High-resolution optical microscopy has traditionally relied on high-magnification and high–numerical aperture objective lenses. In contrast, lensless microscopy can provide high-resolution images without the use of any focusing lenses, offering the advantages of a large field of view, high resolution, cost-effectiveness, portability, and depth-resolved three-dimensional (3D) imaging. Here we review various approaches to lensless imaging, as well as its applications in biosensing, diagnostics, and cytometry. These approaches include shadow imaging, fluorescence, holography, superresolution 3D imaging, iterative phase recovery, and color imaging. These approaches share a reliance on computational techniques, which are typically necessary to reconstruct meaningful images from the raw data captured by digital image sensors. When these approaches are combined with physical innovations in sample preparation and fabrication, lensless imaging can be used to image and sense cells, viruses, nanoparticles, and biomolecules. We conclude by discussing several ways in which lensless imaging and sensing might develop in the near future.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Hooke R.1.  1665. Micrographia London: R. Soc. [Google Scholar]
  2. Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. 2.  2013. Cellphone-based devices for bioanalytical sciences. Anal. Bioanal. Chem. 406:3263–77 [Google Scholar]
  3. Ozcan A.3.  2014. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip 14:3187–94 [Google Scholar]
  4. Greenbaum A, Ozcan A. 4.  2012. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. Opt. Expr. 20:3129–43 [Google Scholar]
  5. Greenbaum A, Sikora U, Ozcan A. 5.  2012. Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging. Lab Chip 12:1242–45 [Google Scholar]
  6. Greenbaum A, Feizi A, Akbari N, Ozcan A. 6.  2013. Wide-field computational color imaging using pixel super-resolved on-chip microscopy. Opt. Expr. 21:12469–83 [Google Scholar]
  7. Greenbaum A, Akbari N, Feizi A, Luo W, Ozcan A. 7.  2013. Field-portable pixel super-resolution colour microscope. PLOS ONE 8:e76475 [Google Scholar]
  8. Bishara W, Sikora U, Mudanyali O, Su T-W, Yaglidere O. 8.  et al. 2011. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip 11:1276–79 [Google Scholar]
  9. Bishara W, Sikora U, Mudanyali O, Su T-W, Yaglidere O. 9.  et al. 2011. Handheld, lensless microscope identifies malaria parasites. SPIE Newsroom Aug. 5. http://spie.org/x51571.xml [Google Scholar]
  10. Su T-W, Xue L, Ozcan A. 10.  2012. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. PNAS 109:16018–22 [Google Scholar]
  11. Su T-W, Choi I, Feng J, Huang K, McLeod E, Ozcan A. 11.  2013. Sperm trajectories form chiral ribbons. Sci. Rep. 3:1664 [Google Scholar]
  12. Seo S, Isikman SO, Sencan I, Mudanyali O, Su T-W. 12.  et al. 2010. High-throughput lens-free blood analysis on a chip. Anal. Chem. 82:4621–27 [Google Scholar]
  13. Arpali SA, Arpali C, Coskun AF, Chiang H-H, Ozcan A. 13.  2012. High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging. Lab Chip 12:4968–71 [Google Scholar]
  14. Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I. 14.  et al. 2010. Lensfree microscopy on a cellphone. Lab Chip 10:1787–92 [Google Scholar]
  15. Navruz I, Coskun AF, Wong J, Mohammad S, Tseng D. 15.  et al. 2013. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. Lab Chip 13:4015–23 [Google Scholar]
  16. Zhu H, Yaglidere O, Su T-W, Tseng D, Ozcan A. 16.  2011. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11:315–22 [Google Scholar]
  17. Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D. 17.  et al. 2013. Cost-effective and rapid blood analysis on a cell-phone. Lab Chip 13:1282–88 [Google Scholar]
  18. Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A. 18.  2012. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip 12:2678–86 [Google Scholar]
  19. Coskun AF, Nagi R, Sadeghi K, Phillips S, Ozcan A. 19.  2013. Albumin testing in urine using a smart-phone. Lab Chip 13:4231–38 [Google Scholar]
  20. Wei Q, Qi H, Luo W, Tseng D, Ki SJ. 20.  et al. 2013. Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano 7:9147–55 [Google Scholar]
  21. Ludwig SKJ, Zhu H, Phillips S, Shiledar A, Feng S. 21.  et al. 2014. Cellphone-based detection platform for RBST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay. Anal. Bioanal. Chem. 406:6857–66 [Google Scholar]
  22. Wei Q, Luo W, Chiang S, Kappel T, Mejia C. 22.  et al. 2014. Imaging and sizing of single DNA molecules on a mobile phone. ACS Nano 8:12725–33 [Google Scholar]
  23. Koydemir HC, Göröcs Z, Tseng D, Cortazar B, Feng S. 23.  et al. 2015. Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning. Lab Chip 15:1284–93 [Google Scholar]
  24. Berg B, Cortazar B, Tseng D, Ozkan H, Feng S. 24.  et al. 2015. Cellphone-based hand-held microplate reader for point-of-care testing of enzyme-linked immunosorbent assays. ACS Nano 9: 7857–66 [Google Scholar]
  25. Cybulski JS, Clements J, Prakash M. 25.  2014. Foldscope: origami-based paper microscope. PLOS ONE 9:e98781 [Google Scholar]
  26. Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. 26.  2009. Mobile phone based clinical microscopy for global health applications. PLOS ONE 4:e6320 [Google Scholar]
  27. D'Ambrosio MV, Bakalar M, Bennuru S, Reber C, Skandarajah A. 27.  et al. 2015. Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci. Transl. Med. 7:286re4 [Google Scholar]
  28. Maamari RN, Ausayakhun S, Margolis TP, Fletcher DA, Keenan JD. 28.  2014. Novel telemedicine device for diagnosis of corneal abrasions and ulcers in resource-poor settings. JAMA Ophthalmol. 132:894–95 [Google Scholar]
  29. Switz NA, D'Ambrosio MV, Fletcher DA. 29.  2014. Low-cost mobile phone microscopy with a reversed mobile phone camera lens. PLOS ONE 9:e95330 [Google Scholar]
  30. Maamari RN, Keenan JD, Fletcher DA, Margolis TP. 30.  2014. A mobile phone–based retinal camera for portable wide field imaging. Br. J. Ophthalmol. 98:438–41 [Google Scholar]
  31. Lee S, Oncescu V, Mancuso M, Mehta S, Erickson D. 31.  2014. A smartphone platform for the quantification of vitamin D levels. Lab Chip 14:1437–42 [Google Scholar]
  32. Jiang L, Mancuso M, Lu Z, Akar G, Cesarman E, Erickson D. 32.  2014. Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics. Sci. Rep. 4:4137 [Google Scholar]
  33. Oncescu V, Mancuso M, Erickson D. 33.  2014. Cholesterol testing on a smartphone. Lab Chip 14:759–63 [Google Scholar]
  34. Oncescu V, O'Dell D, Erickson D. 34.  2013. Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip 13:3232–38 [Google Scholar]
  35. McLeod E, Wei Q, Ozcan A. 35.  2015. Democratization of nanoscale imaging and sensing tools using photonics. Anal. Chem. 87:6434–45 [Google Scholar]
  36. Ozcan A, Demirci U. 36.  2007. Ultra wide-field lens-free monitoring of cells on-chip. Lab Chip 8:98–106 [Google Scholar]
  37. Seo S, Su T-W, Tseng DK, Erlinger A, Ozcan A. 37.  2009. Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab Chip 9:777–87 [Google Scholar]
  38. Goodman JW.38.  2000. Statistical Optics New York: Wiley572, 1st ed. [Google Scholar]
  39. Su T-W, Seo S, Erlinger A, Ozcan A. 39.  2009. High-throughput lensfree imaging and characterization of a heterogeneous cell solution on a chip. Biotechnol. Bioeng. 102:856–68 [Google Scholar]
  40. Stybayeva G, Mudanyali O, Seo S, Silangcruz J, Macal M. 40.  et al. 2010. Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function. Anal. Chem. 82:3736–44 [Google Scholar]
  41. Tanaka T, Saeki T, Sunaga Y, Matsunaga T. 41.  2010. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging. Biosens. Bioelectron. 26:1460–65 [Google Scholar]
  42. Zhang X, Khimji I, Gurkan UA, Safaee H, Catalano PN. 42.  et al. 2011. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting. Lab Chip 11:2535–40 [Google Scholar]
  43. Moscelli N, van den Driesche S, Witarski W, Pastorekova S, Vellekoop MJ. 43.  2011. An imaging system for real-time monitoring of adherently grown cells. Sens. Actuators A 172:175–80 [Google Scholar]
  44. Kim SB, Bae H, Cha JM, Moon SJ, Dokmeci MR. 44.  et al. 2011. A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging. Lab Chip 11:1801–7 [Google Scholar]
  45. Jin G, Yoo I-H, Pack SP, Yang J-W, Ha U-H. 45.  et al. 2012. Lens-free shadow image based high-throughput continuous cell monitoring technique. Biosens. Bioelectron. 38:126–31 [Google Scholar]
  46. Dolega ME, Allier C, Kesavan SV, Gerbaud S, Kermarrec F. 46.  et al. 2013. Label-free analysis of prostate acini-like 3D structures by lensfree imaging. Biosens. Bioelectron. 49:176–83 [Google Scholar]
  47. Kesavan SV, Momey F, Cioni O, David-Watine B, Dubrulle N. 47.  et al. 2014. High-throughput monitoring of major cell functions by means of lensfree video microscopy. Sci. Rep. 4:5942 [Google Scholar]
  48. Kwak YH, Lee J, Lee J, Kwak SH, Oh S. 48.  et al. 2014. A simple and low-cost biofilm quantification method using LED and CMOS image sensor. J. Microbiol. Methods 107:150–56 [Google Scholar]
  49. Penwill LA, Batten GE, Castagnetti S, Shaw AM. 49.  2014. Growth phenotype screening of Schizosaccharomyces pombe using a lensless microscope. Biosens. Bioelectron. 54:345–50 [Google Scholar]
  50. Pushkarsky I, Liu Y, Weaver W, Su T-W, Mudanyali O. 50.  et al. 2014. Automated single-cell motility analysis on a chip using lensfree microscopy. Sci. Rep. 4:4717 [Google Scholar]
  51. Musayev J, Altiner C, Adiguzel Y, Kulah H, Eminoglu S, Akin T. 51.  2014. Capturing and detection of MCF-7 breast cancer cells with a CMOS image sensor. Sens. Actuators A 215:105–14 [Google Scholar]
  52. Roy M, Seo D, Oh C-H, Nam M-H, Kim YJ, Seo S. 52.  2015. Low-cost telemedicine device performing cell and particle size measurement based on lens-free shadow imaging technology. Biosens. Bioelectron. 67:715–23 [Google Scholar]
  53. Tsai H-F, Tsai Y-C, Yagur-Kroll S, Palevsky N, Belkin S, Cheng J-Y. 53.  2015. Water pollutant monitoring by a whole cell array through lens-free detection on CCD. Lab Chip 15:1472–80 [Google Scholar]
  54. Kesavan SV, Navarro FP, Menneteau M, Mittler F, David-Watine B. 54.  et al. 2014. Real-time label-free detection of dividing cells by means of lensfree video-microscopy. J. Biomed. Opt. 19:036004 [Google Scholar]
  55. Cui X, Lee LM, Heng X, Zhong W, Sternberg PW. 55.  et al. 2008. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. PNAS 105:10670–75 [Google Scholar]
  56. Lee LM, Cui X, Yang C. 56.  2009. The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts. Biomed. Microdevices 11:951–58 [Google Scholar]
  57. Coskun AF, Su T-W, Ozcan A. 57.  2010. Wide field-of-view lens-free fluorescent imaging on a chip. Lab Chip 10:824–27 [Google Scholar]
  58. Coskun AF, Sencan I, Su T-W, Ozcan A. 58.  2010. Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects. Opt. Expr. 18:10510–23 [Google Scholar]
  59. Shanmugam A, Salthouse C. 59.  2014. Lensless fluorescence imaging with height calculation. J. Biomed. Opt. 19:016002 [Google Scholar]
  60. Coskun AF, Sencan I, Su T-W, Ozcan A. 60.  2011. Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip. Analyst 136:3512–18 [Google Scholar]
  61. Martinelli L, Choumane H, Ha K-N, Sagarzazu G, Goutel C. 61.  et al. 2007. Sensor-integrated fluorescent microarray for ultrahigh sensitivity direct-imaging bioassays: role of a high rejection of excitation light. Appl. Phys. Lett. 91:083901 [Google Scholar]
  62. Ah Lee S, Ou X, Lee JE, Yang C. 62.  2013. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor. Opt. Lett. 38:1817–19 [Google Scholar]
  63. Coskun AF, Sencan I, Su T-W, Ozcan A. 63.  2011. Lensfree fluorescent on-chip imaging of transgenic Caenorhabditis elegans over an ultra-wide field-of-view. PLOS ONE 6:e15955 [Google Scholar]
  64. Khademhosseinieh B, Sencan I, Biener G, Su T-W, Coskun AF. 64.  et al. 2010. Lensfree on-chip imaging using nanostructured surfaces. Appl. Phys. Lett. 96:171106 [Google Scholar]
  65. Khademhosseinieh B, Biener G, Sencan I, Ozcan A. 65.  2010. Lensfree color imaging on a nanostructured chip using compressive decoding. Appl. Phys. Lett. 97:211112 [Google Scholar]
  66. Han C, Pang S, Bower DV, Yiu P, Yang C. 66.  2013. Wide field-of-view on-chip Talbot fluorescence microscopy for longitudinal cell culture monitoring from within the incubator. Anal. Chem. 85:2356–60 [Google Scholar]
  67. Richardson WH.67.  1972. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62:55–59 [Google Scholar]
  68. Lucy LB.68.  1974. An iterative technique for the rectification of observed distributions. Astron. J. 79:745 [Google Scholar]
  69. Sencan I, Coskun AF, Sikora U, Ozcan A. 69.  2014. Spectral demultiplexing in holographic and fluorescent on-chip microscopy. Sci. Rep. 4:3760 [Google Scholar]
  70. Gabor D.70.  1948. A new microscopic principle. Nature 161:777–78 [Google Scholar]
  71. Göröcs Z, Ozcan A. 71.  2013. On-chip biomedical imaging. Biomed. Eng. IEEE Rev. 6:29–46 [Google Scholar]
  72. Goodman J.72.  2004. Introduction to Fourier Optics Greenwood Village, CO: Roberts491, 3rd ed. [Google Scholar]
  73. Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I. 73.  et al. 2010. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10:1417–28 [Google Scholar]
  74. Ozcan A.74.  2005. Non-destructive characterization tools based on spectral interferometry and minimum phase functions PhD thesis, Dep. Electr. Eng., Stanford Univ., Stanford, CA [Google Scholar]
  75. Papoulis A.75.  1975. A new algorithm in spectral analysis and band-limited extrapolation. IEEE Trans. Circuits Syst. 22:735–42 [Google Scholar]
  76. Repetto L, Piano E, Pontiggia C. 76.  2004. Lensless digital holographic microscope with light-emitting diode illumination. Opt. Lett. 29:1132–34 [Google Scholar]
  77. Hardie RC.77.  1998. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system. Opt. Eng. 37:247–60 [Google Scholar]
  78. Barron JL, Fleet DJ, Beauchemin SS, Burkitt TA. 78.  1992. Performance of optical flow techniques. Int. J. Comput. Vis. 12:43–77 [Google Scholar]
  79. Elad M, Hel-Or Y. 79.  2001. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Trans. Image Process. 10:1187–93 [Google Scholar]
  80. Bishara W, Su T-W, Coskun AF, Ozcan A. 80.  2010. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt. Expr. 18:11181–91 [Google Scholar]
  81. Bishara W, Zhu H, Ozcan A. 81.  2010. Holographic opto-fluidic microscopy. Opt. Expr. 18:27499–510 [Google Scholar]
  82. Greenbaum A, Luo W, Khademhosseinieh B, Su T-W, Coskun AF, Ozcan A. 82.  2013. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Sci. Rep. 3:1717 [Google Scholar]
  83. McLeod E, Luo W, Mudanyali O, Greenbaum A, Ozcan A. 83.  2013. Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses. Lab Chip 13:2028–35 [Google Scholar]
  84. Greenbaum A, Luo W, Su T-W, Göröcs Z, Xue L. 84.  et al. 2012. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat. Methods 9:889–95 [Google Scholar]
  85. Zheng G, Lee SA, Yang S, Yang C. 85.  2010. Sub-pixel resolving optofluidic microscope for on-chip cell imaging. Lab Chip 10:3125–29 [Google Scholar]
  86. Huang X, Guo J, Wang X, Yan M, Kang Y, Yu H. 86.  2014. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing. PLOS ONE 9:e104539 [Google Scholar]
  87. Zheng G, Lee SA, Antebi Y, Elowitz MB, Yang C. 87.  2011. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM). PNAS 108:16889–94 [Google Scholar]
  88. Lee SA, Zheng G, Mukherjee N, Yang C. 88.  2012. On-chip continuous monitoring of motile microorganisms on an ePetri platform. Lab Chip 12:2385–90 [Google Scholar]
  89. Han C, Yang C. 89.  2014. Viral plaque analysis on a wide field-of-view, time-lapse, on-chip imaging platform. Analyst 139:3727–34 [Google Scholar]
  90. Lee SA, Erath J, Zheng G, Ou X, Willems P. 90.  et al. 2014. Imaging and identification of waterborne parasites using a chip-scale microscope. PLOS ONE 9:e89712 [Google Scholar]
  91. Isikman SO, Bishara W, Mavandadi S, Yu FW, Feng S. 91.  et al. 2011. Lens-free optical tomographic microscope with a large imaging volume on a chip. PNAS 108:7296–301 [Google Scholar]
  92. Isikman SO, Bishara W, Ozcan A. 92.  2011. Partially coherent lensfree tomographic microscopy. Appl. Opt. 50:H253–64 [Google Scholar]
  93. Meng H, Hussain F. 93.  1995. In-line recording and off-axis viewing technique for holographic particle velocimetry. Appl. Opt. 34:1827–40 [Google Scholar]
  94. Su T-W, Isikman SO, Bishara W, Tseng D, Erlinger A, Ozcan A. 94.  2010. Multi-angle lensless digital holography for depth resolved imaging on a chip. Opt. Expr. 18:9690–711 [Google Scholar]
  95. Brooks RA, Di Chiro G. 95.  1975. Theory of image reconstruction in computed tomography. Radiology 117:561–72 [Google Scholar]
  96. Isikman SO, Bishara W, Sikora U, Yaglidere O, Yeah J, Ozcan A. 96.  2011. Field-portable lensfree tomographic microscope. Lab Chip 11:2222–30 [Google Scholar]
  97. Isikman SO, Greenbaum A, Luo W, Coskun AF, Ozcan A. 97.  2012. Giga-pixel lensfree holographic microscopy and tomography using color image sensors. PLOS ONE 7:e45044 [Google Scholar]
  98. Isikman SO, Bishara W, Zhu H, Ozcan A. 98.  2011. Optofluidic tomography on a chip. Appl. Phys. Lett. 98:161109 [Google Scholar]
  99. Greenbaum A, Zhang Y, Feizi A, Chung P-L, Luo W. 99.  et al. 2014. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med. 6:267ra175 [Google Scholar]
  100. Biener G, Greenbaum A, Isikman SO, Lee K, Tseng D, Ozcan A. 100.  2011. Combined reflection and transmission microscope for telemedicine applications in field settings. Lab Chip. 11:2738–43 [Google Scholar]
  101. Gerchberg R, Saxton O. 101.  1972. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35:237–46 [Google Scholar]
  102. Fienup JR.102.  1982. Phase retrieval algorithms: a comparison. Appl. Opt. 21:2758–69 [Google Scholar]
  103. Weidling J, Isikman SO, Greenbaum A, Ozcan A, Botvinick E. 103.  2012. Lens-free computational imaging of capillary morphogenesis within three-dimensional substrates. J. Biomed. Opt. 17:126018 [Google Scholar]
  104. Teague MR.104.  1983. Deterministic phase retrieval: a Green's function solution. J. Opt. Soc. Am. 73:1434–41 [Google Scholar]
  105. Waller L, Tian L, Barbastathis G. 105.  2010. Transport of intensity imaging with higher order derivatives. Opt. Expr. 18:12552–61 [Google Scholar]
  106. Luo W, Greenbaum A, Zhang Y, Ozcan A. 106.  2015. Synthetic aperture-based on-chip microscopy. Light Sci. Appl. 4:e261 [Google Scholar]
  107. Göröcs Z, Orzó L, Kiss M, Tóth V, Tőkés S. 107.  2010. In-line color digital holographic microscope for water quality measurements. Proc. SPIE 7376:737614 [Google Scholar]
  108. Dijkstra EW.108.  1959. A note on two problems in connexion with graphs. Numer. Math. 1:269–71 [Google Scholar]
  109. Kim D-S, Choi J-H, Nam M-H, Yang J-W, Pak JJ, Seo S. 109.  2011. LED and CMOS image sensor based hemoglobin concentration measurement technique. Sens. Actuators B 157:103–9 [Google Scholar]
  110. Lee J, Kwak YH, Paek S-H, Han S, Seo S. 110.  2014. CMOS image sensor–based ELISA detector using lens-free shadow imaging platform. Sens. Actuators B 196:511–17 [Google Scholar]
  111. Pang S, Cui X, DeModena J, Wang YM, Sternberg P, Yang C. 111.  2010. Implementation of a color-capable optofluidic microscope on a RGB CMOS color sensor chip substrate. Lab Chip 10:411–14 [Google Scholar]
  112. Lee SA, Leitao R, Zheng G, Yang S, Rodriguez A, Yang C. 112.  2011. Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis. PLOS ONE 6:e26127 [Google Scholar]
  113. Isikman SO, Sencan I, Mudanyali O, Bishara W, Oztoprak C, Ozcan A. 113.  2010. Color and monochrome lensless on-chip imaging of Caenorhabditis elegans over a wide field-of-view. Lab Chip 10:1109–12 [Google Scholar]
  114. Arlett JL, Myers EB, Roukes ML. 114.  2011. Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6:203–15 [Google Scholar]
  115. Su J, Goldberg AFG, Stoltz BM. 115.  2016. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci. Appl. 5:e16001 [Google Scholar]
  116. Mudanyali O, Bishara W, Ozcan A. 116.  2011. Lensfree super-resolution holographic microscopy using wetting films on a chip. Opt. Expr. 19:17378–89 [Google Scholar]
  117. Mudanyali O, McLeod E, Luo W, Greenbaum A, Coskun AF. 117.  et al. 2013. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses. Nat. Photonics 7:247–54 [Google Scholar]
  118. Allier CP, Hiernard G, Poher V, Dinten JM. 118.  2010. Bacteria detection with thin wetting film lensless imaging. Biomed. Opt. Expr. 1:762–70 [Google Scholar]
  119. Hennequin Y, Allier CP, McLeod E, Mudanyali O, Migliozzi D. 119.  et al. 2013. Optical detection and sizing of single nanoparticles using continuous wetting films. ACS Nano 7:7601–9 [Google Scholar]
  120. McLeod E, Nguyen C, Huang P, Luo W, Veli M, Ozcan A. 120.  2014. Tunable vapor-condensed nanolenses. ACS Nano 8:7340–49 [Google Scholar]
  121. McLeod E, Dincer TU, Veli M, Ertas YN, Nguyen C. 121.  et al. 2015. High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy. ACS Nano 9:3265–73 [Google Scholar]
  122. Berne BJ, Pecora R. 122.  2000. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics Mineola, NY: Courier Dover388 [Google Scholar]
  123. Filella M, Zhang J, Newman ME, Buffle J. 123.  1997. Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations. Colloids Surf. A 120:27–46 [Google Scholar]
  124. Filipe V, Hawe A, Jiskoot W. 124.  2010. Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 27:796–810 [Google Scholar]
  125. Saeki T, Hosokawa M, Lim T, Harada M, Matsunaga T, Tanaka T. 125.  2014. Digital cell counting device integrated with a single-cell array. PLOS ONE 9:e89011 [Google Scholar]
  126. Tanaka T, Sunaga Y, Hatakeyama K, Matsunaga T. 126.  2010. Single-cell detection using a thin film transistor photosensor with micro-partitions. Lab Chip 10:3348–54 [Google Scholar]
  127. Huang K-W, Su T-W, Ozcan A, Chiou P-Y. 127.  2013. Optoelectronic tweezers integrated with lensfree holographic microscopy for wide-field interactive cell and particle manipulation on a chip. Lab Chip 13:2278–84 [Google Scholar]
  128. Wei Q, McLeod E, Qi H, Wan Z, Sun R, Ozcan A. 128.  2013. On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography. Sci. Rep. 3:1699 [Google Scholar]
  129. Colle F, Vercruysse D, Peeters S, Liu C, Stakenborg T. 129.  et al. 2013. Lens-free imaging of magnetic particles in DNA assays. Lab Chip 13:4257–62 [Google Scholar]
  130. Bourquin Y, Reboud J, Wilson R, Zhang Y, Cooper JM. 130.  2011. Integrated immunoassay using tuneable surface acoustic waves and lensfree detection. Lab Chip 11:2725–30 [Google Scholar]
  131. Khademhosseinieh B, Biener G, Sencan I, Su T-W, Coskun AF, Ozcan A. 131.  2010. Lensfree sensing on a microfluidic chip using plasmonic nanoapertures. Appl. Phys. Lett. 97:221107 [Google Scholar]
  132. Cetin AE, Coskun AF, Galarreta BC, Huang M, Herman D. 132.  et al. 2014. Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci. Appl. 3:e122 [Google Scholar]
  133. Coskun AF, Cetin AE, Galarreta BC, Alvarez DA, Altug H, Ozcan A. 133.  2014. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci. Rep. 4:6789 [Google Scholar]
  134. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. 134.  1998. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–69 [Google Scholar]
  135. Rindzevicius T, Alaverdyan Y, Dahlin A, Höök F, Sutherland DS, Käll M. 135.  2005. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 5:2335–39 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error