Annual Review of Biomedical Engineering - Volume 3, 2001
Volume 3, 2001
- Preface
-
- Review Articles
-
-
-
Thomas McMahon: A Dedication in Memoriam
Vol. 3 (2001), pp. xv–xxxixMore Less▪ AbstractThomas A. McMahon (1943–1999) was a pioneer in the field of biomechanics. He made primary contributions to our understanding of terrestrial locomotion, allometry and scaling, cardiac assist devices, orthopedic biomechanics, and a number of other areas. His work was frequently characterized by the use of simple mathematical models to explain seemingly complex phenomena. He also validated these models through creative experimentation. McMahon was a successful inventor and also published three well-received novels. He was raised in Lexington, Massachussetts, attended Cornell University as an undergraduate, and earned a PhD at MIT. From 1970 until his death, he was a member of the faculty of Harvard University, where he taught biomedical engineering. He is fondly remembered as a warm and gentle colleague and an exemplary mentor to his students.
-
-
-
-
Biomechanics of Cardiovascular Development
Vol. 3 (2001), pp. 1–25More Less▪ AbstractIt long has been known that mechanical forces play a role in the development of the cardiovascular system, but only recently have biomechanical engineers begun to explore this field. This paper reviews some of this work. First, an overview of the relevant biology is discussed. Next, a mechanical theory is presented that can be used to model developmental processes. The theory includes the effects of finite volumetric growth and active contractile forces. Finally, applications of this and other theories to problems of cardiovascular development are discussed, and some future directions are suggested. The intent is to stimulate further interest among engineers in this important area of research.
-
-
-
Fundamentals Of Impact Biomechanics: Part 2—Biomechanics of the Abdomen, Pelvis, and Lower Extremities
Vol. 3 (2001), pp. 27–55More Less▪ AbstractThis is the second of two chapters (the first chapter appeared in the Annual Review of Biomedical Engineering, 2000, 2:55–81) dealing with some 60 years of accumulated knowledge in the field of impact biomechanics. The regions covered in the first chapter were the head, neck, and thorax. In this chapter, the abdomen, pelvis, and lower extremities are discussed. The thoracolumbar spine is not covered because of length limitations and the low frequency of injury to this area from automotive accidents. Again, in the cited results, the reader needs to be keenly aware of the wide variation in human response and tolerance. This is due primarily to the large biological variations among humans and to the effects of aging. Average values that are useful in design cannot be applied to individuals.
-
-
-
Cardiac Energy Metabolism: Models of Cellular Respiration
Vol. 3 (2001), pp. 57–81More Less▪ AbstractThe heart requires a large amount of energy to sustain both ionic homeostasis and contraction. Under normal conditions, adenosine triphosphate (ATP) production meets this demand. Hence, there is a complex regulatory system that adjusts energy production to meet this demand. However, the mechanisms for this control are a topic of active debate. Energy metabolism can be divided into three main stages: substrate delivery to the tricarboxylic acid (TCA) cycle, the TCA cycle, and oxidative phosphorylation. Each of these processes has multiple control points and exerts control over the other stages. This review discusses the basic stages of energy metabolism, mechanisms of control, and the mathematical and computational models that have been used to study these mechanisms.
-
-
-
The Process and Development of Image-Guided Procedures
Vol. 3 (2001), pp. 83–108More Less▪ AbstractMedical imaging has been used primarily for diagnosis. In the past 15 years there has been an emergence of the use of images for the guidance of therapy. This process requires three-dimensional localization devices, the ability to register medical images to physical space, and the ability to display position and trajectory on those images. This paper examines the development and state of the art in those processes.
-
-
-
Can We Model Nitric Oxide Biotransport? A Survey of Mathematical Models for a Simple Diatomic Molecule with Surprisingly Complex Biological Activities
Vol. 3 (2001), pp. 109–143More Less▪ AbstractNitric oxide (NO) is a remarkable free radical gas whose presence in biological systems and whose astonishing breadth of physiological and pathophysiological activities have only recently been recognized. Mathematical models for NO biotransport, just beginning to emerge in the literature, are examined in this review. Some puzzling and paradoxical properties of NO may be understood by modeling proposed mechanisms with known parameters. For example, it is not obvious how NO can survive strong scavenging by hemoglobin and still be a potent vasodilator. Recent models do not completely explain how tissue NO can reach effective levels in the vascular wall, and they point toward mechanisms that need further investigation. Models help to make sense of extremely low partial pressures of NO exhaled from the lung and may provide diagnostic information. The role of NO as a gaseous neurotransmitter is also being understood through modeling. Studies on the effects of NO on O2 transport and metabolism, also reviewed, suggest that previous mathematical models of transport of O2 to tissue need to be revised, taking the biological activity of NO into account.
-
-
-
Visual Prostheses
Vol. 3 (2001), pp. 145–168More Less▪ AbstractThe development of man-made systems to restore functional vision in the profoundly blind has recently undergone a renaissance that has been fueled by a combination of celebrity and government interest, advances in the field of bioengineering, and successes with existing neuroprosthetic systems. This chapter presents the underlying physiologic principles of artificial vision, discusses three contemporary approaches to restoring functional vision in the blind, and concludes by presenting several relevant questions to vision prostheses. While there has been significant progress in the individual components constituting an artificial vision system, the remaining challenge of integrating these components with each other and the nervous system does not lie strictly in the realm of neuroscience, medicine, or engineering but at the interface of all three. In spite of the apparent complexity of an artificial vision system, it is not unreasonable to be optimistic about its eventual success.
-
-
-
Micro- and Nanomechanics of the Cochlear Outer Hair Cell
Vol. 3 (2001), pp. 169–194More Less▪ AbstractOuter hair cell electromotility is crucial for the amplification, sharp frequency selectivity, and nonlinearities of the mammalian cochlea. Current modeling efforts based on morphological, physiological, and biophysical observations reveal transmembrane potential gradients and membrane tension as key independent variables controlling the passive and active mechanics of the cell. The cell's mechanics has been modeled on the microscale using a continuum approach formulated in terms of effective (cellular level) mechanical and electric properties. Another modeling approach is nanostructural and is based on the molecular organization of the cell's membranes and cytoskeleton. It considers interactions between the components of the composite cell wall and the molecular elements within each of its components. The methods and techniques utilized to increase our understanding of the central role outer hair cell mechanics plays in hearing are also relevant to broader research questions in cell mechanics, cell motility, and cell transduction.
-
-
-
New DNA Sequencing Methods
Vol. 3 (2001), pp. 195–223More Less▪ AbstractThe Human Genome Project and other major genomic sequencing projects have pushed the development of sequencing technology. In the past six years alone, instrument throughput has increased 15-fold. New technologies are now on the horizon that could yield massive increases in our capacity for de novo DNA sequencing. This review presents a summary of state-of-the-art technologies for genomic sequencing and describes technologies that may be candidates for the next generation of DNA sequencing instruments.
-
-
-
Vascular Tissue Engineering
Vol. 3 (2001), pp. 225–243More Less▪ AbstractThe development of a tissue-engineered blood vessel substitute has motivated much of the research in the area of cardiovascular tissue engineering over the past 20 years. Several methodologies have emerged for constructing blood vessel replacements with biological functionality. These include cell-seeded collagen gels, cell-seeded biodegradable synthetic polymer scaffolds, cell self-assembly, and acellular techniques. This review details the most recent developments, with a focus on core technologies and construct development. Specific examples are discussed to illustrate both the benefits and shortcomings of each methodology, as well as to underline common themes. Finally, a brief perspective on challenges for the future is presented.
-
-
-
Computer Modeling and Simulation of Human Movement
Vol. 3 (2001), pp. 245–273More Less▪ AbstractRecent interest in using modeling and simulation to study movement is driven by the belief that this approach can provide insight into how the nervous system and muscles interact to produce coordinated motion of the body parts. With the computational resources available today, large-scale models of the body can be used to produce realistic simulations of movement that are an order of magnitude more complex than those produced just 10 years ago. This chapter reviews how the structure of the neuromusculoskeletal system is commonly represented in a multijoint model of movement, how modeling may be combined with optimization theory to simulate the dynamics of a motor task, and how model output can be analyzed to describe and explain muscle function. Some results obtained from simulations of jumping, pedaling, and walking are also reviewed to illustrate the approach.
-
-
-
Stem Cell Bioengineering
Vol. 3 (2001), pp. 275–305More Less▪ AbstractTissue engineering and cellular therapies, either on their own or in combination with therapeutic gene delivery, have the potential to significantly impact medicine. Implementation of technologies based on these approaches requires a readily available source of cells for the generation of cells and tissues outside a living body. Because of their unique capacity to regenerate functional tissue for the lifetime of an organism, stem cells are an attractive “raw material” for multiple biotechnological applications. By definition they are self-renewing because on cell division they can generate daughter stem cells. They are also multipotent because they can differentiate into numerous specialized, functional cells. Recent findings have shown that stem cells exist in most, if not all, tissues, and that stem cell tissue specificity may be more flexible than originally thought. Although the potential for producing novel cell-based products from stem cells is large, currently there are no effective technologically relevant methodologies for culturing stem cells outside the body, or for reproducibly stimulating them to differentiate into functional cells. A mechanistic understanding of the parameters important in the control of stem cell self-renewal and lineage commitment is thus necessary to guide the development of bioprocesses for the ex vivo culture of stem cells and their derivates.
-
-
-
Biomechanics of Trabecular Bone
Vol. 3 (2001), pp. 307–333More Less▪ AbstractTrabecular bone is a complex material with substantial heterogeneity. Its elastic and strength properties vary widely across anatomic sites, and with aging and disease. Although these properties depend very much on density, the role of architecture and tissue material properties remain uncertain. It is interesting that the strains at which the bone fails are almost independent of density. Current work addresses the underlying structure-function relations for such behavior, as well as more complex mechanical behavior, such as multiaxial loading, time-dependent failure, and damage accumulation. A unique tool for studying such behavior is the microstructural class of finite element models, particularly the “high-resolution” models. It is expected that with continued progress in this field, substantial insight will be gained into such important problems as osteoporosis, bone fracture, bone remodeling, and design/analysis of bone-implant systems. This article reviews the state of the art in trabecular bone biomechanics, focusing on the mechanical aspects, and attempts to identify important areas of current and future research.
-
-
-
Soft Lithography in Biology and Biochemistry
Vol. 3 (2001), pp. 335–373More Less▪ AbstractSoft lithography, a set of techniques for microfabrication, is based on printing and molding using elastomeric stamps with the patterns of interest in bas-relief. As a technique for fabricating microstructures for biological applications, soft lithography overcomes many of the shortcomings of photolithography. In particular, soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and to pattern and manipulate cells. For the relatively large feature sizes used in biology (≥50 μm), production of prototype patterns and structures is convenient, inexpensive, and rapid. Self-assembled monolayers of alkanethiolates on gold are particularly easy to pattern by soft lithography, and they provide exquisite control over surface biochemistry.
-
-
-
Image-Guided Acoustic Therapy
Vol. 3 (2001), pp. 375–390More Less▪ AbstractThe potential role of therapeutic ultrasound in medicine is promising. Currently, medical devices are being developed that utilize high-intensity focused ultrasound as a noninvasive method to treat tumors and to stop bleeding (hemostasis). The primary advantage of ultrasound that lends the technique so readily to use in noninvasive therapy is its ability to penetrate deep into the body and deliver to a specific site thermal or mechanical energy with submillimeter accuracy. Realizing the full potential of acoustic therapy, however, requires precise targeting and monitoring. Fortunately, several imaging modalities can be utilized for this purpose, thus leading to the concept of image-guided acoustic therapy. This article presents a review of high-intensity focused ultrasound therapy, including its mechanisms of action, the imaging modalities used for guidance and monitoring, some current applications, and the requirements and technology associated with this exciting and promising field.
-
-
-
Control Motifs for Intracellular Regulatory Networks*
Vol. 3 (2001), pp. 391–419More Less▪ AbstractA number of technological innovations are yielding unprecedented data on the networks of biochemical, genetic, and biophysical reactions that underlie cellular behavior and failure. These networks are composed of hundreds to thousands of chemical species and structures, interacting via nonlinear and possibly stochastic physical processes. A central goal of modern biology is to optimally use the data on these networks to understand how their design leads to the observed cellular behaviors and failures. Ultimately, this knowledge should enable cellular engineers to redesign cellular processes to meet industrial needs (such as optimal natural product synthesis), aid in choosing the most effective targets for pharmaceuticals, and tailor treatment for individual genotypes. The size and complexity of these networks and the inevitable lack of complete data, however, makes reaching these goals extremely difficult. If it proves possible to modularize these networks into functional subnetworks, then these smaller networks may be amenable to direct analysis and might serve as regulatory motifs. These motifs, recurring elements of control, may help to deduce the structure and function of partially known networks and form the basis for fulfilling the goals described above. A number of approaches to identifying and analyzing control motifs in intracellular networks are reviewed.
-
-
-
Respiratory Fluid Mechanics and Transport Processes
Vol. 3 (2001), pp. 421–457More Less▪ AbstractThe field of respiratory flow and transport has experienced significant research activity over the past several years. Important contributions to the knowledge base come from pulmonary and critical care medicine, surgery, physiology, environmental health sciences, biophysics, and engineering. Several disciplines within engineering have strong and historical ties to respiration including mechanical, chemical, civil/environmental, aerospace and, of course, biomedical engineering. This review draws from a wide variety of scientific literature that reflects the diverse constituency and audience that respiratory science has developed. The subject areas covered include nasal flow and transport, airway gas flow, alternative modes of ventilation, nonrespiratory gas transport, aerosol transport, airway stability, mucus transport, pulmonary acoustics, surfactant dynamics and delivery, and pleural liquid flow. Within each area are a number of subtopics whose exploration can provide the opportunity of both depth and breadth for the interested reader.
-
Previous Volumes
-
Volume 26 (2024)
-
Volume 25 (2023)
-
Volume 24 (2022)
-
Volume 23 (2021)
-
Volume 22 (2020)
-
Volume 21 (2019)
-
Volume 20 (2018)
-
Volume 19 (2017)
-
Volume 18 (2016)
-
Volume 17 (2015)
-
Volume 16 (2014)
-
Volume 15 (2013)
-
Volume 14 (2012)
-
Volume 13 (2011)
-
Volume 12 (2010)
-
Volume 11 (2009)
-
Volume 10 (2008)
-
Volume 9 (2007)
-
Volume 8 (2006)
-
Volume 7 (2005)
-
Volume 6 (2004)
-
Volume 5 (2003)
-
Volume 4 (2002)
-
Volume 3 (2001)
-
Volume 2 (2000)
-
Volume 1 (1999)
-
Volume 0 (1932)