–cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.
-
-
-
Microfluidics for High-Throughput Quantitative Studies of Early Development
Vol. 18 (2016), pp. 285–309More LessDevelopmental biology has traditionally relied on qualitative analyses; recently, however, as in other fields of biology, researchers have become increasingly interested in acquiring quantitative knowledge about embryogenesis. Advances in fluorescence microscopy are enabling high-content imaging in live specimens. At the same time, microfluidics and automation technologies are increasing experimental throughput for studies of multicellular models of development. Furthermore, computer vision methods for processing and analyzing bioimage data are now leading the way toward quantitative biology. Here, we review advances in the areas of fluorescence microscopy, microfluidics, and data analysis that are instrumental to performing high-content, high-throughput studies in biology and specifically in development. We discuss a case study of how these techniques have allowed quantitative analysis and modeling of pattern formation in the Drosophila embryo.
-
-
-
Design of Catalytic Peptides and Proteins Through Rational and Combinatorial Approaches
Vol. 18 (2016), pp. 311–328More LessThis review focuses on recent progress in noncomputational methods to introduce catalytic function into proteins, peptides, and peptide assemblies. We discuss various approaches to creating catalytic activity and classification of noncomputational methods into rational and combinatorial classes. The section on rational design covers recent progress in the development of short peptides and oligomeric peptide assemblies for various natural and unnatural reactions. The section on combinatorial design describes recent advances in the discovery of catalytic peptides. We present the future prospects of these and other new approaches in a broader context, including implications for functional material design.
-
-
-
Electrical Chips for Biological Point-of-Care Detection
Vol. 18 (2016), pp. 329–355More LessAs the future of health care diagnostics moves toward more portable and personalized techniques, there is immense potential to harness the power of electrical signals for biological sensing and diagnostic applications at the point of care. Electrical biochips can be used to both manipulate and sense biological entities, as they can have several inherent advantages, including on-chip sample preparation, label-free detection, reduced cost and complexity, decreased sample volumes, increased portability, and large-scale multiplexing. The advantages of fully integrated electrical biochip platforms are particularly attractive for point-of-care systems. This review summarizes these electrical lab-on-a-chip technologies and highlights opportunities to accelerate the transition from academic publications to commercial success.
-
-
-
Optical-Based Analysis of Soft Tissue Structures
Vol. 18 (2016), pp. 357–385More LessFibrous structures are an integral and dynamic feature of soft biological tissues that are directly related to the tissues’ condition and function. A greater understanding of mechanical tissue behavior can be gained through quantitative analyses of structure alone, as well as its integration into computational models of soft tissue function. Histology and other nonoptical techniques have traditionally dominated the field of tissue imaging, but they are limited by their invasiveness, inability to provide resolution on the micrometer scale, and dynamic information. Recent advances in optical modalities can provide higher resolution, less invasive imaging capabilities, and more quantitative measurements. Here we describe contemporary optical imaging techniques with respect to their suitability in the imaging of tissue structure, with a focus on characterization and implementation into subsequent modeling efforts. We outline the applications and limitations of each modality and discuss the overall shortcomings and future directions for optical imaging of soft tissue structure.
-
-
-
Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology
Vol. 18 (2016), pp. 387–412More LessPathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area.
-
Previous Volumes
-
Volume 26 (2024)
-
Volume 25 (2023)
-
Volume 24 (2022)
-
Volume 23 (2021)
-
Volume 22 (2020)
-
Volume 21 (2019)
-
Volume 20 (2018)
-
Volume 19 (2017)
-
Volume 18 (2016)
-
Volume 17 (2015)
-
Volume 16 (2014)
-
Volume 15 (2013)
-
Volume 14 (2012)
-
Volume 13 (2011)
-
Volume 12 (2010)
-
Volume 11 (2009)
-
Volume 10 (2008)
-
Volume 9 (2007)
-
Volume 8 (2006)
-
Volume 7 (2005)
-
Volume 6 (2004)
-
Volume 5 (2003)
-
Volume 4 (2002)
-
Volume 3 (2001)
-
Volume 2 (2000)
-
Volume 1 (1999)
-
Volume 0 (1932)