Developmental biology has traditionally relied on qualitative analyses; recently, however, as in other fields of biology, researchers have become increasingly interested in acquiring quantitative knowledge about embryogenesis. Advances in fluorescence microscopy are enabling high-content imaging in live specimens. At the same time, microfluidics and automation technologies are increasing experimental throughput for studies of multicellular models of development. Furthermore, computer vision methods for processing and analyzing bioimage data are now leading the way toward quantitative biology. Here, we review advances in the areas of fluorescence microscopy, microfluidics, and data analysis that are instrumental to performing high-content, high-throughput studies in biology and specifically in development. We discuss a case study of how these techniques have allowed quantitative analysis and modeling of pattern formation in the embryo.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Teleman AA, Cohen SM. 1.  2000. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103:971–80 [Google Scholar]
  2. Kiehart DP, Galbraith CG, Edwards KA, Rickoll WL, Montague RA. 2.  2000. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149:471–90 [Google Scholar]
  3. Gong Y, Mo CH, Fraser SE. 3.  2004. Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature 430:689–93 [Google Scholar]
  4. Patel MR, Lehrman EK, Poon VY, Crump JG, Zhen M. 4.  et al. 2006. Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat. Neurosci. 9:1488–98 [Google Scholar]
  5. Verveer PJ, Swoger J, Pampaloni F, Greger K, Marcello M, Stelzer EHK. 5.  2007. High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nat. Methods 4:311–13 [Google Scholar]
  6. Zanacchi FC, Lavagnino Z, Donnorso MP, Del Bue A, Furia L. 6.  et al. 2011. Live-cell 3D super-resolution imaging in thick biological samples. Nat. Methods 8:1047–49 [Google Scholar]
  7. Hagerling R, Pollmann C, Andreas M, Schmidt C, Nurmi H. 7.  et al. 2013. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 32:629–44 [Google Scholar]
  8. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ. 8.  2013. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10:413–20 [Google Scholar]
  9. Reeves GT, Trisnadi N, Truong TV, Nahmad M, Katz S, Stathopoulos A. 9.  2012. Dorsal–ventral gene expression in the Drosophila embryo reflects the dynamics and precision of the dorsal nuclear gradient. Dev. Cell 22:544–57 [Google Scholar]
  10. Denk W, Strickler JH, Webb WW. 10.  1990. Two-photon laser scanning fluorescence microscopy. Science 248:73–76 [Google Scholar]
  11. McMahon A, Supatto W, Fraser SE, Stathopoulos A. 11.  2008. Dynamic analyses of Drosophila gastrulation provide insights into collective cell migration. Science 322:1546–50 [Google Scholar]
  12. Wang YC, Khan Z, Wieschaus EF. 12.  2013. Distinct Rap1 activity states control the extent of epithelial invagination via α-catenin. Dev. Cell 25:299–309 [Google Scholar]
  13. Shimozawa T, Yamagata K, Kondo T, Hayashi S, Shitamukai A. 13.  et al. 2013. Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging. PNAS 110:3399–404 [Google Scholar]
  14. Zsigmondy R, Alexander J. 14.  1909. Colloids and the Ultramicroscope: A Manual of Colloid Chemistry and Ultramicroscopy New York: Wiley245 [Google Scholar]
  15. Voie AH, Burns DH, Spelman FA. 15.  1993. Orthogonal-plane fluorescence optical sectioning: 3-dimensional imaging of macroscopic biological specimens. J. Microsc. 170:229–36 [Google Scholar]
  16. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK. 16.  2004. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–9 [Google Scholar]
  17. Holekamp TF, Turaga D, Holy TE. 17.  2008. Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57:661–72 [Google Scholar]
  18. Truong TV, Supatto W, Koos DS, Choi JM, Fraser SE. 18.  2011. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8:757–60 [Google Scholar]
  19. Keller PJ, Schmidt AD, Santella A, Khairy K, Bao ZR. 19.  et al. 2010. Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy. Nat. Methods 7:637–42 [Google Scholar]
  20. Tomer R, Khairy K, Amat F, Keller PJ. 20.  2012. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9:755–63 [Google Scholar]
  21. Krzic U, Gunther S, Saunders TE, Streichan SJ, Hufnagel L. 21.  2012. Multiview light-sheet microscope for rapid in toto imaging. Nat. Methods 9:730–33 [Google Scholar]
  22. Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA. 22.  et al. 2011. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8:417–23 [Google Scholar]
  23. Chen BC, Legant WR, Wang K, Shao L, Milkie DE. 23.  et al. 2014. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:6208 [Google Scholar]
  24. Pitrone PG, Schindelin J, Stuyvenberg L, Preibisch S, Weber M. 24.  et al. 2013. OpenSPIM: an open-access light-sheet microscopy platform. Nat. Methods 10:598–99 [Google Scholar]
  25. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE. 25.  2001. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3:335–73 [Google Scholar]
  26. Beebe DJ, Mensing GA, Walker GM. 26.  2002. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4:261–86 [Google Scholar]
  27. El-Ali J, Sorger PK, Jensen KF. 27.  2006. Cells on chips. Nature 442:403–11 [Google Scholar]
  28. Campos-Ortega JA, Hartenstein V. 28.  1985. The Embryonic Development of Drosophila melanogaster Berlin: Springer405 [Google Scholar]
  29. Bate M, Martinez Arias A. 29.  The Development of Drosophila melanogaster. 2 vol. Cold Spring Harbor, NY: Cold Spring Harb. Lab1558 [Google Scholar]
  30. Furlong EEM, Profitt D, Scott MP. 30.  2001. Automated sorting of live transgenic embryos. Nat. Biotechnol. 19:153–56 [Google Scholar]
  31. Chen CC, Zappe S, Sahin O, Zhang XJ, Fish M. 31.  et al. 2004. Design and operation of a microfluidic sorter for Drosophila embryos. Sens. Actuators B 102:59–66 [Google Scholar]
  32. Delubac D, Highley CB, Witzberger-Krajcovic M, Ayoob JC, Furbee EC. 32.  et al. 2012. Microfluidic system with integrated microinjector for automated Drosophila embryo injection. Lab Chip 12:4911–19 [Google Scholar]
  33. Chung K, Kim Y, Kanodia JS, Gong E, Shvartsman SY, Lu H. 33.  2011. A microfluidic array for large-scale ordering and orientation of embryos. Nat. Methods 8:171–76 [Google Scholar]
  34. Levario TJ, Zhan M, Lim B, Shvartsman SY, Lu H. 34.  2013. Microfluidic trap array for massively parallel imaging of Drosophila embryos. Nat. Protoc. 8:721–36 [Google Scholar]
  35. Levario TJ, Zhao C, Rouse T, Stanislav Y, Shvartsman SY, Lu H. 34a.  2016. An integrated platform for large-scale data collection and precise perturbation of live Drosophila embryos. Sci. Rep. 6:21366 [Google Scholar]
  36. Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF. 35.  2005. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434:1134–38 [Google Scholar]
  37. Dagani GT, Monzo K, Fakhoury JR, Chen CC, Sisson JC, Zhang XJ. 36.  2007. Microfluidic self-assembly of live Drosophila embryos for versatile high-throughput analysis of embryonic morphogenesis. Biomed. Microdevices 9:681–94 [Google Scholar]
  38. Lucchetta EM, Vincent ME, Ismagilov RF. 37.  2008. A precise Bicoid gradient is nonessential during cycles 11–13 for precise patterning in the Drosophila blastoderm. PLOS ONE 3:e3651 [Google Scholar]
  39. McGorty R, Liu H, Kamiyama D, Dong ZQ, Guo S, Huang B. 38.  2015. Open-top selective plane illumination microscope for conventionally mounted specimens. Opt. Express 23:16142–53 [Google Scholar]
  40. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD. 39.  et al. 2000. The genome sequence of Drosophila melanogaster. Science 287:2185–95 [Google Scholar]
  41. Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T. 40.  et al. 1999. The Berkeley Drosophila Genome Project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153:135–77 [Google Scholar]
  42. Witzberger MM, Fitzpatrick JAJ, Crowley JC, Minden JS. 41.  2008. End-on imaging: a new perspective on dorsoventral development in Drosophila embryos. Dev. Dyn. 237:3252–59 [Google Scholar]
  43. Badre NH, Martin ME, Cooper RL. 42.  2005. The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae. Comp. Biochem. Physiol. A 140:363–76 [Google Scholar]
  44. Yan YJ, Jiang LW, Aufderheide KJ, Wright GA, Terekhov A. 43.  et al. 2014. A microfluidic-enabled mechanical microcompressor for the immobilization of live single-and multi-cellular specimens. Microsc. Microanal. 20:141–51 [Google Scholar]
  45. Ghaemi R, Rezai P, Iyengar BG, Selvaganapathy PR. 44.  2015. Microfluidic devices for imaging neurological response of Drosophila melanogaster larva to auditory stimulus. Lab Chip 15:1116–22 [Google Scholar]
  46. Ghannad-Rezaie M, Wang X, Mishra B, Collins C, Chronis N. 45.  2012. Microfluidic chips for in vivo imaging of cellular responses to neural injury in Drosophila larvae. PLOS ONE 7:e29869 [Google Scholar]
  47. Mondal S, Ahlawat S, Rau K, Venkataraman V, Koushika SP. 46.  2011. Imaging in vivo neuronal transport in genetic model organisms using microfluidic devices. Traffic 12:372–85 [Google Scholar]
  48. Zon LI, Peterson RT. 47.  2005. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4:35–44 [Google Scholar]
  49. Lieschke GJ, Currie PD. 48.  2007. Animal models of human disease: Zebrafish swim into view. Nat. Rev. Genet. 8:353–67 [Google Scholar]
  50. Yang F, Chen ZG, Pan JB, Li XC, Feng J, Yang H. 49.  2011. An integrated microfluidic array system for evaluating toxicity and teratogenicity of drugs on embryonic zebrafish developmental dynamics. Biomicrofluidics 5:24115 [Google Scholar]
  51. Choudhury D, van Noort D, Iliescu C, Zheng BX, Poon KL. 50.  et al. 2012. Fish and chips: a microfluidic perfusion platform for monitoring zebrafish development. Lab Chip 12:892–900 [Google Scholar]
  52. Bischel LL, Mader BR, Green JM, Huttenlocher A, Beebe DJ. 51.  2013. Zebrafish Entrapment By Restriction Array (ZEBRA) device: a low-cost, agarose-free zebrafish mounting technique for automated imaging. Lab Chip 13:1732–36 [Google Scholar]
  53. Zheng CH, Zhou HW, Liu XX, Pang YH, Zhang B, Huang YY. 52.  2014. Fish in chips: an automated microfluidic device to study drug dynamics in vivo using zebrafish embryos. Chem. Commun. 50:981–84 [Google Scholar]
  54. Li YB, Yang F, Chen ZG, Shi LJ, Zhang BB. 53.  et al. 2014. Zebrafish on a chip: a novel platform for real-time monitoring of drug-induced developmental toxicity. PLOS ONE 9:e94792 [Google Scholar]
  55. Li YB, Yang XJ, Chen ZG, Zhang BB, Pan JB. 54.  et al. 2015. Comparative toxicity of lead (Pb2+), copper (Cu2+), and mixtures of lead and copper to zebrafish embryos on a microfluidic chip. Biomicrofluidics 9:024105 [Google Scholar]
  56. Wielhouwer EM, Ali S, Al-Afandi A, Blom MT, Riekerink MBO. 55.  et al. 2011. Zebrafish embryo development in a microfluidic flow-through system. Lab Chip 11:1815–24 [Google Scholar]
  57. Erickstad M, Hale LA, Chalasani SH, Groisman A. 56.  2015. A microfluidic system for studying the behavior of zebrafish larvae under acute hypoxia. Lab Chip 15:857–66 [Google Scholar]
  58. Akagi J, Khoshmanesh K, Hall CJ, Crosier KE, Crosier PS. 57.  et al. 2012. Fish on chips: automated microfluidic living embryo arrays. Procedia Eng. 47:84–87 [Google Scholar]
  59. Akagi J, Zhu F, Hall CJ, Crosier KE, Crosier PS, Wlodkowic D. 58.  2014. Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology. Cytometry A 85:537–47 [Google Scholar]
  60. Lin XD, Wang SQ, Yu XD, Liu ZG, Wang F. 59.  et al. 2015. High-throughput mapping of brain-wide activity in awake and drug-responsive vertebrates. Lab Chip 15:680–89 [Google Scholar]
  61. Huang SH, Huang KS, Yu CH, Gong HY. 60.  2013. Metabolic profile analysis of a single developing zebrafish embryo via monitoring of oxygen consumption rates within a microfluidic device. Biomicrofluidics 7:064107 [Google Scholar]
  62. Zhu F, Baker D, Skommer J, Sewell M, Wlodkowic D. 61.  2015. Real-time 2D visualization of metabolic activities in zebrafish embryos using a microfluidic technology. Cytometry A 87:446–50 [Google Scholar]
  63. Pardo-Martin C, Allalou A, Medina J, Eimon PM, Wahlby C, Yanik MF. 62.  2013. High-throughput hyperdimensional vertebrate phenotyping. Nat. Commun. 4:1467 [Google Scholar]
  64. Behrndt M, Salbreux G, Campinho P, Hauschild R, Oswald F. 63.  et al. 2012. Forces driving epithelial spreading in zebrafish gastrulation. Science 338:257–60 [Google Scholar]
  65. Wang KIK, Salcic Z, Yeh J, Akagi J, Zhu F. 64.  et al. 2013. Toward embedded laboratory automation for smart lab-on-a-chip embryo arrays. Biosens. Bioelectron. 48:188–96 [Google Scholar]
  66. White JG, Southgate E, Thomson JN, Brenner S. 65.  1986. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. B 314:1–340 [Google Scholar]
  67. 66. C. elegans Sequencing Consortium 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–18 [Google Scholar]
  68. Crane MM, Stirman JN, Ou CY, Kurshan PT, Rehg JM. 67.  et al. 2012. Autonomous screening of C. elegans identifies genes implicated in synaptogenesis. Nat. Methods 9:977–80 [Google Scholar]
  69. Cáceres ID, Valmas N, Hilliard MA, Lu H. 68.  2012. Laterally orienting C. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies. PLOS ONE 7:e35307 [Google Scholar]
  70. Guo SX, Bourgeois F, Chokshi T, Durr NJ, Hilliard MA. 69.  et al. 2008. Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies. Nat. Methods 5:531–33 [Google Scholar]
  71. Samara C, Rohde CB, Gilleland CL, Norton S, Haggarty SJ, Yanik MF. 70.  2010. Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. PNAS 107:18342–47 [Google Scholar]
  72. Gokce SK, Guo SX, Ghorashian N, Everett WN, Jarrell T. 71.  et al. 2014. A fully automated microfluidic femtosecond laser axotomy platform for nerve regeneration studies in C. elegans. PLOS ONE 9:e113917 [Google Scholar]
  73. Krajniak J, Lu H. 72.  2010. Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies. Lab Chip 10:1862–68 [Google Scholar]
  74. Hulme SE, Shevkoplyas SS, McGuigan AP, Apfeld J, Fontana W, Whitesides GM. 73.  2010. Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans. Lab Chip 10:589–97 [Google Scholar]
  75. Nghe P, Boulineau S, Gude S, Recouvreux P, van Zon JS, Tans SJ. 74.  2013. Microfabricated polyacrylamide devices for the controlled culture of growing cells and developing organisms. PLOS ONE 8:e75537 [Google Scholar]
  76. Yu CC, Raizen DM, Fang-Yen C. 75.  2014. Multi-well imaging of development and behavior in Caenorhabditis elegans. J. Neurosci. Methods 223:35–39 [Google Scholar]
  77. Khoshmanesh K, Kiss N, Nahavandi S, Evans CW, Cooper JM. 76.  et al. 2011. Trapping and imaging of micron-sized embryos using dielectrophoresis. Electrophoresis 32:3129–32 [Google Scholar]
  78. Cornaglia M, Mouchiroud L, Marette A, Narasimhan S, Lehnert T. 77.  et al. 2015. An automated microfluidic platform for C. elegans embryo arraying, phenotyping, and long-term live imaging. Sci. Rep. 5:10192 [Google Scholar]
  79. Rohde CB, Zeng F, Gonzalez-Rubio R, Angel M, Yanik MF. 78.  2007. Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. PNAS 104:13891–95 [Google Scholar]
  80. Chung KH, Crane MM, Lu H. 79.  2008. Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat. Methods 5:637–43 [Google Scholar]
  81. Ai XN, Zhuo WP, Liang QL, McGrath PT, Lu H. 80.  2014. A high-throughput device for size based separation of C. elegans developmental stages. Lab Chip 14:1746–52 [Google Scholar]
  82. Aubry G, Zhan M, Lu H. 81.  2015. Hydrogel-droplet microfluidic platform for high-resolution imaging and sorting of early larval Caenorhabditis elegans. Lab Chip 15:1424–31 [Google Scholar]
  83. Wen H, Yu Y, Zhu GL, Jiang L, Qin JH. 82.  2015. A droplet microchip with substance exchange capability for the developmental study of C. elegans. Lab Chip 15:1905–11 [Google Scholar]
  84. Huang HY, Shen HH, Tien CH, Li CJ, Fan SK. 83.  et al. 2015. Digital microfluidic dynamic culture of mammalian embryos on an electrowetting on dielectric (EWOD) chip. PLOS ONE 10:e0124196 [Google Scholar]
  85. Pyne DG, Liu J, Abdelgawad M, Sun Y. 84.  2014. Digital microfluidic processing of mammalian embryos for vitrification. PLOS ONE 9:108128 [Google Scholar]
  86. Lai D, Ding J, Smith GW, Smith GD, Takayama S. 85.  2015. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification. Hum. Reprod. 30:37–45 [Google Scholar]
  87. Heo YS, Cabrera LM, Bormann CL, Shah CT, Takayama S, Smith GD. 86.  2010. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Hum. Reprod. 25:613–22 [Google Scholar]
  88. Esteves TC, van Rossem F, Nordhoff V, Schlatt S, Boiani M, Le Gac S. 87.  2013. A microfluidic system supports single mouse embryo culture leading to full-term development. R. Soc. Chem. Adv. 3:26451–58 [Google Scholar]
  89. Chung YH, Hsiao YH, Kao WL, Hsu CH, Yao DJ, Chen CC. 88.  2015. Microwells support high-resolution time-lapse imaging and development of preimplanted mouse embryos. Biomicrofluidics 9:022407 [Google Scholar]
  90. Moon SH, Ju J, Park SJ, Bae D, Chung HM, Lee SH. 89.  2014. Optimizing human embryonic stem cells differentiation efficiency by screening size-tunable homogenous embryoid bodies. Biomaterials 35:5987–97 [Google Scholar]
  91. Wilson JL, Suri S, Singh A, Rivet CA, Lu H, McDevitt TC. 90.  2014. Single-cell analysis of embryoid body heterogeneity using microfluidic trapping array. Biomed. Microdevices 16:79–90 [Google Scholar]
  92. Au SH, Chamberlain MD, Mahesh S, Sefton MV, Wheeler AR. 91.  2014. Hepatic organoids for microfluidic drug screening. Lab Chip 14:3290–99 [Google Scholar]
  93. Jeong GS, Song JH, Kang AR, Jun Y, Kim JH. 92.  et al. 2013. Surface tension–mediated, concave-microwell arrays for large-scale, simultaneous production of homogeneously sized embryoid bodies. Adv. Healthc. Mater. 2:119–25 [Google Scholar]
  94. Occhetta P, Centola M, Tonnarelli B, Redaelli A, Martin I, Rasponi M. 93.  2015. High-throughput microfluidic platform for 3D cultures of mesenchymal stem cells, towards engineering developmental processes. Sci. Rep 5:10288 [Google Scholar]
  95. Busch W, Moore BT, Martsberger B, Mace DL, Twigg RW. 94.  et al. 2012. A microfluidic device and computational platform for high-throughput live imaging of gene expression. Nat. Methods 9:1101–7 [Google Scholar]
  96. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M. 95.  et al. 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9:676–82 [Google Scholar]
  97. de Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S. 96.  et al. 2012. ICY: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9:690–96 [Google Scholar]
  98. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH. 97.  et al. 2006. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7:R100 [Google Scholar]
  99. Kankaanpää P, Paavolainen L, Tiitta S, Karjalainen M, Päivärinne J. 98.  et al. 2012. BioImageXD: an open, general-purpose and high-throughput image-processing platform. Nat. Methods 9:683–89 [Google Scholar]
  100. Pietzsch T, Saalfeld S, Preibisch S, Tomancak P. 99.  2015. BigDataViewer: visualization and processing for large image data sets. Nat. Methods 12:481–83 [Google Scholar]
  101. Peng HC, Ruan ZC, Long FH, Simpson JH, Myers EW. 100.  2010. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 28:348–53 [Google Scholar]
  102. Kutsuna N, Higaki T, Matsunaga S, Otsuki T, Yamaguchi M. 101.  et al. 2012. Active learning framework with iterative clustering for bioimage classification. Nat. Commun. 3:1032 [Google Scholar]
  103. Walter T, Shattuck DW, Baldock R, Bastin ME, Carpenter AE. 102.  et al. 2010. Visualization of image data from cells to organisms. Nat. Methods 7:S26–41 [Google Scholar]
  104. Luengo-Oroz MA, Ledesma-Carbayo MJ, Peyrieras N, Santos A. 103.  2011. Image analysis for understanding embryo development: a bridge from microscopy to biological insights. Curr. Opin. Genet. Dev. 21:630–37 [Google Scholar]
  105. Eliceiri KW, Berthold MR, Goldberg IG, Ibáñez L, Manjunath BS. 104.  et al. 2012. Biological imaging software tools. Nat. Methods 9:697–710 [Google Scholar]
  106. Hamilton NA.105.  2012. Open source tools for fluorescent imaging. Methods Enzymol. 504:393–417 [Google Scholar]
  107. Jug F, Pietzsch T, Preibisch S, Tomancak P. 106.  2014. Bioimage Informatics in the context of Drosophila research. Methods 68:60–73 [Google Scholar]
  108. Khan Z, Wang YC, Wieschaus EF, Kaschube M. 107.  2014. Quantitative 4D analyses of epithelial folding during Drosophila gastrulation. Development 141:2895–900 [Google Scholar]
  109. Peng HC, Long FF, Zhou J, Leung G, Eisen MB, Myers EW. 108.  2007. Automatic image analysis for gene expression patterns of fly embryos. BMC Cell Biol. 8:Suppl. 1S7 [Google Scholar]
  110. Bao ZR, Murray JI, Boyle T, Ooi SL, Sandel MJ, Waterston RH. 109.  2006. Automated cell lineage tracing in Caenorhabditis elegans. PNAS 103:2707–12 [Google Scholar]
  111. Amat F, Lemon W, Mossing DP, McDole K, Wan Y. 110.  et al. 2014. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data. Nat. Methods 11:951–58 [Google Scholar]
  112. Fowlkes CC, Luengo Hendriks CL, Keränen SVE, Weber GH, Rübel O. 111.  et al. 2008. A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm. Cell 133:364–74 [Google Scholar]
  113. Fowlkes CC, Eckenrode KB, Bragdon MD, Meyer M, Wunderlich Z. 112.  et al. 2011. A conserved developmental patterning network produces quantitatively different output in multiple species of Drosophila. PLOS Genet. 7:e1002346 [Google Scholar]
  114. Ronneberger O, Liu K, Rath M, Rueß D, Mueller T. 113.  et al. 2012. ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains. Nat. Methods 9:735–42 [Google Scholar]
  115. Kobitski AY, Otte JC, Takamiya M, Schäfer B, Mertes J. 114.  et al. 2015. An ensemble-averaged, cell density–based digital model of zebrafish embryo development derived from light-sheet microscopy data with single-cell resolution. Sci. Rep. 5:8601 [Google Scholar]
  116. Yin Z, Sadok A, Sailem H, McCarthy A, Xia XF. 115.  et al. 2013. A screen for morphological complexity identifies regulators of switch-like transitions between discrete cell shapes. Nat. Cell Biol. 15:860–71 [Google Scholar]
  117. Collinet C, Stoter M, Bradshaw CR, Samusik N, Rink JC. 116.  et al. 2010. Systems survey of endocytosis by multiparametric image analysis. Nature 464:243–49 [Google Scholar]
  118. Liberali P, Snijder B, Pelkmans L. 117.  2014. A hierarchical map of regulatory genetic interactions in membrane trafficking. Cell 157:1473–87 [Google Scholar]
  119. Murray JI, Bao Z, Boyle TJ, Boeck ME, Mericle BL. 118.  et al. 2008. Automated analysis of embryonic gene expression with cellular resolution in C. elegans. Nat. Methods 5:703–9 [Google Scholar]
  120. Danuser G.119.  2011. Computer vision in cell biology. Cell 147:973–78 [Google Scholar]
  121. Sommer C, Gerlich DW. 120.  2013. Machine learning in cell biology—teaching computers to recognize phenotypes. J. Cell Sci. 126:5529–39 [Google Scholar]
  122. Zhong Q, Busetto AG, Fededa JP, Buhmann JM, Gerlich DW. 121.  2012. Unsupervised modeling of cell morphology dynamics for time-lapse microscopy. Nat. Methods 9:711–13 [Google Scholar]
  123. Kim Y, Andreu MJ, Lim B, Chung K, Terayama M. 122.  et al. 2011. Gene regulation by MAPK substrate competition. Dev. Cell 20:880–87 [Google Scholar]
  124. Helman A, Lim B, Andreu MJ, Kim Y, Shestkin T. 123.  et al. 2012. RTK signaling modulates the Dorsal gradient. Development 139:3032–39 [Google Scholar]
  125. Kanodia JS, Liang HL, Kim Y, Lim B, Zhan M. 124.  et al. 2012. Pattern formation by graded and uniform signals in the early Drosophila embryo. Biophys. J. 102:427–33 [Google Scholar]
  126. Lim B, Samper N, Lu H, Rushlow C, Jimenez G, Shvartsman SY. 125.  2013. Kinetics of gene derepression by ERK signaling. PNAS 110:10330–35 [Google Scholar]
  127. Foo SM, Sun Y, Lim B, Ziukaite R, O'Brien K. 126.  et al. 2014. Zelda potentiates morphogen activity by increasing chromatin accessibility. Curr. Biol. 24:1341–46 [Google Scholar]
  128. Dsilva CJ, Lim B, Lu H, Singer A, Kevrekidis IG, Shvartsman SY. 127.  2015. Temporal ordering and registration of images in studies of developmental dynamics. Development 142:1717–24 [Google Scholar]
  129. Lim B, Dsilva CJ, Levario TJ, Lu H, Schupbach T. 128.  et al. 2015. Dynamics of inductive ERK signaling in the Drosophila embryo. Curr. Biol. 25:1784–90 [Google Scholar]
  130. Roth S, Lynch JA. 129.  2009. Symmetry breaking during Drosophila oogenesis. Cold Spring Harb. Perspect. Biol. 1:a001891 [Google Scholar]
  131. Moussian B, Roth S. 130.  2005. Dorsoventral axis formation in the Drosophila embryoshaping and transducing a morphogen gradient. Curr. Biol. 15:R887–99 [Google Scholar]
  132. Rushlow CA, Han K, Manley JL, Levine M. 131.  1989. The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila. Cell 59:1165–77 [Google Scholar]
  133. Steward R.132.  1989. Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function. Cell 59:1179–88 [Google Scholar]
  134. Roth S, Stein D, Nusslein-Volhard C. 133.  1989. A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59:1189–202 [Google Scholar]
  135. Markstein M, Zinzen R, Markstein P, Yee KP, Erives A. 134.  et al. 2004. A regulatory code for neurogenic gene expression in the Drosophila embryo. Development 131:2387–94 [Google Scholar]
  136. Stathopoulos A, Van Drenth M, Erives A, Markstein M, Levine M. 135.  2002. Whole-genome analysis of dorsal–ventral patterning in the Drosophila embryo. Cell 111:687–701 [Google Scholar]
  137. Markstein M, Markstein P, Markstein V, Levine MS. 136.  2002. Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. PNAS 99:763–68 [Google Scholar]
  138. Liang HL, Nien CY, Liu HY, Metzstein MM, Kirov N, Rushlow C. 137.  2008. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature 456:400–3 [Google Scholar]
  139. Nien CY, Liang HL, Butcher S, Sun Y, Fu S. 138.  et al. 2011. Temporal coordination of gene networks by Zelda in the early Drosophila embryo. PLOS Genet. 7:e1002339 [Google Scholar]
  140. Kanodia JS, Kim Y, Tomer R, Khan Z, Chung KH. 139.  et al. 2011. A computational statistics approach for estimating the spatial range of morphogen gradients. Development 138:4867–74 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error