1932

Abstract

Advances in our understanding of the structure and function of the lymphatic system have made it possible to identify its role in a variety of disease processes. Because it is involved not only in fluid homeostasis but also in immune cell trafficking, the lymphatic system can mediate and ultimately alter immune responses. Our rapidly increasing knowledge of the molecular control of the lymphatic system will inevitably lead to new and effective therapies for patients with lymphatic dysfunction. In this review, we discuss the molecular and physiological control of lymphatic vessel function and explore how the lymphatic system contributes to many disease processes, including cancer and lymphedema.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-112315-031200
2016-07-11
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/18/1/annurev-bioeng-112315-031200.html?itemId=/content/journals/10.1146/annurev-bioeng-112315-031200&mimeType=html&fmt=ahah

Literature Cited

  1. Zheng W, Aspelund A, Alitalo K. 1.  2014. Lymphangiogenic factors, mechanisms, and applications. J. Clin. Investig. 124:878–87 [Google Scholar]
  2. Banerji S, Ni J, Wang SX, Clasper S, Su J. 2.  et al. 1999. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 144:789–801 [Google Scholar]
  3. Wigle JT, Oliver G. 3.  1999. Prox1 function is required for the development of the murine lymphatic system. Cell 98:769–78 [Google Scholar]
  4. Martinez-Corral I, Ulvmar MH, Stanczuk L, Tatin F, Kizhatil K. 4.  et al. 2015. Nonvenous origin of dermal lymphatic vasculature. Circ. Res. 116:1649–54 [Google Scholar]
  5. Yang Y, Oliver G. 5.  2014. Development of the mammalian lymphatic vasculature. J. Clin. Investig. 124:888–97 [Google Scholar]
  6. Zawieja DC.6.  2009. Contractile physiology of lymphatics. Lymphat. Res. Biol. 7:87–96 [Google Scholar]
  7. Dieterich LC, Seidel CD, Detmar M. 7.  2014. Lymphatic vessels: new targets for the treatment of inflammatory diseases. Angiogenesis 17:359–71 [Google Scholar]
  8. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L. 8.  et al. 2001. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7:192–98 [Google Scholar]
  9. Mortimer PS, Rockson SG. 9.  2014. New developments in clinical aspects of lymphatic disease. J. Clin. Investig. 124:915–21 [Google Scholar]
  10. Hos D, Schlereth SL, Bock F, Heindl LM, Cursiefen C. 10.  2015. Antilymphangiogenic therapy to promote transplant survival and to reduce cancer metastasis: What can we learn from the eye?. Semin. Cell Dev. Biol. 38:117–30 [Google Scholar]
  11. Goel S, Gupta N, Walcott BP, Snuderl M, Kesler CT. 11.  et al. 2013. Effects of vascular-endothelial protein tyrosine phosphatase inhibition on breast cancer vasculature and metastatic progression. J. Natl. Cancer Inst. 105:1188–201 [Google Scholar]
  12. Pereira ER, Jones D, Jung K, Padera TP. 12.  2015. The lymph node microenvironment and its role in the progression of metastatic cancer. Semin. Cell Dev. Biol. 38:98–105 [Google Scholar]
  13. Card CM, Yu SS, Swartz MA. 13.  2014. Emerging roles of lymphatic endothelium in regulating adaptive immunity. J. Clin. Investig. 124:943–52 [Google Scholar]
  14. Tewalt EF, Cohen JN, Rouhani SJ, Guidi CJ, Qiao H. 14.  et al. 2012. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood 120:4772–82 [Google Scholar]
  15. Teijeira A, Russo E, Halin C. 15.  2014. Taking the lymphatic route: dendritic cell migration to draining lymph nodes. Semin. Immunopathol. 36:261–74 [Google Scholar]
  16. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E. 16.  et al. 2007. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 204:2349–62 [Google Scholar]
  17. Schmid-Schönbein GW.17.  1990. Microlymphatics and lymph flow. Physiol. Rev. 70:987–1028 [Google Scholar]
  18. Witte MH, Bernas MJ, Martin CP, Witte CL. 18.  2001. Lymphangiogenesis and lymphangiodysplasia: from molecular to clinical lymphology. Microsc. Res. Tech. 55:122–45 [Google Scholar]
  19. Pflicke H, Sixt M. 19.  2009. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J. Exp. Med. 206:2925–35 [Google Scholar]
  20. Randolph GJ, Angeli V, Swartz MA. 20.  2005. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5:617–28 [Google Scholar]
  21. Schumann K, Lämmermann T, Bruckner M, Legler DF, Polleux J. 21.  et al. 2010. Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32:703–13 [Google Scholar]
  22. Miteva DO, Rutkowski JM, Dixon BJ, Kilarski W, Shields JD, Swartz MA. 22.  2010. Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ. Res. 106:920–31 [Google Scholar]
  23. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I. 23.  et al. 2013. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339:328–32 [Google Scholar]
  24. von der Weid PY, Zawieja DC. 24.  2004. Lymphatic smooth muscle: the motor unit of lymph drainage. Int. J. Biochem. Cell Biol. 36:1147–53 [Google Scholar]
  25. Davis MJ, Rahbar E, Gashev AA, Zawieja DC, Moore JE Jr. 25.  2011. Determinants of valve gating in collecting lymphatic vessels from rat mesentery. Am. J. Physiol. Heart Circ. Physiol. 301:H48–60 [Google Scholar]
  26. Skalak TC, Schmid-Schönbein GW, Zweifach BW. 26.  1984. New morphological evidence for a mechanism of lymph formation in skeletal muscle. Microvasc. Res. 28:95–112 [Google Scholar]
  27. Eisenhoffer J, Kagal A, Klein T, Johnston MG. 27.  1995. Importance of valves and lymphangion contractions in determining pressure gradients in isolated lymphatics exposed to elevations in outflow pressure. Microvasc. Res. 49:97–110 [Google Scholar]
  28. Gasheva OY, Zawieja DC, Gashev AA. 28.  2006. Contraction-initiated NO-dependent lymphatic relaxation: a self-regulatory mechanism in rat thoracic duct. J. Physiol. 575:821–32 [Google Scholar]
  29. Mackay CR, Marston WL, Dudler L. 29.  1990. Naïve and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 171:801–17 [Google Scholar]
  30. Pugh CW, MacPherson GG, Steer HW. 30.  1983. Characterization of nonlymphoid cells derived from rat peripheral lymph. J. Exp. Med. 157:1758–79 [Google Scholar]
  31. Francisco LM, Sage PT, Sharpe AH. 31.  2010. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 236:219–42 [Google Scholar]
  32. Sharma P, Allison JP. 32.  2015. The future of immune checkpoint therapy. Science 348:56–61 [Google Scholar]
  33. Lee JW, Epardaud M, Sun J, Becker JE, Cheng AC. 33.  et al. 2007. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8:181–90 [Google Scholar]
  34. Nichols LA, Chen Y, Colella TA, Bennett CL, Clausen BE, Engelhard VH. 34.  2007. Deletional self-tolerance to a melanocyte/melanoma antigen derived from tyrosinase is mediated by a radio-resistant cell in peripheral and mesenteric lymph nodes. J. Immunol. 179:993–1003 [Google Scholar]
  35. Cohen JN, Guidi CJ, Tewalt EF, Qiao H, Rouhani SJ. 35.  et al. 2010. Lymph node–resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J. Exp. Med. 207:681–88 [Google Scholar]
  36. Swartz MA.36.  2014. Immunomodulatory roles of lymphatic vessels in cancer progression. Cancer Immunol. Res. 2:701–7 [Google Scholar]
  37. Liao S, Ruddle NH. 37.  2006. Synchrony of high endothelial venules and lymphatic vessels revealed by immunization. J. Immunol. 177:3369–79 [Google Scholar]
  38. Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. 38.  2014. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat. Rev. Cancer 14:159–72 [Google Scholar]
  39. Gale NW, Thurston G, Hackett SF, Renard R, Wang Q. 39.  et al. 2002. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev. Cell 3:411–23 [Google Scholar]
  40. Augustin HG, Koh GY, Thurston G, Alitalo K. 40.  2009. Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nat. Rev. Mol. Cell Biol. 10:165–77 [Google Scholar]
  41. Kesler CT, Pereira ER, Cui CH, Nelson GM, Masuck DJ. 41.  et al. 2015. Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation. FASEB J. 29:3668–77 [Google Scholar]
  42. Makinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A. 42.  et al. 2005. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 19:397–410 [Google Scholar]
  43. Kajiya K, Hirakawa S, Ma B, Drinnenberg I, Detmar M. 43.  2005. Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J. 24:2885–95 [Google Scholar]
  44. Cao R, Björndahl MA, Religa P, Clasper S, Garvin S. 44.  et al. 2004. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6:333–45 [Google Scholar]
  45. Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H. 45.  et al. 2005. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J. Clin. Investig. 115:2363–72 [Google Scholar]
  46. Mimura T, Amano S, Usui T, Kaji Y, Oshika T, Ishii Y. 46.  2001. Expression of vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 in corneal lymphangiogenesis. Exp. Eye Res. 72:71–78 [Google Scholar]
  47. Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R. 47.  et al. 2002. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am. J. Pathol. 161:947–56 [Google Scholar]
  48. Margaris KN, Black RA. 48.  2012. Modelling the lymphatic system: challenges and opportunities. J. R. Soc. Interface 9:601–12 [Google Scholar]
  49. Baxter LT, Jain RK. 49.  1989. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res. 37:77–104 [Google Scholar]
  50. Roose T, Swartz MA. 50.  2012. Multiscale modeling of lymphatic drainage from tissues using homogenization theory. J. Biomech. 45:107–15 [Google Scholar]
  51. Hagendoorn J, Padera TP, Kashiwagi S, Isaka N, Noda F. 51.  et al. 2004. Endothelial nitric oxide synthase regulates microlymphatic flow via collecting lymphatics. Circ. Res. 95:204–9 [Google Scholar]
  52. Van Helden DF, Zhao J. 52.  2000. Lymphatic vasomotion. Clin. Exp. Pharmacol. Physiol. 27:1014–18 [Google Scholar]
  53. Ledvora RF, Barany M, Barany K. 53.  1984. Myosin light chain phosphorylation and tension development in stretch-activated arterial smooth muscle. Clin. Chem. 30:2063–68 [Google Scholar]
  54. von der Weid PY. 54.  2001. Review article: Lymphatic vessel pumping and inflammation—the role of spontaneous constrictions and underlying electrical pacemaker potentials. Aliment. Pharmacol. Ther. 15:1115–29 [Google Scholar]
  55. Toland HM, McCloskey KD, Thornbury KD, McHale NG, Hollywood MA. 55.  2000. Ca2+-activated Cl current in sheep lymphatic smooth muscle. Am. J. Physiol. Cell Physiol. 279:C1327–35 [Google Scholar]
  56. von der Weid PY, Rahman M, Imtiaz MS, Van Helden DF. 56.  2008. Spontaneous transient depolarizations in lymphatic vessels of the guinea pig mesentery: pharmacology and implication for spontaneous contractility. Am. J. Physiol. Heart Circ. Physiol. 295:H1989–2000 [Google Scholar]
  57. Van Helden DF. 57.  1993. Pacemaker potentials in lymphatic smooth muscle of the guinea-pig mesentery. J. Physiol. 471:465–79 [Google Scholar]
  58. Zawieja DC, Davis KL, Schuster R, Hinds WM, Granger HJ. 58.  1993. Distribution, propagation, and coordination of contractile activity in lymphatics. Am. J. Physiol. Heart Circ. Physiol. 264:H1283–91 [Google Scholar]
  59. McCloskey KD, Hollywood MA, Thornbury KD, Ward SM, McHale NG. 59.  2002. Kit-like immunopositive cells in sheep mesenteric lymphatic vessels. Cell Tissue Res. 310:77–84 [Google Scholar]
  60. von der Weid PY, Crowe MJ, Van Helden DF. 60.  1996. Endothelium-dependent modulation of pacemaking in lymphatic vessels of the guinea-pig mesentery. J. Physiol. 493:563–75 [Google Scholar]
  61. Hollywood MA, McHale NG. 61.  1994. Mediation of excitatory neurotransmission by the release of ATP and noradrenaline in sheep mesenteric lymphatic vessels. J. Physiol. 481:415–23 [Google Scholar]
  62. von der Weid PY, Van Helden DF. 62.  1996. β-Adrenoceptor-mediated hyperpolarization in lymphatic smooth muscle of guinea pig mesentery. Am. J. Physiol. Heart Circ. Physiol. 270:H1687–95 [Google Scholar]
  63. Davis MJ, Lane MM, Davis AM, Durtschi D, Zawieja DC. 63.  et al. 2008. Modulation of lymphatic muscle contractility by the neuropeptide substance P. Am. J. Physiol. Heart Circ. Physiol. 295:H587–97 [Google Scholar]
  64. Fox JL, von der Weid PY. 64.  2002. Effects of histamine on the contractile and electrical activity in isolated lymphatic vessels of the guinea-pig mesentery. Br. J. Pharmacol. 136:1210–18 [Google Scholar]
  65. Liao S, Cheng G, Conner DA, Huanga Y, Kucherlapati RS. 65.  et al. 2011. Impaired lymphatic contraction associated with immunosuppression. PNAS 108:18784–89 [Google Scholar]
  66. Zhao J, Van Helden DF. 66.  2003. ET-1-associated vasomotion and vasospasm in lymphatic vessels of the guinea-pig mesentery. Br. J. Pharmacol. 140:1399–413 [Google Scholar]
  67. Davis MJ, Scallan JP, Wolpers JH, Muthuchamy M, Gashev AA, Zawieja DC. 67.  2012. Intrinsic increase in lymphangion muscle contractility in response to elevated afterload. Am. J. Physiol. Heart Circ. Physiol. 303:H795–808 [Google Scholar]
  68. Benoit JN, Zawieja DC, Goodman AH, Granger HJ. 68.  1989. Characterization of intact mesenteric lymphatic pump and its responsiveness to acute edemagenic stress. Am. J. Physiol. Heart Circ. Physiol. 257:H2059–69 [Google Scholar]
  69. McGeown JG, McHale NG, Roddie IC, Thornbury K. 69.  1987. Peripheral lymphatic responses to outflow pressure in anaesthetized sheep. J. Physiol. 383:527–36 [Google Scholar]
  70. McHale N, Roddie I. 70.  1976. The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J. Physiol. 261:255–69 [Google Scholar]
  71. Shirasawa Y, Benoit JN. 71.  2003. Stretch-induced calcium sensitization of rat lymphatic smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 285:H2573–77 [Google Scholar]
  72. Johnston MG, Elias R. 72.  1987. The regulation of lymphatic pumping. Lymphology 20:215–18 [Google Scholar]
  73. Davis MJ, Lane MM, Scallan JP, Gashev AA, Zawieja DC. 73.  2007. An automated method to control preload by compensation for stress relaxation in spontaneously contracting, isometric rat mesenteric lymphatics. Microcirculation 14:603–12 [Google Scholar]
  74. Davis MJ, Davis AM, Lane MM, Ku CW, Gashev AA. 74.  2009. Rate-sensitive contractile responses of lymphatic vessels to circumferential stretch. J. Physiol. 587:165–82 [Google Scholar]
  75. Davis MJ, Donovitz JA, Hood JD. 75.  1992. Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 262:C1083–88 [Google Scholar]
  76. Christensen O.76.  1987. Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels. Nature 330:66–68 [Google Scholar]
  77. Lee J, Ishihara A, Oxford G, Johnson B, Jacobson K. 77.  1999. Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400:382–86 [Google Scholar]
  78. Gashev AA, Davis MJ, Zawieja DC. 78.  2002. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J. Physiol. 540:1023–37 [Google Scholar]
  79. Kurtz KH, Moor AN, Souza-Smith FM, Breslin JW. 79.  2014. Involvement of H1 and H2 receptors and soluble guanylate cyclase in histamine-induced relaxation of rat mesenteric collecting lymphatics. Microcirculation 21:593–605 [Google Scholar]
  80. Nizamutdinova IT, Maejima D, Nagai T, Bridenbaugh E, Thangaswamy S. 80.  et al. 2014. Involvement of histamine in endothelium-dependent relaxation of mesenteric lymphatic vessels. Microcirculation 21:640–48 [Google Scholar]
  81. von der Weid PY, Zhao J, Van Helden DF. 81.  2001. Nitric oxide decreases pacemaker activity in lymphatic vessels of guinea pig mesentery. Am. J. Physiol. Heart Circ. Physiol. 280:H2707–16 [Google Scholar]
  82. Bohlen HG, Gasheva OY, Zawieja DC. 82.  2011. Nitric oxide formation by lymphatic bulb and valves is a major regulatory component of lymphatic pumping. Am. J. Physiol. Heart Circ. Physiol. 301:H1897–906 [Google Scholar]
  83. Scallan JP, Davis MJ. 83.  2013. Genetic removal of basal nitric oxide enhances contractile activity in isolated murine collecting lymphatic vessels. J. Physiol. 591:2139–56 [Google Scholar]
  84. Cohen RA, Weisbrod RM, Gericke M, Yaghoubi M, Bierl C, Bolotina VM. 84.  1999. Mechanism of nitric oxide–induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx. Circ. Res. 84:210–19 [Google Scholar]
  85. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP. 85.  et al. 2002. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416:337–39 [Google Scholar]
  86. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. 86.  1999. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–5 [Google Scholar]
  87. Mizuno R, Koller A, Kaley G. 87.  1998. Regulation of the vasomotor activity of lymph microvessels by nitric oxide and prostaglandins. Am. J. Physiol. Regul. Integr. Comp. Physiol. 274:R790–96 [Google Scholar]
  88. Murphy RA, Walker JS. 88.  1998. Inhibitory mechanisms for cross-bridge cycling: the nitric oxide–cGMP signal transduction pathway in smooth muscle relaxation. Acta Physiol. Scand. 164:373–80 [Google Scholar]
  89. Blatter LA, Wier WG. 89.  1994. Nitric oxide decreases [Ca2+]i in vascular smooth muscle by inhibition of the calcium current. Cell Calcium 15:122–31 [Google Scholar]
  90. Shyy JYJ, Chien S. 90.  2002. Role of integrins in endothelial mechanosensing of shear stress. Circ. Res. 91:769–75 [Google Scholar]
  91. Kunert C, Baish JW, Liao S, Padera TP, Munn LL. 91.  2015. Mechanobiological oscillators control lymph flow. PNAS 112:10938–43 [Google Scholar]
  92. Ross TD, Coon BG, Yun S, Baeyens N, Tanaka K. 92.  et al. 2013. Integrins in mechanotransduction. Curr. Opin. Cell Biol. 25:613–18 [Google Scholar]
  93. Qazi H, Palomino R, Shi ZD, Munn LL, Tarbell JM. 93.  2013. Cancer cell glycocalyx mediates mechanotransduction and flow-regulated invasion. Integr. Biol. Quant. Biosci. Nano Macro 5:1334–43 [Google Scholar]
  94. Tarbell JM, Simon SI, Curry FR. 94.  2014. Mechanosensing at the vascular interface. Annu. Rev. Biomed. Eng. 16:505–32 [Google Scholar]
  95. Eisenhoffer J, Elias RM, Johnston MG. 95.  1993. Effect of outflow pressure on lymphatic pumping in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol. 265:R97–102 [Google Scholar]
  96. Kornuta JA, Dixon BJ. 96.  2014. Ex vivo lymphatic perfusion system for independently controlling pressure gradient and transmural pressure in isolated vessels. Ann. Biomed. Eng. 42:1691–704 [Google Scholar]
  97. Cady B.97.  2007. Regional lymph node metastases, a singular manifestation of the process of clinical metastases in cancer: Contemporary animal research and clinical reports suggest unifying concepts. Ann. Surg. Oncol. 14:1790–800 [Google Scholar]
  98. Fisher B, Jeong JH, Anderson S, Bryant J, Fisher ER, Wolmark N. 98.  2002. Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N. Engl. J. Med. 347:567–75 [Google Scholar]
  99. Halsted WS.99.  1907. The results of radical operations for the cure of carcinoma of the breast. Ann. Surg. 46:1–19 [Google Scholar]
  100. Cascinelli N, Morabito A, Santinami M, MacKie RM, Belli F. 100.  1998. Immediate or delayed dissection of regional nodes in patients with melanoma of the trunk: a randomised trial. WHO Melanoma Programme. Lancet 351:793–96 [Google Scholar]
  101. Starz H, Balda BR, Kramer KU, Buchels H, Wang H. 101.  2001. A micromorphometry-based concept for routine classification of sentinel lymph node metastases and its clinical relevance for patients with melanoma. Cancer 91:2110–21 [Google Scholar]
  102. Clarke M, Collins R, Darby S, Davies C, Elphinstone P. 102.  et al. 2005. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366:2087–106 [Google Scholar]
  103. Falkson CB.103.  2011. How do I deal with the axilla in patients with a positive sentinel lymph node?. Curr. Treat. Options Oncol. 12:389–402 [Google Scholar]
  104. Morton DL, Thompson JF, Cochran AJ, Mozzillo N, Nieweg OE. 104.  et al. 2014. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. N. Engl. J. Med. 370:599–609 [Google Scholar]
  105. Hellman S.105.  1994. Karnofsky Memorial Lecture. Natural history of small breast cancers. J. Clin. Oncol. 12:2229–34 [Google Scholar]
  106. Podgrabinska S, Skobe M. 106.  2014. Role of lymphatic vasculature in regional and distant metastases. Microvasc. Res. 95:46–52 [Google Scholar]
  107. Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB. 107.  et al. 2002. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296:1883–86 [Google Scholar]
  108. Hoshida T, Isaka N, Hagendoorn J, di Tomaso E, Chen YL. 108.  et al. 2006. Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res. 66:8065–75 [Google Scholar]
  109. Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Ylä-Herttuala S. 109.  et al. 2001. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 61:1786–90 [Google Scholar]
  110. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA. 110.  et al. 2001. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat. Med. 7:186–91 [Google Scholar]
  111. Padera TP, Kuo AH, Hoshida T, Liao S, Lobo J. 111.  et al. 2008. Differential response of primary tumor versus lymphatic metastasis to VEGFR-2 and VEGFR-3 kinase inhibitors cediranib and vandetanib. Mol. Cancer Ther. 7:2272–79 [Google Scholar]
  112. Issa A, Le TX, Shoushtari AN, Shields JD, Swartz MA. 112.  2009. Vascular endothelial growth factor C and C–C chemokine receptor 7 in tumor cell–lymphatic cross-talk promote invasive phenotype. Cancer Res. 69:349–57 [Google Scholar]
  113. Gogineni A, Caunt M, Crow A, Lee CV, Fuh G. 113.  et al. 2013. Inhibition of VEGF-C modulates distal lymphatic remodeling and secondary metastasis. PLOS ONE 8:e68755 [Google Scholar]
  114. Karnezis T, Shayan R, Caesar C, Roufail S, Harris NC. 114.  et al. 2012. VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell 21:181–95 [Google Scholar]
  115. Roberts N, Kloos B, Cassella M, Podgrabinska S, Persaud K. 115.  et al. 2006. Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res. 66:2650–57 [Google Scholar]
  116. Tammela T, Saaristo A, Holopainen T, Ylä-Herttuala S, Andersson LC. 116.  et al. 2011. Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis. Sci. Transl. Med. 3:69ra11 [Google Scholar]
  117. Escobar-Prieto A, Gonzalez G, Templeton AW, Cooper BR, Palacios E. 117.  1971. Lymphatic channel obstruction. Patterns of altered flow dynamics. Am. J. Roentgenol. Radium Ther. Nucl. Med. 113:366–75 [Google Scholar]
  118. Proulx ST, Luciani P, Christiansen A, Karaman S, Blum KS. 118.  et al. 2013. Use of a PEG-conjugated bright near-infrared dye for functional imaging of rerouting of tumor lymphatic drainage after sentinel lymph node metastasis. Biomaterials 34:5128–37 [Google Scholar]
  119. Nathanson SD, Shah R, Chitale DA, Mahan M. 119.  2014. Intraoperative clinical assessment and pressure measurements of sentinel lymph nodes in breast cancer. Ann. Surg. Oncol. 21:81–85 [Google Scholar]
  120. Kwon S, Agollah GD, Wu G, Sevick-Muraca EM. 120.  2014. Spatio-temporal changes of lymphatic contractility and drainage patterns following lymphadenectomy in mice. PLOS ONE 9:e106034 [Google Scholar]
  121. Paget S.121.  1889. The distribution of secondary growths in cancer of the breast. Lancet 133:571–73 [Google Scholar]
  122. Harrell MI, Iritani BM, Ruddell A. 122.  2007. Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am. J. Pathol. 170:774–86 [Google Scholar]
  123. Qian CN, Berghuis B, Tsarfaty G, Bruch M, Kort EJ. 123.  et al. 2006. Preparing the “soil”: The primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res. 66:10365–76 [Google Scholar]
  124. Jeong HS, Jones D, Liao S, Wattson DA, Cui CH. 124.  et al. 2015. Investigation of the lack of angiogenesis in the formation of lymph node metastases. J. Natl. Cancer Inst. 107:djv155 [Google Scholar]
  125. Farnsworth RH, Lackmann M, Achen MG, Stacker SA. 125.  2014. Vascular remodeling in cancer. Oncogene 33:3496–505 [Google Scholar]
  126. Ogawa F, Amano H, Eshima K, Ito Y, Matsui Y. 126.  et al. 2014. Prostanoid induces premetastatic niche in regional lymph nodes. J. Clin. Investig. 124:4882–94 [Google Scholar]
  127. Kohrt HE, Nouri N, Nowels K, Johnson D, Holmes S, Lee PP. 127.  2005. Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLOS Med. 2:e284 [Google Scholar]
  128. Van den Eynden GG, Van der Auwera I, Van Laere SJ, Colpaert CG, Turley H. 128.  et al. 2005. Angiogenesis and hypoxia in lymph node metastases is predicted by the angiogenesis and hypoxia in the primary tumour in patients with breast cancer. Br. J. Cancer 93:1128–36 [Google Scholar]
  129. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. 129.  2005. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med. 201:1089–99 [Google Scholar]
  130. Garmy-Susini B, Avraamides CJ, Desgrosellier JS, Schmid MC, Foubert P. 130.  et al. 2013. PI3Kα activates integrin α4β1 to establish a metastatic niche in lymph nodes. PNAS 110:9042–47 [Google Scholar]
  131. Lee AS, Kim DH, Lee JE, Jung YJ, Kang KP. 131.  et al. 2011. Erythropoietin induces lymph node lymphangiogenesis and lymph node tumor metastasis. Cancer Res. 71:4506–17 [Google Scholar]
  132. Farnsworth RH, Karnezis T, Shayan R, Matsumoto M, Nowell CJ. 132.  et al. 2011. A role for bone morphogenetic protein 4 in lymph node vascular remodeling and primary tumor growth. Cancer Res. 71:6547–57 [Google Scholar]
  133. Carrière V, Colisson R, Jiguet-Jiglaire C, Bellard E, Bouche G. 133.  et al. 2005. Cancer cells regulate lymphocyte recruitment and leukocyte–endothelium interactions in the tumor-draining lymph node. Cancer Res. 65:11639–48 [Google Scholar]
  134. Deng J, Liu Y, Lee H, Herrmann A, Zhang W. 134.  et al. 2012. S1PR1–STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 21:642–54 [Google Scholar]
  135. Müller A, Homey B, Soto H, Ge N, Catron D. 135.  et al. 2001. Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56 [Google Scholar]
  136. Lee JH, Torisu-Itakara H, Cochran AJ, Kadison A, Huynh Y. 136.  et al. 2005. Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin. Cancer Res. 11:107–12 [Google Scholar]
  137. Leong SP, Peng M, Zhou YM, Vaquerano JE, Chang JW. 137.  2002. Cytokine profiles of sentinel lymph nodes draining the primary melanoma. Ann. Surg. Oncol. 9:82–87 [Google Scholar]
  138. Barankay T, Baumgärtl H, Lübbers DW, Seidl E. 138.  1976. Oxygen pressure in small lymphatics. Pflüg. Arch. 366:53–59 [Google Scholar]
  139. Hangai-Hoger N, Cabrales P, Briceño JC, Tsai AG, Intaglietta M. 139.  2004. Microlymphatic and tissue oxygen tension in the rat mesentery. Am. J. Physiol. Heart Circ. Physiol. 286:H878–83 [Google Scholar]
  140. Arapandoni-Dadioti P, Giatromanolaki A, Trihia H, Harris AL, Koukourakis MI. 140.  1999. Angiogenesis in ductal breast carcinoma. Comparison of microvessel density between primary tumour and lymph node metastasis. Cancer Lett. 137:145–50 [Google Scholar]
  141. Naresh KN, Nerurkar AY, Borges AM. 141.  2001. Angiogenesis is redundant for tumour growth in lymph node metastases. Histopathology 38:466–70 [Google Scholar]
  142. Wiley HE, Gonzalez EB, Maki W, Wu MT, Hwang ST. 142.  2001. Expression of CC chemokine receptor 7 and regional lymph node metastasis of B16 murine melanoma. J. Natl. Cancer Inst. 93:1638–43 [Google Scholar]
  143. Ding Y, Shimada Y, Maeda M, Kawabe A, Kaganoi J. 143.  et al. 2003. Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin. Cancer Res. 9:3406–12 [Google Scholar]
  144. Das S, Sarrou E, Podgrabinska S, Cassella M, Mungamuri SK. 144.  et al. 2013. Tumor cell entry into the lymph node is controlled by CCL1 chemokine expressed by lymph node lymphatic sinuses. J. Exp. Med. 210:1509–28 [Google Scholar]
  145. Cochran AJ, Huang RR, Lee J, Itakura E, Leong SP, Essner R. 145.  2006. Tumour-induced immune modulation of sentinel lymph nodes. Nat. Rev. Immunol. 6:659–70 [Google Scholar]
  146. von Andrian UH, Mempel TR. 146.  2003. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3:867–78 [Google Scholar]
  147. Watanabe S, Deguchi K, Zheng R, Tamai H, Wang LX. 147.  et al. 2008. Tumor-induced CD11b+Gr-1+ myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. J. Immunol. 181:3291–300 [Google Scholar]
  148. Deng L, Zhang H, Luan Y, Zhang J, Xing Q. 148.  et al. 2010. Accumulation of Foxp3+ T regulatory cells in draining lymph nodes correlates with disease progression and immune suppression in colorectal cancer patients. Clin. Cancer Res. 16:4105–12 [Google Scholar]
  149. Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C. 149.  et al. 2012. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1:191–99 [Google Scholar]
  150. Podgrabinska S, Kamalu O, Mayer L, Shimaoka M, Snoeck H. 150.  et al. 2009. Inflamed lymphatic endothelium suppresses dendritic cell maturation and function via Mac-1/ICAM-1-dependent mechanism. J. Immunol. 183:1767–79 [Google Scholar]
  151. Zippelius A, Batard P, Rubio-Godoy V, Bioley G, Lienard D. 151.  et al. 2004. Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res. 64:2865–73 [Google Scholar]
  152. Pardoll DM.152.  2012. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12:252–64 [Google Scholar]
  153. Leach DR, Krummel MF, Allison JP. 153.  1996. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–36 [Google Scholar]
  154. Hargadon KM, Brinkman CC, Sheasley-O'Neill SL, Nichols LA, Bullock TN, Engelhard VH. 154.  2006. Incomplete differentiation of antigen-specific CD8 T cells in tumor-draining lymph nodes. J. Immunol. 177:6081–90 [Google Scholar]
  155. Ruddell A, Harrell MI, Furuya M, Kirschbaum SB, Iritani BM. 155.  2011. B lymphocytes promote lymphogenous metastasis of lymphoma and melanoma. Neoplasia 13:748–57 [Google Scholar]
  156. Li Q, Grover AC, Donald EJ, Carr A, Yu J. 156.  et al. 2005. Simultaneous targeting of CD3 on T cells and CD40 on B or dendritic cells augments the antitumor reactivity of tumor-primed lymph node cells. J. Immunol. 175:1424–32 [Google Scholar]
  157. Zirakzadeh AA, Marits P, Sherif A, Winqvist O. 157.  2013. Multiplex B cell characterization in blood, lymph nodes, and tumors from patients with malignancies. J. Immunol. 190:5847–55 [Google Scholar]
  158. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED. 158.  et al. 2010. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467:1109–13 [Google Scholar]
  159. McFadden DG, Papagiannakopoulos T, Taylor-Weiner A, Stewart C, Carter SL. 159.  et al. 2014. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 156:1298–311 [Google Scholar]
  160. Naxerova K, Brachtel E, Salk JJ, Seese AM, Power K. 160.  et al. 2014. Hypermutable DNA chronicles the evolution of human colon cancer. PNAS 111:e1889–98 [Google Scholar]
  161. Akita H, Doki Y, Yano M, Miyata H, Miyashiro I. 161.  et al. 2009. Effects of neoadjuvant chemotherapy on primary tumor and lymph node metastasis in esophageal squamous cell carcinoma: additive association with prognosis. Dis. Esophagus 22:291–97 [Google Scholar]
  162. Medich D, McGinty J, Parda D, Karlovits S, Davis C. 162.  et al. 2001. Preoperative chemoradiotherapy and radical surgery for locally advanced distal rectal adenocarcinoma: pathologic findings and clinical implications. Dis. Colon Rectum 44:1123–28 [Google Scholar]
  163. Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK. 163.  et al. 1999. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J. Clin. Oncol. 17:460–69 [Google Scholar]
  164. Cox C, Holloway CM, Shaheta A, Nofech-Mozes S, Wright FC. 164.  2013. What is the burden of axillary disease after neoadjuvant therapy in women with locally advanced breast cancer?. Curr. Oncol. 20:111–17 [Google Scholar]
  165. Wu F, Tamhane M, Morris ME. 165.  2012. Pharmacokinetics, lymph node uptake, and mechanistic PK model of near-infrared dye-labeled bevacizumab after IV and SC administration in mice. AAPS J. 14:252–61 [Google Scholar]
  166. Freeling JP, Ho RJ. 166.  2014. Anti-HIV drug particles may overcome lymphatic drug insufficiency and associated HIV persistence. PNAS 111:e2512–13 [Google Scholar]
  167. Thomas SN, Vokali E, Lund AW, Hubbell JA, Swartz MA. 167.  2014. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 35:814–24 [Google Scholar]
  168. Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A. 168.  et al. 2010. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur. J. Immunol. 40:22–35 [Google Scholar]
  169. Fujita T, Teramoto K, Ozaki Y, Hanaoka J, Tezuka N. 169.  et al. 2009. Inhibition of transforming growth factor β–mediated immunosuppression in tumor-draining lymph nodes augments antitumor responses by various immunologic cell types. Cancer Res. 69:5142–50 [Google Scholar]
  170. Warren AG, Brorson H, Borud LJ, Slavin SA. 170.  2007. Lymphedema: a comprehensive review. Ann. Plast. Surg. 59:464–72 [Google Scholar]
  171. Bellini C, Hennekam RC. 171.  2014. Clinical disorders of primary malfunctioning of the lymphatic system. Adv. Anat. Embryol. Cell Biol. 214:187–204 [Google Scholar]
  172. Maclellan RA, Greene AK. 172.  2014. Lymphedema. Semin. Pediatr. Surg. 23:191–97 [Google Scholar]
  173. Avraham T, Yan A, Zampell JC, Daluvoy SV, Haimovitz-Friedman A. 173.  et al. 2010. Radiation therapy causes loss of dermal lymphatic vessels and interferes with lymphatic function by TGF-β1-mediated tissue fibrosis. Am. J. Physiol. Cell Physiol. 299:C589–605 [Google Scholar]
  174. Tiwari P, Coriddi M, Salani R, Povoski SP. 174.  2013. Breast and gynecologic cancer–related extremity lymphedema: a review of diagnostic modalities and management options. World J. Surg. Oncol. 11:237 [Google Scholar]
  175. Koch S, Claesson-Welsh L. 175.  2012. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb. Perspect. Med. 2:a006502 [Google Scholar]
  176. Alders M, Al-Gazali L, Cordeiro I, Dallapiccola B, Garavelli L. 176.  et al. 2014. Hennekam syndrome can be caused by FAT4 mutations and be allelic to Van Maldergem syndrome. Hum. Genet. 133:1161–67 [Google Scholar]
  177. Balboa-Beltran E, Fernández-Seara MJ, Pérez-Muñuzuri A, Lago R, García-Magán C. 177.  et al. 2014. A novel stop mutation in the vascular endothelial growth factor C gene (VEGFC) results in Milroy-like disease. J. Med. Genet. 51:475–78 [Google Scholar]
  178. García-Cruz D, Mampel A, Echeverria MI, Vargas AL, Castañeda-Cisneros G. 178.  et al. 2011. Cantu syndrome and lymphoedema. Clin. Dysmorphol. 20:32–37 [Google Scholar]
  179. Bennuru S, Nutman TB. 179.  2009. Lymphangiogenesis and lymphatic remodeling induced by filarial parasites: implications for pathogenesis. PLOS Pathog. 5:e1000688 [Google Scholar]
  180. Nutman TB.180.  2013. Insights into the pathogenesis of disease in human lymphatic filariasis. Lymphat. Res. Biol. 11:144–48 [Google Scholar]
  181. Babu S, Nutman TB. 181.  2012. Immunopathogenesis of lymphatic filarial disease. Semin. Immunopathol. 34:847–61 [Google Scholar]
  182. Chakraborty S, Gurusamy M, Zawieja DC, Muthuchamy M. 182.  2013. Lymphatic filariasis: perspectives on lymphatic remodeling and contractile dysfunction in filarial disease pathogenesis. Microcirculation 20:349–64 [Google Scholar]
  183. Gebruers N, Verbelen H, De Vrieze T, Coeck D, Tjalma W. 183.  2015. Incidence and time path of lymphedema in sentinel node negative breast cancer patients: a systematic review. Arch. Phys. Med. Rehabil. 96:1131–39 [Google Scholar]
  184. Swaroop MN, Ferguson CM, Horick NK, Skolny MN, Miller CL. 184.  et al. 2015. Impact of adjuvant taxane–based chemotherapy on development of breast cancer–related lymphedema: results from a large prospective cohort. Breast Cancer Res. Treat. 151:393–403 [Google Scholar]
  185. Dixon BJ, Weiler MJ. 185.  2015. Bridging the divide between pathogenesis and detection in lymphedema. Semin. Cell Dev. Biol. 38:75–82 [Google Scholar]
  186. Bundred NJ, Stockton C, Keeley V, Riches K, Ashcroft L. 186.  et al. 2015. Comparison of multi-frequency bioimpedance with perometry for the early detection and intervention of lymphoedema after axillary node clearance for breast cancer. Breast Cancer Res. Treat. 151:121–29 [Google Scholar]
  187. Burnand KM, Glass DM, Mortimer PS, Peters AM. 187.  2012. Lymphatic dysfunction in the apparently clinically normal contralateral limbs of patients with unilateral lower limb swelling. Clin. Nucl. Med. 37:9–13 [Google Scholar]
  188. Iimura T, Fukushima Y, Kumita S, Ogawa R, Hyakusoku H. 188.  2015. Estimating lymphodynamic conditions and lymphovenous anastomosis efficacy using 99mTc-phytate lymphoscintigraphy with SPECT-CT in patients with lower-limb lymphedema. Plast. Reconstr. Surg. Glob. Open 3:e404 [Google Scholar]
  189. Blum KS, Radtke C, Knapp WH, Pabst R, Gratz KF. 189.  2007. SPECT-CT: a valuable method to document the regeneration of lymphatics and autotransplanted lymph node fragments. Eur. J. Nucl. Med. Mol. Imaging 34:1861–67 [Google Scholar]
  190. Weiss M, Burgard C, Baumeister R, Strobl F, Rominger A. 190.  et al. 2014. Magnetic resonance imaging versus lymphoscintigraphy for the assessment of focal lymphatic transport disorders of the lower limb: first experiences. Nucl. Med. 53:190–96 [Google Scholar]
  191. Liu N, Zhang Y. 191.  2016. Magnetic resonance lymphangiography for the study of lymphatic system in lymphedema. J. Reconstr. Microsurg. 32:66–71 [Google Scholar]
  192. Arrivé L, Derhy S, El Mouhadi S, Monnier-Cholley L, Menu Y, Becker C. 192.  2016. Noncontrast magnetic resonance lymphography. J. Reconstr. Microsurg. 32:80–86 [Google Scholar]
  193. Sevick-Muraca EM, Kwon S, Rasmussen JC. 193.  2014. Emerging lymphatic imaging technologies for mouse and man. J. Clin. Investig. 124:905–14 [Google Scholar]
  194. Aldrich MB, Guilliod R, Fife CE, Maus EA, Smith L. 194.  et al. 2012. Lymphatic abnormalities in the normal contralateral arms of subjects with breast cancer–related lymphedema as assessed by near-infrared fluorescent imaging. Biomed. Opt. Express 3:1256–65 [Google Scholar]
  195. Mihara M, Hara H, Araki J, Kikuchi K, Narushima M. 195.  et al. 2012. Indocyanine green (ICG) lymphography is superior to lymphoscintigraphy for diagnostic imaging of early lymphedema of the upper limbs. PLOS ONE 7:e38182 [Google Scholar]
  196. Mehrara BJ, Greene AK. 196.  2014. Lymphedema and obesity: Is there a link?. Plast. Reconstr. Surg. 134:e154–60 [Google Scholar]
  197. Leung G, Baggott C, West C, Elboim C, Paul SM. 197.  et al. 2014. Cytokine candidate genes predict the development of secondary lymphedema following breast cancer surgery. Lymphat. Res. Biol. 12:10–22 [Google Scholar]
  198. Avraham T, Zampell JC, Yan A, Elhadad S, Weitman ES. 198.  et al. 2013. Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema. FASEB J. 27:1114–26 [Google Scholar]
  199. Zumsteg A, Baeriswyl V, Imaizumi N, Schwendener R, Rüegg C, Christofori G. 199.  2009. Myeloid cells contribute to tumor lymphangiogenesis. PLOS ONE 4:e7067 [Google Scholar]
  200. Lynch LL, Mendez U, Waller AB, Gillette AA, Guillory RJ 2nd, Goldman J. 200.  2015. Fibrosis worsens chronic lymphedema in rodent tissues. Am. J. Physiol. Heart Circ. Physiol. 308:H1229–36 [Google Scholar]
  201. Hawinkels LJ, ten Dijke P. 201.  2011. Exploring anti-TGF-β therapies in cancer and fibrosis. Growth Factors 29:140–52 [Google Scholar]
  202. Clavin NW, Avraham T, Fernandez J, Daluvoy SV, Soares MA. 202.  et al. 2008. TGF-β1 is a negative regulator of lymphatic regeneration during wound repair. Am. J. Physiol. Heart Circ. Physiol. 295:H2113–27 [Google Scholar]
  203. Martin M, Lefaix J, Delanian S. 203.  2000. TGF-β1 and radiation fibrosis: a master switch and a specific therapeutic target?. Int. J. Radiat. Oncol. Biol. Phys. 47:277–90 [Google Scholar]
  204. Avraham T, Daluvoy S, Zampell J, Yan A, Haviv YS. 204.  et al. 2010. Blockade of transforming growth factor β1 accelerates lymphatic regeneration during wound repair. Am. J. Pathol. 177:3202–14 [Google Scholar]
  205. Warren LE, Miller CL, Horick N, Skolny MN, Jammallo LS. 205.  et al. 2014. The impact of radiation therapy on the risk of lymphedema after treatment for breast cancer: a prospective cohort study. Int. J. Radiat. Oncol. Biol. Phys. 88:565–71 [Google Scholar]
  206. Kesler CT, Kuo AH, Wong HK, Masuck DJ, Shah JL. 206.  et al. 2014. Vascular endothelial growth factor C enhances radiosensitivity of lymphatic endothelial cells. Angiogenesis 17:419–27 [Google Scholar]
  207. Budach W, Kammers K, Boelke E, Matuschek C. 207.  2013. Adjuvant radiotherapy of regional lymph nodes in breast cancer—a meta-analysis of randomized trials. Radiat. Oncol. 8:267 [Google Scholar]
  208. Miaskowski C, Dodd M, Paul SM, West C, Hamolsky D. 208.  et al. 2013. Lymphatic and angiogenic candidate genes predict the development of secondary lymphedema following breast cancer surgery. PLOS ONE 8:e60164 [Google Scholar]
  209. Lin S, Kim J, Lee MJ, Roche L, Yang NL. 209.  et al. 2012. Prospective transcriptomic pathway analysis of human lymphatic vascular insufficiency: identification and validation of a circulating biomarker panel. PLOS ONE 7:e52021 [Google Scholar]
  210. Leung N, Furniss D, Giele H. 210.  2015. Modern surgical management of breast cancer therapy related upper limb and breast lymphoedema. Maturitas 80:384–90 [Google Scholar]
  211. Nguyen AT, Suami H. 211.  2015. Laparoscopic free omental lymphatic flap for the treatment of lymphedema. Plast. Reconstr. Surg. 136:114–18 [Google Scholar]
  212. Lasso JM, Pinilla C, Castellano M. 212.  2015. New refinements in greater omentum free flap transfer for severe secondary lymphedema surgical treatment. Plast. Reconstr. Surg. Glob. Open 3:e387 [Google Scholar]
  213. Tervala TV, Hartiala P, Tammela T, Visuri MT, Ylä-Herttuala S. 213.  et al. 2015. Growth factor therapy and lymph node graft for lymphedema. J. Surg. Res. 196:200–7 [Google Scholar]
  214. Headland SE, Norling LV. 214.  2015. The resolution of inflammation: principles and challenges. Semin. Immunol. 27:149–60 [Google Scholar]
  215. Liao S, von der Weid PY. 215.  2015. Lymphatic system: an active pathway for immune protection. Semin. Cell Dev. Biol. 38:83–89 [Google Scholar]
  216. Sakai Y, Kobayashi M. 216.  2015. Lymphocyte ‘homing’ and chronic inflammation. Pathol. Int. 65:344–54 [Google Scholar]
  217. Ruddle NH.217.  2014. Lymphatic vessels and tertiary lymphoid organs. J. Clin. Investig. 124:953–59 [Google Scholar]
  218. Stranford S, Ruddle NH. 218.  2012. Follicular dendritic cells, conduits, lymphatic vessels, and high endothelial venules in tertiary lymphoid organs: parallels with lymph node stroma. Front. Immunol. 3:350 [Google Scholar]
  219. Noort AR, van Zoest KP, van Baarsen LG, Maracle CX, Helder B. 219.  et al. 2015. Tertiary lymphoid structures in rheumatoid arthritis: NF-κB-inducing kinase–positive endothelial cells as central players. Am. J. Pathol. 185:1935–43 [Google Scholar]
  220. Aloisi F, Pujol-Borrell R. 220.  2006. Lymphoid neogenesis in chronic inflammatory diseases. Nat. Rev. Immunol. 6:205–17 [Google Scholar]
  221. Albuquerque RJ, Hayashi T, Cho WG, Kleinman ME, Dridi S. 221.  et al. 2009. Alternatively spliced vascular endothelial growth factor receptor 2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat. Med. 15:1023–30 [Google Scholar]
  222. Yamagami S, Dana MR. 222.  2001. The critical role of lymph nodes in corneal alloimmunization and graft rejection. Investig. Ophthalmol. Vis. Sci. 42:1293–98 [Google Scholar]
  223. Dohlman TH, Omoto M, Hua J, Stevenson W, Lee SM. 223.  et al. 2015. VEGF-trap aflibercept significantly improves long-term graft survival in high-risk corneal transplantation. Transplantation 99:678–86 [Google Scholar]
  224. Hos D, Regenfuss B, Bock F, Onderka J, Cursiefen C. 224.  2011. Blockade of insulin receptor substrate 1 inhibits corneal lymphangiogenesis. Investig. Ophthalmol. Vis. Sci. 52:5778–85 [Google Scholar]
  225. Palin NK, Savikko J, Koskinen PK. 225.  2013. Sirolimus inhibits lymphangiogenesis in rat renal allografts, a novel mechanism to prevent chronic kidney allograft injury. Transplant Int. 26:195–205 [Google Scholar]
  226. Vass DG, Shrestha B, Haylor J, Hughes J, Marson L. 226.  2012. Inflammatory lymphangiogenesis in a rat transplant model of interstitial fibrosis and tubular atrophy. Transplant Int. 25:792–800 [Google Scholar]
  227. Oka K, Namba Y, Ichimaru N, Moriyama T, Kyo M. 227.  et al. 2009. Clinicopathological study of expression of lymphatic vessels in renal allograft biopsy after treatment for acute rejection. Transplant. Proc. 41:4154–58 [Google Scholar]
  228. Stuht S, Gwinner W, Franz I, Schwarz A, Jonigk D. 228.  et al. 2007. Lymphatic neoangiogenesis in human renal allografts: results from sequential protocol biopsies. Am. J. Transplant. 7:377–84 [Google Scholar]
  229. Dashkevich A, Heilmann C, Kayser G, Germann M, Beyersdorf F. 229.  et al. 2010. Lymph angiogenesis after lung transplantation and relation to acute organ rejection in humans. Ann. Thorac. Surg. 90:406–11 [Google Scholar]
  230. Nykänen AI, Sandelin H, Krebs R, Keränen MA, Tuuminen R. 230.  et al. 2010. Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor 3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts. Circulation 121:1413–22 [Google Scholar]
  231. Soong TR, Pathak AP, Asano H, Fox-Talbot K, Baldwin WM 3rd. 231.  2010. Lymphatic injury and regeneration in cardiac allografts. Transplantation 89:500–8 [Google Scholar]
  232. Brown K, Badar A, Sunassee K, Fernandes MA, Shariff H. 232.  et al. 2011. SPECT/CT lymphoscintigraphy of heterotopic cardiac grafts reveals novel sites of lymphatic drainage and T cell priming. Am. J. Transplant. 11:225–34 [Google Scholar]
  233. Kong XQ, Wang LX, Kong DG. 233.  2007. Cardiac lymphatic interruption is a major cause for allograft failure after cardiac transplantation. Lymphat. Res. Biol. 5:45–47 [Google Scholar]
  234. Rockson SG.234.  2007. Lymphatics and the heart: the importance of visceral lymphatic function in health and disease. Lymphat. Res. Biol. 5:1–2 [Google Scholar]
  235. Ishii E, Shimizu A, Kuwahara N, Arai T, Kataoka M. 235.  et al. 2010. Lymphangiogenesis associated with acute cellular rejection in rat liver transplantation. Transplant. Proc. 42:4282–85 [Google Scholar]
  236. Kellersman R, Zhong R, Kiyochi H, Garcia B, Grant DR. 236.  2000. Reconstruction of the intestinal lymphatic drainage after small bowel transplantation. Transplantation 69:10–16 [Google Scholar]
  237. Kerjaschki D.237.  2006. Lymphatic neoangiogenesis in renal transplants: a driving force of chronic rejection?. J. Nephrol. 19:403–6 [Google Scholar]
  238. Seeger H, Bonani M, Segerer S. 238.  2012. The role of lymphatics in renal inflammation. Nephrol. Dial. Transplant. 27:2634–41 [Google Scholar]
  239. Bouta EM, Li J, Ju Y, Brown EB, Ritchlin CT. 239.  et al. 2015. The role of the lymphatic system in inflammatory-erosive arthritis. Semin. Cell Dev. Biol. 30:90–97 [Google Scholar]
  240. Zhou Q, Wood R, Schwarz EM, Wang YJ, Xing L. 240.  2010. Near-infrared lymphatic imaging demonstrates the dynamics of lymph flow and lymphangiogenesis during the acute versus chronic phases of arthritis in mice. Arthritis Rheum. 62:1881–89 [Google Scholar]
  241. Mandik-Nayak L, Allen PM. 241.  2005. Initiation of an autoimmune response: insights from a transgenic model of rheumatoid arthritis. Immunol. Res. 32:5–13 [Google Scholar]
  242. Xu H, Edwards J, Banerji S, Prevo R, Jackson DG, Athanasou NA. 242.  2003. Distribution of lymphatic vessels in normal and arthritic human synovial tissues. Ann. Rheum. Dis. 62:1227–29 [Google Scholar]
  243. Polzer K, Baeten D, Soleiman A, Distler J, Gerlag DM. 243.  et al. 2008. Tumour necrosis factor blockade increases lymphangiogenesis in murine and human arthritic joints. Ann. Rheum. Dis. 67:1610–16 [Google Scholar]
  244. Wauke K, Nagashima M, Ishiwata T, Asano G, Yoshino S. 244.  2002. Expression and localization of vascular endothelial growth factor C in rheumatoid arthritis synovial tissue. J. Rheumatol. 29:34–38 [Google Scholar]
  245. Paavonen K, Mandelin J, Partanen T, Jussila L, Li TF. 245.  et al. 2002. Vascular endothelial growth factors C and D and their VEGFR-2 and 3 receptors in blood and lymphatic vessels in healthy and arthritic synovium. J. Rheumatol. 29:39–45 [Google Scholar]
  246. Böhm M, Riemann B, Luger TA, Bonsmann G. 246.  2000. Bilateral upper limb lymphoedema associated with psoriatic arthritis: a case report and review of the literature. Br. J. Dermatol. 143:1297–301 [Google Scholar]
  247. Kiely PD, Joseph AE, Mortimer PS, Bourke BE. 247.  1994. Upper limb lymphedema associated with polyarthritis of rheumatoid type. J. Rheumatol. 21:1043–45 [Google Scholar]
  248. Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T. 248.  et al. 2009. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor C–dependent buffering mechanism. Nat. Med. 15:545–52 [Google Scholar]
  249. Liu F, Mu J, Yuan Z, Lian Q, Zheng S. 249.  et al. 2011. Involvement of the lymphatic system in salt-sensitive hypertension in humans. Med. Sci. Monit. 17:542–46 [Google Scholar]
  250. Kwon S, Agollah GD, Chan W, Sevick-Muraca EM. 250.  2012. Altered lymphatic function and architecture in salt-induced hypertension assessed by near-infrared fluorescence imaging. J. Biomed. Opt. 17:080504 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-112315-031200
Loading
/content/journals/10.1146/annurev-bioeng-112315-031200
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error