1932

Abstract

The major synovial joints such as hips and knees are uniquely efficient tribological systems, able to articulate over a wide range of shear rates with a friction coefficient between the sliding cartilage surfaces as low as 0.001 up to pressures of more than 100 atm. No human-made material can match this. The means by which such surfaces maintain their very low friction has been intensively studied for decades and has been attributed to fluid-film and boundary lubrication. Here, we focus especially on the latter: the reduction of friction by molecular layers at the sliding cartilage surfaces. In particular, we discuss such lubrication in the light of very recent advances in our understanding of boundary effects in aqueous media based on the paradigms of hydration lubrication and of the synergism between different molecular components of the synovial joints (namely hyaluronan, lubricin, and phospholipids) in enabling this lubrication.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-081514-123305
2016-07-11
2024-09-12
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/18/1/annurev-bioeng-081514-123305.html?itemId=/content/journals/10.1146/annurev-bioeng-081514-123305&mimeType=html&fmt=ahah

Literature Cited

  1. Hodge WA, Fuan RS, Carlson KL, Burgess RG, Harris WH, Mann RW. 1.  1986. Contact pressures in the human hip joint measured in vivo. PNAS 83:2879–83 [Google Scholar]
  2. Bowden FP, Tabor D. 2.  1973. Friction: An Introduction to Tribology New York: Anchor/Doubleday [Google Scholar]
  3. Tabor D.3.  1992. Friction as a dissipative process. Fundamentals of Friction: Macroscopic and Microscopic Processes IL Singer, HM Pollock 3–20 Dordrecht, Neth.: Kluwer [Google Scholar]
  4. Dowson D.4.  2012. Bio-tribology. Faraday Discuss. Pap. 156:9–30 [Google Scholar]
  5. Forster H, Fisher J. 5.  1996. The influence of loading time and lubricant on the friction of articular cartilage. Proc. Inst. Mech. Eng. H 210:109–19 [Google Scholar]
  6. Blain EJ, Gilbert SJ, Wardale RJ, Capper SJ, Mason DJ, Duance VC. 6.  2001. Up-regulation of matrix metalloproteinase expression and activation following cyclical compressive loading of articular cartilage in vitro. Arch. Biochem. Biophys. 396:49–55 [Google Scholar]
  7. Lee JH, Fitzgerald JB, DiMicco MA, Grodzinsky AJ. 7.  2005. Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum. 52:2386–95 [Google Scholar]
  8. Vincent T, Hermansson M, Bolton M, Wait R, Saklatvala J. 8.  2002. Basic FGF mediates an immediate response of articular cartilage to mechanical injury. PNAS 99:8259–64 [Google Scholar]
  9. Vincent TL.9.  2013. Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix. Curr. Opin. Pharmacol. 13:449–54 [Google Scholar]
  10. Watt FE, Ismail HM, Didangelos A, Peirce M, Vincent TL. 10.  et al. 2013. Src and fibroblast growth factor 2 independently regulate signaling and gene expression induced by experimental injury to intact articular cartilage. Arthritis Rheum. 65:397–407 [Google Scholar]
  11. Vignon E, Balblanc JC, Mathieu P, Louisot P, Richard M. 11.  1993. Metalloprotease activity, phospholipase A2 activity and cytokine concentration in osteoarthritis synovial fluids. Osteoarthr. Cartil. 1:115–20 [Google Scholar]
  12. Goldring MB.12.  2012. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther. Adv. Musculoskelet. Dis. 4:269–85 [Google Scholar]
  13. Lindström T, Gullichsen E, Heinonen O, Grönroos J, Nevalainen T, Niinikoski J. 13.  1997. Group II phospholipase A2 in serum after knee surgery and intramedullary nailing of tibial shaft fracture. Injury 28:169–71 [Google Scholar]
  14. Burleigh A, Chanalaris A, Boruc O, Saklatvala J, Vincent TL. 14.  2012. Fgf2 is a mechanotransducer in destabilised joints in vivo. Int. J. Exp. Pathol. A 93:23–24 [Google Scholar]
  15. Burleigh A, Chanalaris A, Saklatvala J, Vincent T. 15.  2012. Pathogenic protease expression in murine OA is critically dependent upon mechanical joint loading. Arthritis Res. Ther. 14:Suppl. 1P73 [Google Scholar]
  16. Morrell KC, Hodge WA, Krebs DE, Mann RW. 16.  2005. Corroboration of in vivo cartilage pressures with implications for synovial joint tribology and osteoarthritis causation. PNAS 102:14819–24 [Google Scholar]
  17. Klein J.17.  2006. Molecular mechanisms of synovial joint lubrication. Proc. Inst. Mech. Eng. H 220:691–710 [Google Scholar]
  18. Buckwalter JA, Mankin HJ, Grodzinky AJ. 18.  2005. Articular cartilage and osteoarthritis. AAOS Instructional Course Lectures VD Pellegrini Jr 54465–80 Rosemont, IL: Am. Acad. Orthop. Surg. [Google Scholar]
  19. Buckwalter JA.19.  2003. Sports, joint injury, and posttraumatic osteoarthritis. J. Orthop. Sports Phys. Ther. 33:578–88 [Google Scholar]
  20. Silverberg JL, Barrett AR, Das M, Petersen PB, Bonassar LJ, Cohen I. 20.  2014. Structure–function relations and rigidity percolation in the shear properties of articular cartilage. Biophys. J. 107:1721–30 [Google Scholar]
  21. O'Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F. 21.  2014. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. PNAS 111:1316–21 [Google Scholar]
  22. Jin M, Frank EH, Quinn TM, Hunziker EB, Grodzinsky AJ. 22.  2001. Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants. Arch. Biochem. Biophys. 395:41–48 [Google Scholar]
  23. Lyons TJ, McClure SF, Stoddard TW, McClure J. 23.  2006. The normal human chondro-osseus junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet. Disord. 7:52 [Google Scholar]
  24. Flannery CR, Hughes CE, Schumacher BL, Tudor D, Aydelotte MB. 24.  et al. 1999. Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism. Biochem. Biophys. Res. Commun. 254:535–41 [Google Scholar]
  25. Jay GD, Tantravahi U, Britt DE, Barrach HJ, Cha C. 25.  2001. Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localized to chromosome 1q25. J. Orthop. Res. 19:677–87 [Google Scholar]
  26. Sorkin R, Dror Y, Kampf N, Klein J. 26.  2014. Mechanical stability and lubrication by phosphatidylcholine boundary layers in the vesicular and in the extended lamellar phases. Langmuir 30:5005–14 [Google Scholar]
  27. Hills BA, Butler BD. 27.  1984. Surfactants identified in synovial fluid and their ability to act as boundary lubricants. Ann. Rheum. Dis. 43:641–48 [Google Scholar]
  28. Hills BA.28.  2000. Boundary lubrication in vivo. Proc. Inst. Mech. Eng. H 214:83–94 [Google Scholar]
  29. Goldberg R, Schroeder A, Silbert G, Turjeman K, Barenholz Y, Klein J. 29.  2011. Boundary lubricants with exceptionally low friction coefficients based on 2D close-packed phosphatidylcholine liposomes. Adv. Mater. 23:3517–21 [Google Scholar]
  30. Seror J, Zhu L, Goldberg R, Klein J. 30.  2015. Supramolecular synergy in the boundary lubrication of synovial joints. Nat. Commun. 6:6497 [Google Scholar]
  31. Athanasiou KA, Darling EM, Hu JC, DuRaine GD, Reddi HA. 31.  2013. Articular Cartilage Boca Raton, FL: CRC439 [Google Scholar]
  32. Yu J, Urban JPG. 32.  2010. The elastic network of articular cartilage: an immunohistochemical study of elastin fibres and microfibrils. J. Anat. 216:533–41 [Google Scholar]
  33. Balazs E.33.  2009. The role of hyaluronan in the structure and function of the biomatrix of connective tissues. Struct. Chem. 20:233–43 [Google Scholar]
  34. Eyre DR.34.  2004. Collagens and cartilage matrix homeostasis. Clin. Orthop. Relat. Res. 427:S118–22 [Google Scholar]
  35. Grande DA, Sgaglione NA. 35.  2010. Regenerative medicine. Self-directed articular resurfacing: a new paradigm?. Nat. Rev. Rheumatol. 6:677–78 [Google Scholar]
  36. Klein TJ, Schumacher BL, Schmidt TA, Li KW, Voegtline MS. 36.  et al. 2003. Tissue engineering of stratified articular cartilage from chondrocyte subpopulations. Osteoarthr. Cartil. 11:595–602 [Google Scholar]
  37. Minns RJ, Steven FS. 37.  1977. The collagen fibril organization in human articular cartilage. J. Anat. 123:437–57 [Google Scholar]
  38. Aspden RM, Hukins DW. 38.  1981. Collagen organization in articular cartilage, determined by X-ray diffraction, and its relationship to tissue function. Proc. R. Soc. B 212:299–304 [Google Scholar]
  39. Urban JPG.39.  1994. The chondrocyte: a cell under pressure. Br. J. Rheumatol. 33:901–8 [Google Scholar]
  40. Chen SS, Falcovitz YH, Schneiderman R, Maroudas A, Sah RL. 40.  2001. Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density. Osteoarthr. Cartil. 9:561–69 [Google Scholar]
  41. Mow VC, Lai WM. 41.  1980. Recent developments in synovial joint biomechanics. SIAM Rev. 22:275–317 [Google Scholar]
  42. Buckwalter JA, Rosenberg LC. 42.  1982. Electron-microscopic studies of cartilage proteoglycans—direct evidence for the variable length of the chondroitin sulfate–rich region of proteoglycan subunit core protein. J. Biol. Chem. 257:9830–39 [Google Scholar]
  43. Sarma AV, Powell GL, LaBerge M. 43.  2001. Phospholipid composition of articular cartilage boundary lubricant. J. Orthop. Res. 19:671–76 [Google Scholar]
  44. Muir H.44.  1995. The chondrocyte, architect of cartilage—biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. BioEssays 17:1039–48 [Google Scholar]
  45. Simon WH.45.  1970. Scale effects in animal joints. 1. Articular cartilage thickness and compressive stress. Arthritis Rheum. 13:244–55 [Google Scholar]
  46. Pagel W.46.  1982. Paracelsus: An Introduction to Philosophical Medicine in the Era of Renaissance New York: S. Karger [Google Scholar]
  47. Havers C.47.  1691. Osteologia Nova London: Smith [Google Scholar]
  48. Ateshian GA.48.  2009. The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42:1163–76 [Google Scholar]
  49. Dowson D, Jin ZM. 49.  1987. An analysis of micro-elastohydrodynamic lubrication in synovial joints considering cyclic loading and entraining velocities. Proceedings of the 23rd Leeds–Lyon Symposium on Tribology V Štěpina, V Veselý 375–86 Amsterdam: Elsevier [Google Scholar]
  50. Jones ES.50.  1936. Joint lubrication. Lancet 227:1043–45 [Google Scholar]
  51. Maroudas A.51.  1968. Physicochemical properties of cartilage in the light of ion exchange theory. Biophys. J. 8:575–95 [Google Scholar]
  52. McCutchen CW.52.  1959. Mechanism of animal joints: sponge-hydrostatic and weeping bearings. Nature 184:1284–85 [Google Scholar]
  53. Charnley J.53.  1960. The lubrication of animal joints in relation to surgical reconstruction by arthroplasty. Ann. Rheum. Dis. 19:10–19 [Google Scholar]
  54. Jay GD.54.  1992. Characterization of a bovine synovial-fluid lubricating factor. 1. Chemical, surface-activity and lubricating properties. Connect. Tissue Res. 28:71–88 [Google Scholar]
  55. Schmidt TA, Gastelum NS, Nguyen QT, Schumacher BL, Sah RL. 55.  2007. Boundary lubrication of articular cartilage—role of synovial fluid constituents. Arthritis Rheum. 56:882–91 [Google Scholar]
  56. Zappone B, Ruths M, Greene GW, Jay GD, Israelachvili JN. 56.  2007. Adsorption, lubrication, and wear of lubricin on model surfaces: polymer brush–like behavior of a glycoprotein. Biophys. J. 92:1693–708 [Google Scholar]
  57. Singh A, Corvelli M, Unterman SA, Wepasnick KA, McDonnell P, Elisseeff JH. 57.  2014. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat. Mater. 13:988–95 [Google Scholar]
  58. Reynolds O.58.  1886. On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments, including an experimental determination of the viscosity of olive oil. Philos. Trans. R. Soc. Lond. 177:157–234 [Google Scholar]
  59. MacConaill MA.59.  1932. The function of intra-articular fibrocartilages, with special reference to the knee and inferior radio-ulnar joints. J. Anat. 66:210–27 [Google Scholar]
  60. Jones ES.60.  1934. Joint lubrication. Lancet 1:1426–27 [Google Scholar]
  61. Dowson D.61.  1967. Modes of lubrication in human joints. Proc. Inst. Mech. Eng. J 181:45–54 [Google Scholar]
  62. Unsworth A.62.  1991. Tribology of human and artifical joints. Proc. Inst. Mech. Eng. H 205:163–72 [Google Scholar]
  63. Tanner RI.63.  1966. An alternative mechanism for the lubrication of synovial joints. Phys. Med. Biol. 11:119–27 [Google Scholar]
  64. Fein RS.64.  1966. Are synovial joints squeeze-film lubricated?. Proc. Inst. Mech. Eng. J 181:125–28 [Google Scholar]
  65. Higginson GR, Unsworth A. 65.  1981. The lubrication of natural joints. Tribology of Natural and Artificial Joints JH Dumbleton 47–72 Amsterdam: North-Holland [Google Scholar]
  66. Walker PS, Dowson D, Longfield MD, Wright V. 66.  1968. “Boosted lubrication” in synovial joints by fluid entrapment and enrichment. Ann. Rheum. Dis. 27:512–20 [Google Scholar]
  67. Maroudas A.67.  1975. Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport. Biorheology 12:233–48 [Google Scholar]
  68. McCutchen CW.68.  1962. The frictional properties of animal joints. Wear 5:1–17 [Google Scholar]
  69. McCutchen CW.69.  1964. Lubrication of joints. BMJ 1:384–85 [Google Scholar]
  70. Soltz MA, Basalo IM, Ateshian GA. 70.  2003. Hydrostatic pressurization and depletion of trapped lubricant pool during creep contact of a rippled indenter against a biphasic articular cartilage layer. J. Biomech. Eng. 125:585–93 [Google Scholar]
  71. McCutchen CW.71.  2004. Comment on “Hydrostatic pressurization and depletion of trapped lubricant pool during creep contact of a rippled indenter against a biphasic articular cartilage layer”. J. Biomech. Eng. 126:536–37 [Google Scholar]
  72. Murakami T, Higaki H, Sawae Y, Ohtsuki N, Moriyama S, Nakanishi Y. 72.  1998. Adaptive multimode lubrication in natural synovial joints and artificial joints. Proc. Inst. Mech. Eng. H 212:23–35 [Google Scholar]
  73. Murakami T, Nakashima K, Sawae Y, Sakai N, Hosoda N. 73.  2009. Roles of adsorbed film and gel layer in hydration lubrication for articular cartilage. Proc. Inst. Mech. Eng. J 223:287–95 [Google Scholar]
  74. Jin ZM, Dowson D. 74.  2005. Elastohydrodynamic lubrication in biological systems. Proc. Inst. Mech. Eng. J 219:367–80 [Google Scholar]
  75. O'Kelly J, Unsworth A, Dowson D, Hall DA, Wright V. 75.  1978. A study of the role of synovial fluid and its constituents in the friction and lubrication of human hip joints. Eng. Med. 7:73–83 [Google Scholar]
  76. Afoke NY, Byers PD, Hutton WC. 76.  1987. Contact pressures in the human hip joint. J. Bone Joint Surg. Br. 69:536–41 [Google Scholar]
  77. Ateshian GA.77.  1997. A theoretical formulation for boundary friction in articular cartilage. J. Biomech. Eng. 119:81–86 [Google Scholar]
  78. Sotres J, Arenebrant T. 78.  2013. Experimental investigations of biological lubrication at the nanoscale: the cases of synovial joints and the oral cavity. Lubricants 1:102–31 [Google Scholar]
  79. Laurent TC, Laurent UBG, Fraser JRE. 79.  1995. Functions of hyaluronan. Ann. Rheum. Dis. 54:429–32 [Google Scholar]
  80. Ogston AG, Stanier JE. 80.  1953. The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubricant properties. J. Physiol. 119:244–52 [Google Scholar]
  81. Maroudas A.81.  1969. Studies on the formation of hyaluronic acid films. Lubrication and Wear in Joints V Wright 124–30 London: Sector [Google Scholar]
  82. Chang DP, Abu-Lail NI, Coles JM, Guilak F, Jay GD, Zauscher S. 82.  2009. Friction force microscopy of lubricin and hyaluronic acid between hydrophobic and hydrophilic surfaces. Soft Matter 5:3438–45 [Google Scholar]
  83. Swann DA, Radin EL, Nazimiec M, Weisser PA, Curran N, Lewinnek G. 83.  1974. Role of hyaluronic acid in joint lubrication. Ann. Rheum. Dis. 33:318–26 [Google Scholar]
  84. Benz M, Chen NH, Israelachvili J. 84.  2004. Lubrication and wear properties of grafted polyelectrolytes, hyaluronan and hylan, measured in the surface forces apparatus. J. Biomed. Mater. Res. A 71:6–15 [Google Scholar]
  85. Jay GD, Lane BP, Sokoloff L. 85.  1992. Characterization of a bovine synovial fluid lubricating factor. III. The interaction with hyaluronic acid. Connect. Tissue Res. 28:245–55 [Google Scholar]
  86. Wang M, Liu C, Thormann E, Dedinaite A. 86.  2013. Hyaluronan and phospholipid association in biolubrication. Biomacromolecules 14:4198–206 [Google Scholar]
  87. Han L, Dean D, Ortiz C, Grodzinsky AJ. 87.  2007. Lateral nanomechanics of cartilage aggrecan macromolecules. Biophys. J. 92:1384–98 [Google Scholar]
  88. Ng L, Grodzinsky AJ, Patwari P, Sandy J, Plaas A, Ortiz C. 88.  2003. Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J. Struct. Biol. 143:242–57 [Google Scholar]
  89. Seror J, Merkher Y, Kampf N, Collinson L, Day AJ. 89.  et al. 2011. Articular cartilage proteoglycans as boundary lubricants: structure and frictional interaction of surface-attached hyaluronan and hyaluronan–aggrecan complexes. Biomacromolecules 12:3432–43 [Google Scholar]
  90. Seror J, Merkher Y, Kampf N, Collinson L, Day AJ. 90.  et al. 2012. Normal and shear interactions between hyaluronan–aggrecan complexes mimicking possible boundary lubricants in articular cartilage in synovial joints. Biomacromolecules 13:3823–32 [Google Scholar]
  91. Radin EL, Swann DA, Weisser PA. 91.  1970. Separation of a hyaluronate-free lubricating fraction from synovial fluid. Nature 228:377–78 [Google Scholar]
  92. Swann DA, Slayter HS, Silver FH. 92.  1981. The molecular structure of lubricating glycoprotein-I, the boundary lubricant for articular cartilage. J. Biol. Chem. 256:5921–25 [Google Scholar]
  93. Flannery CR, Zollner R, Corcoran C, Jones AR, Root A. 93.  et al. 2009. Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arthritis Rheum. 60:840–47 [Google Scholar]
  94. Jay GD, Torres JR, Warman ML, Laderer MC, Breuer KS. 94.  2007. The role of lubricin in the mechanical behavior of synovial fluid. PNAS 104:6194–99 [Google Scholar]
  95. Das S, Banquy X, Zappone B, Greene GW, Jay GD, Israelachvili JN. 95.  2013. Synergistic interactions between grafted hyaluronic acid and lubricin provide enhanced wear protection and lubrication. Biomacromolecules 14:1669–77 [Google Scholar]
  96. Chang DP, Abu-Lail NI, Guilak F, Jay GD, Zauscher S. 96.  2008. Conformational mechanics, adsorption, and normal force interactions of lubricin and hyaluronic acid on model surfaces. Langmuir 24:1183–93 [Google Scholar]
  97. Goldberg R, Schroeder A, Barenholz Y, Klein J. 97.  2011. Interactions between adsorbed hydrogenated soy phosphatidylcholine (HSPC) vesicles at physiologically high pressures and salt concentrations. Biophys. J. 100:2403–11 [Google Scholar]
  98. Hills BA.98.  1989. Oligolamellar lubrication of joints by surface-active phospholipid. J. Rheumatol. 16:82–91 [Google Scholar]
  99. Hills BA.99.  2002. Surface-active phospholipid: a Pandora's box of clinical applications. Part I. The lung and air spaces. Intern. Med. J. 32:170–78 [Google Scholar]
  100. Sorkin R, Kampf N, Dror Y, Shimoni E, Klein J. 100.  2013. Origins of extreme boundary lubrication by phosphatidylcholine liposomes. Biomaterials 34:5465–75 [Google Scholar]
  101. Sivan S, Schroeder A, Verberne G, Merkher Y, Diminsky D. 101.  et al. 2010. Liposomes act as effective biolubricants for friction reduction in human synovial joints. Langmuir 26:1107–16 [Google Scholar]
  102. Williams PF 3rd, Powell GL, LaBerge M. 102.  1993. Sliding friction analysis of phosphatidylcholine as a boundary lubricant for articular cartilage. Proc. Inst. Mech. Eng. H 207:59–66 [Google Scholar]
  103. Mirea DA, Trunfio-Sfarghiu AM, Matei CI, Munteanu B, Piednoir A. 103.  et al. 2013. Role of the biomolecular interactions in the structure and tribological properties of synovial fluid. Tribol. Int. 59:302–11 [Google Scholar]
  104. Crockett R.104.  2009. Boundary lubrication in natural articular joints. Tribol. Lett. 35:77–84 [Google Scholar]
  105. Crockett R, Grubelnik A, Roos S, Dora C, Born W, Troxler H. 105.  2007. Biochemical composition of the superficial layer of articular cartilage. J. Biomed. Mater. Res. A 82:958–64 [Google Scholar]
  106. Harvey NM, Yakubov GE, Stokes JR, Klein J. 106.  2011. Normal and shear forces between surfaces bearing porcine gastric mucin, a high-molecular-weight glycoprotein. Biomacromolecules 12:1041–50 [Google Scholar]
  107. Murakami T, Yarimitsu S, Nakashima K, Sawae Y, Sakai N. 107.  2013. Influence of synovia constituents on tribological behaviors of articular cartilage. Friction 1:150–62 [Google Scholar]
  108. Lee S, Spencer ND. 108.  2008. Materials science—sweet, hairy, soft, and slippery. Science 319:575–76 [Google Scholar]
  109. Andresen Eguiluz RC, Cook SG, Brown CN, Wu F, Pacifici NJ. 109.  et al. 2015. Fibronectin mediates enhanced wear protection of lubricin during shear. Biomacromolecules 16:2884–94 [Google Scholar]
  110. Maroudas A.110.  1967. Hyaluronic acid films. Proc. Inst. Mech. Eng. 181:122 [Google Scholar]
  111. Jay GD, Harris DA, Cha CJ. 111.  2001. Boundary lubrication by lubricin is mediated by O-linked β(1–3)Gal-GalNAc oligosaccharides. Glycoconj. J. 18:807–15 [Google Scholar]
  112. Krause WE, Bellomo EG, Colby RH. 112.  2001. Rheology of sodium hyaluronate under physiological conditions. Biomacromolecules 2:65–69 [Google Scholar]
  113. Tadmor R, Chen NH, Israelachvili JN. 113.  2002. Thin film rheology and lubricity of hyaluronic acid solutions at a normal physiological concentration. J. Biomed. Mater. Res. 61:514–23 [Google Scholar]
  114. Yu J, Banquy X, Greene GW, Lowrey DD, Israelachvili JN. 114.  2012. The boundary lubrication of chemically grafted and cross-linked hyaluronic acid in phosphate buffered saline and lipid solutions measured by the surface forces apparatus. Langmuir 28:2244–50 [Google Scholar]
  115. Linn FC, Radin EL. 115.  1968. Lubrication of animal joints. 3. Effect of certain chemical alterations of cartilage and lubricant. Arthritis Rheum. 11:674–78 [Google Scholar]
  116. Jay GD, Torres JR, Rhee DK, Helminen HJ, Hytinnen MM. 116.  et al. 2007. Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis Rheum. 56:3662–69 [Google Scholar]
  117. Marcelino J, Carpten JD, Suwairi WM, Gutierrez OM, Schwartz S. 117.  et al. 1999. CACP, encoding a secreted proteoglycan, is mutated in camptodactyly–arthropathy–coxa vara–pericarditis syndrome. Nat. Genet. 23:319–22 [Google Scholar]
  118. Abubacker S, Dorosz SG, Ponjevic D, Jay GD, Matyas J, Schmidt TA. 118.  2015. Full-length recombinant human proteoglycan 4 interacts with hyaluronan to provide cartilage boundary lubrication. Ann. Biomed. Eng. In press. doi:10.1007/s10439-015-1390-8 [Google Scholar]
  119. Hills BA, Jay GD. 119.  2002. Identity of the joint lubricant. J. Rheumatol. 29:200–1 [Google Scholar]
  120. Zappone B, Greene GW, Oroudjev E, Jay GD, Israelachvili JN. 120.  2007. Molecular aspects of boundary lubrication by human lubricin: effect of disulfide bonds and enzymatic digestion. Langmuir 24:1495–508 [Google Scholar]
  121. Greene GW, Banquy X, Lee DW, Lowrey DD, Yu J, Israelachvili JN. 121.  2011. Adaptive mechanically controlled lubrication mechanism found in articular joints. PNAS 108:5255–59 [Google Scholar]
  122. Jones ARC, Gleghorn JP, Hughes CE, Fitz LJ, Zollner R. 122.  et al. 2007. Binding and localization of recombinant lubricin to articular cartilage surfaces. J. Orthop. Res. 25:283–92 [Google Scholar]
  123. Briscoe BJ, Evans DCB. 123.  1982. The shear properties of Langmuir–Blodgett layers. Proc. R. Soc. A 380:389–407 [Google Scholar]
  124. Briscoe WH, Titmuss S, Tiberg F, Thomas RK, McGillivray DJ, Klein J. 124.  2006. Boundary lubrication under water. Nature 444:191–94 [Google Scholar]
  125. Trunfio-Sfarghiu AM, Berthier Y, Meurisse MH, Rieu JP. 125.  2008. Role of nanomechanical properties in the tribological performance of phospholipid biomimetic surfaces. Langmuir 24:8765–71 [Google Scholar]
  126. Raviv U, Klein J. 126.  2002. Fluidity of bound hydration layers. Science 297:1540–43 [Google Scholar]
  127. Jahn S, Klein J. 127.  2015. Hydration lubrication: the macromolecular domain. Macromolecules 48:5059–75 [Google Scholar]
  128. Klein J.128.  2013. Hydration lubrication. Friction 1:1–23 [Google Scholar]
  129. Chai L, Goldberg R, Kampf N, Klein J. 129.  2008. Selective adsorption of poly(ethylene oxide) onto a charged surface mediated by alkali metal ions. Langmuir 24:1570–76 [Google Scholar]
  130. Gaisinskaya A, Ma LR, Silbert G, Sorkin R, Tairy O. 130.  et al. 2012. Hydration lubrication: exploring a new paradigm. Faraday Discuss. Pap. 156:217–33 [Google Scholar]
  131. Perkin S, Goldberg R, Chai L, Kampf N, Klein J. 131.  2009. Dynamics of confined hydration layers. Faraday Discuss. Pap. 141:399–413 [Google Scholar]
  132. Donose BC, Vakarelski IU, Higashitani K. 132.  2005. Silica surface lubrication by hydrated cations adsorption from electrolyte solutions. Langmuir 21:1834–39 [Google Scholar]
  133. Kampf N, Gohy JF, Jerome R, Klein J. 133.  2005. Normal and shear forces between a polyelectrolyte brush and a solid surface. J. Polym. Sci. B 43:193–204 [Google Scholar]
  134. Raviv U, Giasson S, Gohy J-F, Jerome R, Klein J. 134.  2008. Normal and frictional forces between surfaces bearing polyelectrolyte brushes. Langmuir 24:8678–87 [Google Scholar]
  135. Raviv U, Giasson S, Kampf N, Gohy JF, Jerome R, Klein J. 135.  2003. Lubrication by charged polymers. Nature 425:163–65 [Google Scholar]
  136. Chen M, Briscoe WH, Armes SP, Klein J. 136.  2009. Lubrication at physiological pressures by polyzwitterionic brushes. Science 323:1698–701 [Google Scholar]
  137. Tairy O, Kampf N, Driver MJ, Armes SP, Klein J. 137.  2015. Dense, highly hydrated polymer brushes via modified atom-transfer-radical-polymerization: structure, surface interactions, and frictional dissipation. Macromolecules 48:140–51 [Google Scholar]
  138. Banquy X, Burdyńska J, Lee DW, Matyjaszewski K, Israelachvili JN. 138.  2014. Bioinspired bottle-brush polymer exhibits low friction and amontons-like behavior. J. Am. Chem. Soc. 136:6199–202 [Google Scholar]
  139. Ma L, Gaisinskaya-Kipnis A, Kampf N, Klein J. 139.  2015. Origins of hydration lubrication. Nat. Commun. 6:6060 [Google Scholar]
  140. Foglia F, Lawrence MJ, Lorenz CD, McLain SE. 140.  2010. On the hydration of the phosphocholine headgroup in aqueous solution. J. Chem. Phys. 133:145103 [Google Scholar]
  141. Seror J, Sorkin R, Klein J. 141.  2014. Boundary lubrication by macromolecular layers and its relevance to synovial joints. Polym. Adv. Technol. 25:468–77 [Google Scholar]
  142. Kosinska MK, Liebisch G, Lochnit G, Wilhelm J, Klein H. 142.  et al. 2013. A lipidomic study of phospholipid classes and species in human synovial fluid. Arthritis Rheum. 65:2323–33 [Google Scholar]
  143. Ghosh P, Hutadilok N, Adam N, Lentini A. 143.  1994. Interactions of hyaluronan (hyaluronic-acid) with phospholipids as determined by gel-permeation chromatography, multi-angle laser-light-scattering photometry and 1H-NMR spectroscopy. Int. J. Biol. Macromol. 16:237–44 [Google Scholar]
  144. Nitzan DW, Nitzan U, Dan P, Yedgar S. 144.  2001. The role of hyaluronic acid in protecting surface-active phospholipids from lysis by exogenous phospholipase A2. Rheumatology 40:336–40 [Google Scholar]
  145. Pasquali-Ronchetti I, Quaglino D, Mori G, Bacchelli B. 145.  1997. Hyaluronan–phospholipid interactions. J. Struct. Biol. 120:1–10 [Google Scholar]
  146. Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y. 146.  et al. 2004. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat. Mater. 3:829–36 [Google Scholar]
  147. Nichols JJ, Sinnott LT. 147.  2006. Tear film, contact lens, and patient-related factors associated with contact lens–related dry eye. Investig. Ophthalmol. Vis. Sci. 47:1319–28 [Google Scholar]
  148. Murakami T, Sawae Y, Nakashima K, Fisher J. 148.  2000. Tribological behaviour of artificial cartilage in thin film lubrication. Tribology Series 38 Thinning Films and Tribological Interfaces D Dowson, M Priest, CM Taylor, P Ehret, THC Childs, et al. 317–27 Amsterdam: Elsevier [Google Scholar]
  149. Klein J. 149.  2009. Repair or replacement—a joint perspective. Science 323:47–48 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-081514-123305
Loading
/content/journals/10.1146/annurev-bioeng-081514-123305
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error