1932

Abstract

In recent years, a diverse set of mechanisms have been developed that allow DNA strands with specific sequences to sense information in their environment and to control material assembly, disassembly, and reconfiguration. These sequences could serve as the inputs and outputs for DNA computing circuits, enabling DNA circuits to act as chemical information processors to program complex behavior in chemical and material systems. This review describes processes that can be sensed and controlled within such a paradigm. Specifically, there are interfaces that can release strands of DNA in response to chemical signals, wavelengths of light, pH, or electrical signals, as well as DNA strands that can direct the self-assembly and dynamic reconfiguration of DNA nanostructures, regulate particle assemblies, control encapsulation, and manipulate materials including DNA crystals, hydrogels, and vesicles. These interfaces have the potential to enable chemical circuits to exert algorithmic control over responsive materials, which may ultimately lead to the development of materials that grow, heal, and interact dynamically with their environments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-060418-052357
2019-06-04
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/21/1/annurev-bioeng-060418-052357.html?itemId=/content/journals/10.1146/annurev-bioeng-060418-052357&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Isaacson W. 2014. The Innovators: How a Group of Inventors, Hackers, Geniuses and Geeks Created the Digital Revolution New York: Simon & Schuster
  2. 2.
    De Silva AP, Uchiyama S 2007. Molecular logic and computing. Nat. Nanotechnol. 2:399
    [Google Scholar]
  3. 3.
    Zhang DY, Seelig G. 2011. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3:103
    [Google Scholar]
  4. 4.
    Baccouche A, Montagne K, Padirac A, Fujii T, Rondelez Y 2014. Dynamic DNA-toolbox reaction circuits: a walkthrough. Methods 67:234–49
    [Google Scholar]
  5. 5.
    Willner I, Shlyahovsky B, Zayats M, Willner B 2008. DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem. Soc. Rev. 37:1153–65
    [Google Scholar]
  6. 6.
    Seelig G, Soloveichik D, Zhang DY, Winfree E 2006. Enzyme-free nucleic acid logic circuits. Science 314:1585–88
    [Google Scholar]
  7. 7.
    Qian L, Winfree E. 2011. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332:1196–201
    [Google Scholar]
  8. 8.
    Genot AJ, Bath J, Turberfield AJ 2011. Reversible logic circuits made of DNA. J. Am. Chem. Soc. 133:20080–83
    [Google Scholar]
  9. 9.
    Zadorin AS, Rondelez Y, Galas JC, Estevez-Torres A 2015. Synthesis of programmable reaction–diffusion fronts using DNA catalyzers. Phys. Rev. Lett. 114:068301
    [Google Scholar]
  10. 10.
    Franco E, Friedrichs E, Kim J, Jungmann R, Murray R et al. 2011. Timing molecular motion and production with a synthetic transcriptional clock. PNAS 108:E784–93
    [Google Scholar]
  11. 11.
    Fujii T, Rondelez Y. 2012. Predator–prey molecular ecosystems. ACS Nano 7:27–34
    [Google Scholar]
  12. 12.
    Srinivas N, Parkin J, Seelig G, Winfree E, Soloveichik D 2017. Enzyme-free nucleic acid dynamical systems. Science 358:eaal2052
    [Google Scholar]
  13. 13.
    Fern J, Scalise D, Cangialosi A, Howie D, Potters L, Schulman R 2016. DNA strand-displacement timer circuits. ACS Synth. Biol. 6:190–93
    [Google Scholar]
  14. 14.
    Stojanovic MN, Stefanovic D. 2003. A deoxyribozyme-based molecular automaton. Nat. Biotechnol. 21:1069
    [Google Scholar]
  15. 15.
    Qian L, Winfree E, Bruck J 2011. Neural network computation with DNA strand displacement cascades. Nature 475:368
    [Google Scholar]
  16. 16.
    Cherry KM, Qian L. 2018. Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature 559:370–76
    [Google Scholar]
  17. 17.
    Zhang DY, Seelig G. 2010. DNA-based fixed gain amplifiers and linear classifier circuits. Proceedings of the 16th International Workshop on DNA-Based Computers176–86 Berlin/Heidelberg: Springer
    [Google Scholar]
  18. 18.
    Chen X, Briggs N, McLain JR, Ellington AD 2013. Stacking nonenzymatic circuits for high signal gain. PNAS 110:5386–91
    [Google Scholar]
  19. 19.
    Chirieleison SM, Allen PB, Simpson ZB, Ellington AD, Chen X 2013. Pattern transformation with DNA circuits. Nat. Chem. 5:1000
    [Google Scholar]
  20. 20.
    Zenk J, Scalise D, Wang K, Dorsey P, Fern J et al. 2017. Stable DNA-based reaction–diffusion patterns. RSC Adv 7:18032–40
    [Google Scholar]
  21. 21.
    Franco E, Del Vecchio D, Murray RM 2009. Design of insulating devices for in vitro synthetic circuits. Proceedings of the 48th IEEE Conference on Decision and Control4584–89 Piscataway, NJ: IEEE
    [Google Scholar]
  22. 22.
    Jayanthi S, Nilgiriwala KS, Del Vecchio D 2013. Retroactivity controls the temporal dynamics of gene transcription. ACS Synth. Biol. 2:431–41
    [Google Scholar]
  23. 23.
    Thachuk C, Winfree E, Soloveichik D 2015. Leakless DNA strand displacement systems. Proceedings of the 21st International Workshop on DNA-Based Computers133–53 Cham, Switz.: Springer Int.
    [Google Scholar]
  24. 24.
    Huizenga DE, Szostak JW. 1995. A DNA aptamer that binds adenosine and ATP. Biochemistry 34:656–65
    [Google Scholar]
  25. 25.
    He JL, Wu ZS, Zhou H, Wang HQ, Jiang JH et al. 2010. Fluorescence aptameric sensor for strand displacement amplification detection of cocaine. Anal. Chem. 82:1358–64
    [Google Scholar]
  26. 26.
    Zhou W, Saran R, Liu J 2017. Metal sensing by DNA. Chem. Rev. 117:8272–325
    [Google Scholar]
  27. 27.
    Pendergrast PS, Marsh HN, Grate D, Healy JM, Stanton M 2005. Nucleic acid aptamers for target validation and therapeutic applications. J. Biomol. Tech. 16:224–34
    [Google Scholar]
  28. 28.
    Tombelli S, Minunni M, Mascini M 2005. Analytical applications of aptamers. Biosens. Bioelectron. 20:2424–34
    [Google Scholar]
  29. 29.
    Bunka DH, Platonova O, Stockley PG 2010. Development of aptamer therapeutics. Curr. Opin. Pharmacol. 10:557–62
    [Google Scholar]
  30. 30.
    Ellington AD, Szostak JW. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–22
    [Google Scholar]
  31. 31.
    Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–10
    [Google Scholar]
  32. 32.
    Li F, Zhang H, Wang Z, Li X, Li XF, Le XC 2013. Dynamic DNA assemblies mediated by binding-induced DNA strand displacement. J. Am. Chem. Soc. 135:2443–46
    [Google Scholar]
  33. 33.
    Picuri JM, Frezza BM, Ghadiri MR 2009. Universal translators for nucleic acid diagnosis. J. Am. Chem. Soc. 131:9368–77
    [Google Scholar]
  34. 34.
    Zhu J, Zhang L, Zhou Z, Dong S, Wang E 2013. Aptamer-based sensing platform using three-way DNA junction–driven strand displacement and its application in DNA logic circuit. Anal. Chem. 86:312–16
    [Google Scholar]
  35. 35.
    Niu S, Qu L, Zhang Q, Lin J 2012. Fluorescence detection of thrombin using autocatalytic strand displacement cycle reaction and a dual-aptamer DNA sandwich assay. Anal. Biochem. 421:362–67
    [Google Scholar]
  36. 36.
    Xing Y, Yang Z, Liu D 2011. A responsive hidden toehold to enable controllable DNA strand displacement reactions. Angew. Chem. Int. Ed. Engl. 50:11934–36
    [Google Scholar]
  37. 37.
    Wang H, Zheng J, Sun Y, Li T 2018. Cellular environment–responsive intelligent DNA logic circuits for controllable molecular sensing. Biosens. Bioelectron. 117:729–35
    [Google Scholar]
  38. 38.
    Bhadra S, Ellington AD. 2014. A Spinach molecular beacon triggered by strand displacement. RNA 20:1183–94
    [Google Scholar]
  39. 39.
    Lloyd J, Tran CH, Wadhwani K, Cuba Samaniego C, Subramanian HK, Franco E 2017. Dynamic control of aptamer–ligand activity using strand displacement reactions. ACS Synth. Biol. 7:30–37
    [Google Scholar]
  40. 40.
    Zhou C, Yang Z, Liu D 2012. Reversible regulation of protein binding affinity by a DNA machine. J. Am. Chem. Soc. 134:1416–18
    [Google Scholar]
  41. 41.
    Liu Z, Mao C. 2014. Reporting transient molecular events by DNA strand displacement. Chem. Commun. 50:8239–41
    [Google Scholar]
  42. 42.
    Amodio A, Zhao B, Porchetta A, Idili A, Castronovo M et al. 2014. Rational design of pH-controlled DNA strand displacement. J. Am. Chem. Soc. 136:16469–72
    [Google Scholar]
  43. 43.
    Tang W, Wang H, Wang D, Zhao Y, Li N, Liu F 2013. DNA tetraplexes–based toehold activation for controllable DNA strand displacement reactions. J. Am. Chem. Soc. 135:13628–31
    [Google Scholar]
  44. 44.
    Ding W, Deng W, Zhu H, Liang H 2013. Metallo-toeholds: controlling DNA strand displacement driven by Hg(II) ions. Chem. Commun. 49:9953–55
    [Google Scholar]
  45. 45.
    Ranallo S, Amodio A, Idili A, Porchetta A, Ricci F 2016. Electronic control of DNA-based nanoswitches and nanodevices. Chem. Sci. 7:66–71
    [Google Scholar]
  46. 46.
    Frasconi M, Tel-Vered R, Elbaz J, Willner I 2010. Electrochemically stimulated pH changes: a route to control chemical reactivity. J. Am. Chem. Soc. 132:2029–36
    [Google Scholar]
  47. 47.
    Freage L, Trifonov A, Tel-Vered R, Golub E, Wang F et al. 2015. Addressing, amplifying and switching DNAzyme functions by electrochemically-triggered release of metal ions. Chem. Sci. 6:3544–49
    [Google Scholar]
  48. 48.
    Jeong H, Ranallo S, Rossetti M, Heo J, Shin J et al. 2016. Electronic activation of a DNA nanodevice using a multilayer nanofilm. Small 12:5572–78
    [Google Scholar]
  49. 49.
    Fan C, Plaxco KW, Heeger AJ 2003. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. PNAS 100:9134–37
    [Google Scholar]
  50. 50.
    Immoos CE, Lee SJ, Grinstaff MW 2004. Conformationally gated electrochemical gene detection. ChemBioChem 5:1100–3
    [Google Scholar]
  51. 51.
    Xiao Y, Lubin AA, Baker BR, Plaxco KW, Heeger AJ 2006. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. PNAS 103:16677–80
    [Google Scholar]
  52. 52.
    Xiao Y, Lai RY, Plaxco KW 2007. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Nat. Protoc. 2:2875
    [Google Scholar]
  53. 53.
    Immoos CE, Lee SJ, Grinstaff MW 2004. DNA–PEG–DNA triblock macromolecules for reagentless DNA detection. J. Am. Chem. Soc. 126:10814–15
    [Google Scholar]
  54. 54.
    Drummond TG, Hill MG, Barton JK 2003. Electrochemical DNA sensors. Nat. Biotechnol. 21:1192
    [Google Scholar]
  55. 55.
    Jonstrup AT, Fredsøe J, Andersen AH 2013. DNA hairpins as temperature switches, thermometers and ionic detectors. Sensors 13:5937–44
    [Google Scholar]
  56. 56.
    Gareau D, Desrosiers A, Vallée-Bélisle A 2016. Programmable quantitative DNA nanothermometers. Nano Lett 16:3976–81
    [Google Scholar]
  57. 57.
    Gehrels EW, Rogers W, Manoharan VN 2018. Using DNA strand displacement to control interactions in DNA-grafted colloids. Soft Matter 14:969–84
    [Google Scholar]
  58. 58.
    Rogers WB, Manoharan VN. 2015. Programming colloidal phase transitions with DNA strand displacement. Science 347:639–42
    [Google Scholar]
  59. 59.
    Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA 2006. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1:84
    [Google Scholar]
  60. 60.
    Prokup A, Hemphill J, Deiters A 2012. DNA computation: a photochemically controlled AND gate. J. Am. Chem. Soc. 134:3810–15
    [Google Scholar]
  61. 61.
    Huang F, You M, Han D, Xiong X, Liang H, Tan W 2013. DNA branch migration reactions through photocontrollable toehold formation. J. Am. Chem. Soc. 135:7967–73
    [Google Scholar]
  62. 62.
    Kou B, Zhang J, Huai X, Liang X, Xiao SJ 2015. Light-driven reversible strand displacement using glycerol azobenzene inserted DNA. RSC Adv 5:5055–58
    [Google Scholar]
  63. 63.
    Nakamura S, Hashimoto H, Kobayashi S, Fujimoto K 2017. Photochemical acceleration of DNA strand displacement by using ultrafast DNA photo-crosslinking. ChemBioChem 18:1984–89
    [Google Scholar]
  64. 64.
    Zhang P, Beck T, Tan W 2001. Design of a molecular beacon DNA probe with two fluorophores. Angew. Chem. Int. Ed. Engl. 113:416–19
    [Google Scholar]
  65. 65.
    Rothemund PW. 2006. Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302
    [Google Scholar]
  66. 66.
    Ke Y, Ong LL, Shih WM, Yin P 2012. Three-dimensional structures self-assembled from DNA bricks. Science 338:1177–83
    [Google Scholar]
  67. 67.
    Nummelin S, Kommeri J, Kostiainen MA, Linko V 2018. Evolution of structural DNA nanotechnology. Adv. Mater. 30:1703721
    [Google Scholar]
  68. 68.
    Tørring T, Voigt NV, Nangreave J, Yan H, Gothelf KV 2011. DNA origami: a quantum leap for self-assembly of complex structures. Chem. Soc. Rev. 40:5636–46
    [Google Scholar]
  69. 69.
    Wagenbauer KF, Sigl C, Dietz H 2017. Gigadalton-scale shape-programmable DNA assemblies. Nature 552:78–83
    [Google Scholar]
  70. 70.
    Zheng J, Birktoft JJ, Chen Y, Wang T, Sha R et al. 2009. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461:74–77
    [Google Scholar]
  71. 71.
    Schulman R, Winfree E. 2007. Synthesis of crystals with a programmable kinetic barrier to nucleation. PNAS 104:15236–41
    [Google Scholar]
  72. 72.
    Fu TJ, Seeman NC. 1993. DNA double-crossover molecules. Biochemistry 32:3211–20
    [Google Scholar]
  73. 73.
    Winfree E, Liu F, Wenzler LA, Seeman NC 1998. Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–44
    [Google Scholar]
  74. 74.
    Lo PK, Karam P, Aldaye FA, McLaughlin CK, Hamblin GD et al. 2010. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat. Chem. 2:319
    [Google Scholar]
  75. 75.
    Jungmann R, Liedl T, Sobey TL, Shih W, Simmel FC 2008. Isothermal assembly of DNA origami structures using denaturing agents. J. Am. Chem. Soc. 130:10062–63
    [Google Scholar]
  76. 76.
    Zhang DY, Hariadi RF, Choi HM, Winfree E 2013. Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nat. Commun. 4:1965
    [Google Scholar]
  77. 77.
    Amodio A, Adedeji AF, Castronovo M, Franco E, Ricci F 2016. pH-controlled assembly of DNA tiles. J. Am. Chem. Soc. 138:12735–38
    [Google Scholar]
  78. 78.
    Padilla JE, Sha R, Kristiansen M, Chen J, Jonoska N, Seeman NC 2015. A signal-passing DNA-strand-exchange mechanism for active self-assembly of DNA nanostructures. Angew. Chem. Int. Ed. Engl. 54:5939–42
    [Google Scholar]
  79. 79.
    Zhang Y, McMullen A, Pontani LL, He X, Sha R et al. 2017. Sequential self-assembly of DNA functionalized droplets. Nat. Commun. 8:21
    [Google Scholar]
  80. 80.
    Wang J, Zhou Z, Yue L, Wang S, Willner I 2018. Switchable triggered interconversion and reconfiguration of DNA origami dimers and their use for programmed catalysis. Nano Lett 18:2718–24
    [Google Scholar]
  81. 81.
    Peng R, Wang H, Lyu Y, Xu L, Liu H et al. 2017. Facile assembly/disassembly of DNA nanostructures anchored on cell-mimicking giant vesicles. J. Am. Chem. Soc. 139:12410–13
    [Google Scholar]
  82. 82.
    Cao YC, Jin R, Thaxton CS, Mirkin CA 2005. A two-color-change, nanoparticle-based method for DNA detection. Talanta 67:449–55
    [Google Scholar]
  83. 83.
    Yao D, Song T, Sun X, Xiao S, Huang F, Liang H 2015. Integrating DNA-strand-displacement circuitry with self-assembly of spherical nucleic acids. J. Am. Chem. Soc. 137:14107–13
    [Google Scholar]
  84. 84.
    Yao D, Wang B, Xiao S, Song T, Huang F, Liang H 2015. What controls the “off/on switch” in the toehold-mediated strand displacement reaction on DNA conjugated gold nanoparticles. ? Langmuir 31:7055–61
    [Google Scholar]
  85. 85.
    Thaxton CS, Georganopoulou DG, Mirkin CA 2006. Gold nanoparticle probes for the detection of nucleic acid targets. Clin. Chim. Acta 363:120–26
    [Google Scholar]
  86. 86.
    Cutler JI, Auyeung E, Mirkin CA 2012. Spherical nucleic acids. J. Am. Chem. Soc. 134:1376–91
    [Google Scholar]
  87. 87.
    Yin P, Choi HM, Calvert CR, Pierce NA 2008. Programming biomolecular self-assembly pathways. Nature 451:318–22
    [Google Scholar]
  88. 88.
    Sadowski JP, Calvert CR, Zhang DY, Pierce NA, Yin P 2014. Developmental self-assembly of a DNA tetrahedron. ACS Nano 8:3251–59
    [Google Scholar]
  89. 89.
    Zhang Z, Fan TW, Hsing IM 2017. Integrating DNA strand displacement circuitry to the nonlinear hybridization chain reaction. Nanoscale 9:2748–54
    [Google Scholar]
  90. 90.
    Kishi JY, Schaus TE, Gopalkrishnan N, Xuan F, Yin P 2018. Programmable autonomous synthesis of single-stranded DNA. Nat. Chem. 10:155
    [Google Scholar]
  91. 91.
    Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Neumann JL 2000. A DNA-fuelled molecular machine made of DNA. Nature 406:605–8
    [Google Scholar]
  92. 92.
    Simmel FC, Yurke B. 2001. Using DNA to construct and power a nanoactuator. Phys. Rev. E 63:041913
    [Google Scholar]
  93. 93.
    Feng L, Park SH, Reif JH, Yan H 2003. A two-state DNA lattice switched by DNA nanoactuator. Angew. Chem. Int. Ed. Engl. 115:4478–82
    [Google Scholar]
  94. 94.
    Goodman RP, Heilemann M, Doose S, Erben CM, Kapanidis AN, Turberfield AJ 2008. Reconfigurable, braced, three-dimensional DNA nanostructures. Nat. Nanotechnol. 3:93
    [Google Scholar]
  95. 95.
    Saccà B, Ishitsuka Y, Meyer R, Sprengel A, Schöneweiß EC et al. 2015. Reversible reconfiguration of DNA origami nanochambers monitored by single-molecule FRET. Angew. Chem. Int. Ed. Engl. 54:3592–97
    [Google Scholar]
  96. 96.
    Chen H, Weng TW, Riccitelli MM, Cui Y, Irudayaraj J, Choi JH 2014. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration. J. Am. Chem. Soc. 136:6995–7005
    [Google Scholar]
  97. 97.
    Yan H, Zhang X, Shen Z, Seeman NC 2002. A robust DNA mechanical device controlled by hybridization topology. Nature 415:62–65
    [Google Scholar]
  98. 98.
    Ding B, Seeman NC. 2006. Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 314:1583–85
    [Google Scholar]
  99. 99.
    Marras AE, Zhou L, Su HJ, Castro CE 2015. Programmable motion of DNA origami mechanisms. PNAS 112:713–18
    [Google Scholar]
  100. 100.
    Gerling T, Wagenbauer KF, Neuner AM, Dietz H 2015. Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components. Science 347:1446–52
    [Google Scholar]
  101. 101.
    Han D, Pal S, Liu Y, Yan H 2010. Folding and cutting DNA into reconfigurable topological nanostructures. Nat. Nanotechnol. 5:712
    [Google Scholar]
  102. 102.
    Zhang F, Nangreave J, Liu Y, Yan H 2012. Reconfigurable DNA origami to generate quasifractal patterns. Nano Lett 12:3290–95
    [Google Scholar]
  103. 103.
    Wei BOng LL, Chen J, Jaffe AS, Yin P. 2014. Complex reconfiguration of DNA nanostructures. Angew. Chem. Int. Ed. Engl. 126:7605–9
    [Google Scholar]
  104. 104.
    Gu H, Chao J, Xiao SJ, Seeman NC 2010. A proximity-based programmable DNA nanoscale assembly line. Nature 465:202–5
    [Google Scholar]
  105. 105.
    Thubagere AJ, Li W, Johnson RF, Chen Z, Doroudi S et al. 2017. A cargo-sorting DNA robot. Science 357:eaan6558
    [Google Scholar]
  106. 106.
    Wickham SF, Bath J, Katsuda Y, Endo M, Hidaka K et al. 2012. A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7:169
    [Google Scholar]
  107. 107.
    Pan J, Li F, Cha TG, Chen H, Choi JH 2015. Recent progress on DNA based walkers. Curr. Opin. Biotechnol. 34:56–64
    [Google Scholar]
  108. 108.
    Loweth CJ, Caldwell WB, Peng X, Alivisatos AP, Schultz PG 1999. DNA-based assembly of gold nanocrystals. Angew. Chem. Int. Ed. Engl. 38:1808–12
    [Google Scholar]
  109. 109.
    Hazarika P, Ceyhan B, Niemeyer CM 2004. Reversible switching of DNA–gold nanoparticle aggregation. Angew. Chem. Int. Ed. Engl. 116:6631–33
    [Google Scholar]
  110. 110.
    Li Y, Zheng Y, Gong M, Deng Z 2012. Pt nanoparticles decorated with a discrete number of DNA molecules for programmable assembly of Au–Pt bimetallic superstructures. Chem. Commun. 48:3727–29
    [Google Scholar]
  111. 111.
    He X, Li Z, Chen M, Ma N 2014. DNA-programmed dynamic assembly of quantum dots for molecular computation. Angew. Chem. Int. Ed. Engl. 53:14447–50
    [Google Scholar]
  112. 112.
    Li Y, Han X, Deng Z 2007. Grafting single-walled carbon nanotubes with highly hybridizable DNA sequences: potential building blocks for DNA-programmed material assembly. Angew. Chem. Int. Ed. Engl. 46:7481–84
    [Google Scholar]
  113. 113.
    Gartner ZJ, Bertozzi CR. 2009. Programmed assembly of 3-dimensional microtissues with defined cellular connectivity. PNAS 106:4606–10
    [Google Scholar]
  114. 114.
    Kim JW, Kim JH, Deaton R 2011. DNA-linked nanoparticle building blocks for programmable matter. Angew. Chem. Int. Ed. Engl. 50:9185–90
    [Google Scholar]
  115. 115.
    Le JD, Pinto Y, Seeman NC, Musier-Forsyth K, Taton TA, Kiehl RA 2004. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett 4:2343–47
    [Google Scholar]
  116. 116.
    Liu Y, Lin C, Li H, Yan H 2005. Aptamer-directed self-assembly of protein arrays on a DNA nanostructure. Angew. Chem. Int. Ed. Engl. 117:4407–12
    [Google Scholar]
  117. 117.
    Braun E, Eichen Y, Sivan U, Ben-Yoseph G 1998. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–78
    [Google Scholar]
  118. 118.
    Hazani M, Hennrich F, Kappes M, Naaman R, Peled D et al. 2004. DNA-mediated self-assembly of carbon nanotube–based electronic devices. Chem. Phys. Lett. 391:389–92
    [Google Scholar]
  119. 119.
    Maune HT, Han SP, Barish RD, Bockrath M, Goddard WA III et al. 2010. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 5:61
    [Google Scholar]
  120. 120.
    Kuzyk A, Schreiber R, Zhang H, Govorov AO, Liedl T, Liu N 2014. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13:862
    [Google Scholar]
  121. 121.
    Rogers WB, Shih WM, Manoharan VN 2016. Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat. Rev. Mater. 1:16008
    [Google Scholar]
  122. 122.
    Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R et al. 2009. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76
    [Google Scholar]
  123. 123.
    Grossi G, Jepsen MDE, Kjems J, Andersen ES 2017. Control of enzyme reactions by a reconfigurable DNA nanovault. Nat. Commun. 8:992
    [Google Scholar]
  124. 124.
    Sun W, Boulais E, Hakobyan Y, Wang WL, Guan A et al. 2014. Casting inorganic structures with DNA molds. Science 346:1258361
    [Google Scholar]
  125. 125.
    Calderone CT, Puckett JW, Gartner ZJ, Liu DR 2002. Directing otherwise incompatible reactions in a single solution by using DNA-templated organic synthesis. Angew. Chem. Int. Ed. Engl. 41:4104–8
    [Google Scholar]
  126. 126.
    Kanan MW, Rozenman MM, Sakurai K, Snyder TM, Liu DR 2004. Reaction discovery enabled by DNA-templated synthesis and in vitro selection. Nature 431:545–49
    [Google Scholar]
  127. 127.
    Usanov DL, Chan AI, Maianti JP, Liu DR 2018. Second-generation DNA-templated macrocycle libraries for the discovery of bioactive small molecules. Nat. Chem. 10:704–14
    [Google Scholar]
  128. 128.
    Wilner OI, Shimron S, Weizmann Y, Wang ZG, Willner I 2009. Self-assembly of enzymes on DNA scaffolds: en route to biocatalytic cascades and the synthesis of metallic nanowires. Nano Lett 9:2040–43
    [Google Scholar]
  129. 129.
    Ke G, Liu M, Jiang S, Qi X, Yang YR et al. 2016. Directional regulation of enzyme pathways through the control of substrate channeling on a DNA origami scaffold. Angew. Chem. Int. Ed. Engl. 55:7483–86
    [Google Scholar]
  130. 130.
    Li X, Liu DR. 2004. DNA-templated organic synthesis: Nature's strategy for controlling chemical reactivity applied to synthetic molecules. Angew. Chem. Int. Ed. Engl. 43:4848–70
    [Google Scholar]
  131. 131.
    Rajendran A, Nakata E, Nakano S, Morii T 2017. Nucleic-acid-templated enzyme cascades. ChemBioChem 18:696–716
    [Google Scholar]
  132. 132.
    Perrault SD, Shih WM. 2014. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8:5132–40
    [Google Scholar]
  133. 133.
    Dong Y, Sun Y, Wang L, Wang D, Zhou T et al. 2014. Frame-guided assembly of vesicles with programmed geometry and dimensions. Angew. Chem. Int. Ed. Engl. 126:2645–48
    [Google Scholar]
  134. 134.
    Dong Y, Yang Z, Liu D 2015. Using small molecules to prepare vesicles with designable shapes and sizes via frame-guided assembly strategy. Small 11:3768–71
    [Google Scholar]
  135. 135.
    Dong Y, Yang YR, Zhang Y, Wang D, Wei X et al. 2017. Cuboid vesicles formed by frame-guided assembly on DNA origami scaffolds. Angew. Chem. Int. Ed. Engl. 56:1586–89
    [Google Scholar]
  136. 136.
    Yang Y, Wang J, Shigematsu H, Xu W, Shih WM et al. 2016. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 8:476
    [Google Scholar]
  137. 137.
    Langecker M, Arnaut V, Martin TG, List J, Renner S et al. 2012. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338:932–36
    [Google Scholar]
  138. 138.
    Krishnan S, Ziegler D, Arnaut V, Martin TG, Kapsner K et al. 2016. Molecular transport through large-diameter DNA nanopores. Nat. Commun. 7:12787
    [Google Scholar]
  139. 139.
    Langecker M, Arnaut V, List J, Simmel FC 2014. DNA nanostructures interacting with lipid bilayer membranes. Acc. Chem. Res. 47:1807–15
    [Google Scholar]
  140. 140.
    Zhang Z, Yang Y, Pincet F, Llaguno MC, Lin C 2017. Placing and shaping liposomes with reconfigurable DNA nanocages. Nat. Chem. 9:653
    [Google Scholar]
  141. 141.
    Sato Y, Hiratsuka Y, Kawamata I, Murata S, Shin-ichiro MN 2017. Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci. Robot. 2:eaal3735
    [Google Scholar]
  142. 142.
    Nagahara S, Matsuda T. 1996. Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym. Gels Netw. 4:111–27
    [Google Scholar]
  143. 143.
    Lin DC, Yurke B, Langrana NA 2004. Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J. Biomech. Eng. 126:104–10
    [Google Scholar]
  144. 144.
    Lin DC, Yurke B, Langrana NA 2005. Inducing reversible stiffness changes in DNA-crosslinked gels. J. Mater. Res. 20:1456–64
    [Google Scholar]
  145. 145.
    Venkataraman S, Dirks RM, Rothemund PW, Winfree E, Pierce NA 2007. An autonomous polymerization motor powered by DNA hybridization. Nat. Nanotechnol. 2:490
    [Google Scholar]
  146. 146.
    Cangialosi A, Yoon C, Liu J, Huang Q, Guo J et al. 2017. DNA sequence–directed shape change of photopatterned hydrogels via high-degree swelling. Science 357:1126–30
    [Google Scholar]
  147. 147.
    Hao Y, Kristiansen M, Sha R, Birktoft JJ, Hernandez C et al. 2017. A device that operates within a self-assembled 3D DNA crystal. Nat. Chem. 9:824
    [Google Scholar]
  148. 148.
    Olson X, Kotani S, Yurke B, Graugnard E, Hughes WL 2017. Kinetics of DNA strand displacement systems with locked nucleic acids. J. Phys. Chem. B 121:2594–602
    [Google Scholar]
  149. 149.
    Kabza AM, Young BE, Sczepanski JT 2017. Heterochiral DNA strand-displacement circuits. J. Am. Chem. Soc. 139:17715–18
    [Google Scholar]
  150. 150.
    Diagne CT, Brun C, Gasparutto D, Baillin X, Tiron R 2016. DNA origami mask for sub-ten-nanometer lithography. ACS Nano 10:6458–63
    [Google Scholar]
  151. 151.
    Surwade SP, Zhou F, Wei B, Sun W, Powell A et al. 2013. Nanoscale growth and patterning of inorganic oxides using DNA nanostructure templates. J. Am. Chem. Soc. 135:6778–81
    [Google Scholar]
  152. 152.
    Kershner RJ, Bozano LD, Micheel CM, Hung AM, Fornof AR et al. 2009. Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat. Nanotechnol. 4:557
    [Google Scholar]
  153. 153.
    Gopinath A, Miyazono E, Faraon A, Rothemund PW 2016. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature 535:401–5
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-060418-052357
Loading
/content/journals/10.1146/annurev-bioeng-060418-052357
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error