1932

Abstract

Miniaturization of electronic components and advances in flexible and stretchable materials have stimulated the development of wearable health care systems that can reflect and monitor personal health status by health care professionals. New skin-mountable devices that offer seamless contact onto the human skin, even under large deformations by natural motions of the wearer, provide a route for both high-fidelity monitoring and patient-controlled therapy. This article provides an overview of several important aspects of skin-mountable devices and their applications in many medical settings and clinical practices. We comprehensively describe various transdermal sensors and therapeutic systems that are capable of detecting physical, electrophysiological, and electrochemical responses and/or providing electrical and thermal therapies and drug delivery services, and we discuss the current challenges, opportunities, and future perspectives in the field. Finally, we present ways to protect the embedded electronic components of skin-mountable devices from the environment by use of mechanically soft packaging materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-060418-052315
2019-06-04
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/21/1/annurev-bioeng-060418-052315.html?itemId=/content/journals/10.1146/annurev-bioeng-060418-052315&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Wang S, Oh JY, Xu J, Tran H, Bao Z 2018. Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51:1033–45
    [Google Scholar]
  2. 2.
    Lee H, Song C, Baik S, Kim D, Hyeon T, Kim DH 2018. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 127:35–45
    [Google Scholar]
  3. 3.
    Wang X, Dong L, Zhang H, Yu R, Pan C, Wang ZL 2015. Recent progress in electronic skin. Adv. Sci. 2:1500169
    [Google Scholar]
  4. 4.
    Lee CH. 2016. Smart assembly for soft bioelectronics. IEEE Potentials 35:9–13
    [Google Scholar]
  5. 5.
    Chortos A, Bao Z. 2014. Skin-inspired electronic devices. Mater. Today 17:321–31
    [Google Scholar]
  6. 6.
    Benight SJ, Wang C, Tok JBH, Bao Z 2013. Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 38:1961–77
    [Google Scholar]
  7. 7.
    Won SM, Song E, Zhao J, Li J, Rivnay J, Rogers JA 2018. Recent advances in materials, devices, and systems for neural interfaces. Adv. Mater. 30:e1800534
    [Google Scholar]
  8. 8.
    Choi J, Ghaffari R, Baker LB, Rogers JA 2018. Skin-interfaced systems for sweat collection and analytics. Sci. Adv. 4:eaar3921
    [Google Scholar]
  9. 9.
    Heikenfeld J, Jajack A, Rogers J, Gutruf P, Tian L et al. 2018. Wearable sensors: modalities, challenges, and prospects. Lab Chip 18:217–48
    [Google Scholar]
  10. 10.
    Miyamoto A, Lee S, Cooray NF, Lee S, Mori M et al. 2017. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat. Nanotechnol. 12:907–13
    [Google Scholar]
  11. 11.
    Lee Y, Kim J, Joo H, Raj MS, Ghaffari R, Kim D-H 2017. Wearable sensing systems with mechanically soft assemblies of nanoscale materials. Adv. Mater. Technol. 2:1700053
    [Google Scholar]
  12. 12.
    Dolbashid AS, Mokhtar MS, Muhamad F, Ibrahim F 2018. Potential applications of human artificial skin and electronic skin (e-skin): a review. Bioinspired Biomim. Nanobiomater. 7:53–64
    [Google Scholar]
  13. 13.
    Kim DH, Lu N, Ma R, Kim YS, Kim RH et al. 2011. Epidermal electronics. Science 333:838–43
    [Google Scholar]
  14. 14.
    Millington PF, Wilkinson R. 2009. Skin Cambridge, UK: Cambridge Univ. Press
  15. 15.
    Lewis T. 1927. The Blood Vessels of the Human Skin and Their Responses London: Shaw & Sons
  16. 16.
    Olesen BW. 1982. Thermal comfort. Tech. Rev. 2:3–43
    [Google Scholar]
  17. 17.
    Çetingül MP, Herman C. 2010. A heat transfer model of skin tissue for the detection of lesions: sensitivity analysis. Phys. Med. Biol. 55:5933
    [Google Scholar]
  18. 18.
    Okabe T, Fujimura T, Okajima J, Aiba S, Maruyama S 2018. Non-invasive measurement of effective thermal conductivity of human skin with a guard-heated thermistor probe. Int. J. Heat Mass Transfer 126:625–35
    [Google Scholar]
  19. 19.
    Jin H, Abu-Raya YS, Haick H 2017. Advanced materials for health monitoring with skin-based wearable devices. Adv. Healthc. Mater. 6:1700024
    [Google Scholar]
  20. 20.
    Mitsubayashi K, Arakawa T. 2016. Cavitas sensors: contact lens type sensors and mouthguard sensors. Electroanalysis 28:1170–87
    [Google Scholar]
  21. 21.
    Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR et al. 2014. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5:5747
    [Google Scholar]
  22. 22.
    Schwartz G, Tee BCK, Mei J, Appleton AL, Kim DH et al. 2013. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4:1859
    [Google Scholar]
  23. 23.
    Chortos A, Liu J, Bao Z 2016. Pursuing prosthetic electronic skin. Nat. Mater. 15:937–50
    [Google Scholar]
  24. 24.
    Han S, Kim J, Won SM, Ma Y, Kang D et al. 2018. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Transl. Med. 10:eaan4950
    [Google Scholar]
  25. 25.
    Dagdeviren C, Shi Y, Joe P, Ghaffari R, Balooch G et al. 2015. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14:728–36
    [Google Scholar]
  26. 26.
    Rim YS, Bae SH, Chen H, De Marco N, Yang Y 2016. Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28:4415–40
    [Google Scholar]
  27. 27.
    Tee BCK, Chortos A, Dunn RR, Schwartz G, Eason E, Bao Z 2014. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 24:5427–34
    [Google Scholar]
  28. 28.
    Nie B, Xing S, Brandt JD, Pan T 2012. Droplet-based interfacial capacitive sensing. Lab Chip 12:1110–18
    [Google Scholar]
  29. 29.
    Nie B, Li R, Cao J, Brandt JD, Pan T 2015. Flexible transparent iontronic film for interfacial capacitive pressure sensing. Adv. Mater. 27:Z6055–62
    [Google Scholar]
  30. 30.
    Poh MZ, Loddenkemper T, Swenson NC, Goyal S, Madsen JR, Picard RW Continuous monitoring of electrodermal activity during epileptic seizures using a wearable sensor. Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society4415–18 Piscataway, NJ: IEEE
    [Google Scholar]
  31. 31.
    Lin CT, Ko LW, Chang MH, Duann JR, Chen JY et al. 2010. Review of wireless and wearable electroencephalogram systems and brain-computer interfaces—a mini-review. Gerontology 56:112–19
    [Google Scholar]
  32. 32.
    Mihajlovic V, Grundlehner B, Vullers R, Penders J 2015. Wearable, wireless EEG solutions in daily life applications: What are we missing?. IEEE J. Biomed. Health Inform. 19:6–21
    [Google Scholar]
  33. 33.
    Hu B, Peng H, Zhao Q, Hu B, Majoe D et al. 2015. Signal quality assessment model for wearable EEG Sensor on prediction of mental stress. IEEE Trans. NanoBiosci. 14:553–61
    [Google Scholar]
  34. 34.
    Patel S, Park H, Bonato P, Chan L, Rodgers M 2012. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9:21
    [Google Scholar]
  35. 35.
    Smith SJM. 2005. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 76:ii2–7
    [Google Scholar]
  36. 36.
    Jung S, Hong S, Kim J, Lee S, Hyeon T et al. 2015. Wearable fall detector using integrated sensors and energy devices. Sci. Rep. 5:17081
    [Google Scholar]
  37. 37.
    Chi YM, Jung TP, Cauwenberghs G 2010. Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3:106–19
    [Google Scholar]
  38. 38.
    Yao S, Zhu Y. 2016. Nanomaterial-enabled dry electrodes for electrophysiological sensing: a review. JOM 68:1145–55
    [Google Scholar]
  39. 39.
    Gruetzmann A, Hansen S, Muller J 2007. Novel dry electrodes for ECG monitoring. Physiol. Meas. 28:1375–90
    [Google Scholar]
  40. 40.
    Searle A, Kirkup L. 2000. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol. Meas. 21:271–83
    [Google Scholar]
  41. 41.
    Constantinescu G, Jeong JW, Li X, Scott DK, Jang KI et al. 2016. Epidermal electronics for electromyography: an application to swallowing therapy. Med. Eng. Phys. 38:807–12
    [Google Scholar]
  42. 42.
    Norton JJS, Lee DS, Lee JW, Lee W, Kwon O et al. 2015. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. PNAS 112:3920–25
    [Google Scholar]
  43. 43.
    Tai LC, Gao W, Chao M, Bariya M, Ngo QP et al. 2018. Methylxanthine drug monitoring with wearable sweat sensors. Adv. Mater. 30:1707442
    [Google Scholar]
  44. 44.
    Anastasova S, Crewther B, Bembnowicz P, Curto V, Ip HM et al. 2017. A wearable multisensing patch for continuous sweat monitoring. Biosens. Bioelectron. 93:139–45
    [Google Scholar]
  45. 45.
    Dang W, Manjakkal L, Navaraj WT, Lorenzelli L, Vinciguerra V, Dahiya R 2018. Stretchable wireless system for sweat pH monitoring. Biosens. Bioelectron. 107:192–202
    [Google Scholar]
  46. 46.
    McCaul M, Porter A, Barrett R, White P, Stroiescu F et al. 2018. Wearable platform for real-time monitoring of sodium in sweat. Chem. Phys. Chem. 19:1531–36
    [Google Scholar]
  47. 47.
    Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K et al. 2016. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–14
    [Google Scholar]
  48. 48.
    Farrell PM, Rosenstein BJ, White TB, Accurso FJ, Castellani C et al. 2008. Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation Consensus Report. J. Pediatr. 153:S4–14
    [Google Scholar]
  49. 49.
    Elnaggar YSR, El-Refaie WM, El-Massik MA, Abdallah OY 2014. Lecithin-based nanostructured gels for skin delivery: an update on state of art and recent applications. J. Control. Release 180:10–24
    [Google Scholar]
  50. 50.
    Choi J, Kang D, Han S, Kim SB, Rogers JA 2017. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthc. Mater. 6:1601355
    [Google Scholar]
  51. 51.
    Lee H, Song C, Hong YS, Kim MS, Cho HR et al. 2017. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3:e1601314
    [Google Scholar]
  52. 52.
    Kinnamon D, Ghanta R, Lin KC, Muthukumar S, Prasad S 2017. Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci. Rep. 7:13312
    [Google Scholar]
  53. 53.
    Liao C, Zhang M, Niu L, Zheng Z, Yan F 2013. Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. J. Mater. Chem. B 1:3820
    [Google Scholar]
  54. 54.
    Tang H, Yan F, Lin P, Xu J, Chan HLW 2011. Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv. Funct. Mater. 21:2264–72
    [Google Scholar]
  55. 55.
    Kergoat L, Piro B, Simon DT, Pham MC, Noel V, Berggren M 2014. Detection of glutamate and acetylcholine with organic electrochemical transistors based on conducting polymer/platinum nanoparticle composites. Adv. Mater. 26:5658–64
    [Google Scholar]
  56. 56.
    Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z 2012. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33:2206–14
    [Google Scholar]
  57. 57.
    Mannoor MS, Tao H, Clayton JD, Sengupta A, Kaplan DL et al. 2012. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3:763
    [Google Scholar]
  58. 58.
    Kang N, Lin F, Zhao W, Lombardi JP, Almihdhar M et al. 2016. Nanoparticle–nanofibrous membranes as scaffolds for flexible sweat sensors. ACS Sens 1:1060–69
    [Google Scholar]
  59. 59.
    Parlak O, Keene ST, Marais A, Curto VF, Salleo A 2018. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 4:eaar2904
    [Google Scholar]
  60. 60.
    Koh A, Kang D, Xue Y, Lee S, Pielak RM et al. 2016. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8:366ra165
    [Google Scholar]
  61. 61.
    Curto VF, Fay C, Coyle S, Byrne R, O'Toole C et al. 2012. Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids. Sens. Actuators B 171/172:1327–34
    [Google Scholar]
  62. 62.
    Oncescu V, O'Dell D, Erickson D 2013. Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip 13:3232–38
    [Google Scholar]
  63. 63.
    Shen L, Hagen JA, Papautsky I 2012. Point-of-care colorimetric detection with a smartphone. Lab Chip 12:4240–43
    [Google Scholar]
  64. 64.
    Castano LM, Flatau AB. 2014. Smart fabric sensors and e-textile technologies: a review. Smart Mater. Struct. 23:053001
    [Google Scholar]
  65. 65.
    Windmiller JR, Bandodkar AJ, Parkhomovsky S, Wang J 2012. Stamp transfer electrodes for electrochemical sensing on non-planar and oversized surfaces. Analyst 137:1570–75
    [Google Scholar]
  66. 66.
    Bujes-Garrido J, Arcos-Martínez MJ. 2017. Development of a wearable electrochemical sensor for voltammetric determination of chloride ions. Sens. Actuators B 240:224–28
    [Google Scholar]
  67. 67.
    Mishra RK, Martín A, Nakagawa T, Barfidokht A, Lu X et al. 2018. Detection of vapor-phase organophosphate threats using wearable conformable integrated epidermal and textile wireless biosensor systems. Biosens. Bioelectron. 101:227–34
    [Google Scholar]
  68. 68.
    Gualandi I, Marzocchi M, Achilli A, Cavedale D, Bonfiglio A, Fraboni B 2016. Textile organic electrochemical transistors as a platform for wearable biosensors. Sci. Rep. 6:33637
    [Google Scholar]
  69. 69.
    Zhou G, Byun JH, Oh Y, Jung BM, Cha HJ et al. 2017. Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly(vinyl alcohol) filaments. ACS Appl. Mater. Interfaces 9:4788–97
    [Google Scholar]
  70. 70.
    Bandodkar AJ, Jia W, Yardimci C, Wang X, Ramirez J, Wang J 2015. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 87:394–98
    [Google Scholar]
  71. 71.
    Emaminejad S, Gao W, Wu E, Davies ZA, Yin Yin Nyein H et al. 2017. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. PNAS 114:4625–30
    [Google Scholar]
  72. 72.
    Liu Y, Pharr M, Salvatore GA 2017. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11:9614–35
    [Google Scholar]
  73. 73.
    Pang C, Bae W-G, Kim HN, Suh K-Y 2012. Wearable skin sensors for in vitro diagnostics. SPIE Newsroom Dec. 3. http://spie.org/newsroom/4554-wearable-skin-sensors-for-in-vitro-diagnostics?SSO = 1
    [Google Scholar]
  74. 74.
    Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH 2016. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28:4203–18
    [Google Scholar]
  75. 75.
    Hamid S, Hayek R. 2008. Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur. Spine J. 17:1256–69
    [Google Scholar]
  76. 76.
    Malešević NM, Maneski LZP, Ilić V, Jorgovanović N, Bijelić G et al. 2012. A multi-pad electrode based functional electrical stimulation system for restoration of grasp. J. Neuroeng. Rehabil. 9:66
    [Google Scholar]
  77. 77.
    Micera S, Keller T, Lawrence M, Morari M, Popovic D 2010. Wearable neural prostheses. IEEE Eng. Med. Biol. Mag. 29:64–69
    [Google Scholar]
  78. 78.
    Heller BW, Clarke AJ, Good TR, Healey TJ, Nair S et al. 2013. Automated setup of functional electrical stimulation for drop foot using a novel 64 channel prototype stimulator and electrode array: results from a gait-lab based study. Med. Eng. Phys. 35:74–81
    [Google Scholar]
  79. 79.
    Choi S, Park J, Hyun W, Kim J, Kim J et al. 2015. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9:6626–33
    [Google Scholar]
  80. 80.
    Loeser RF, Goldring SR, Scanzello CR, Goldring MB 2012. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–707
    [Google Scholar]
  81. 81.
    Maghsoudipour M, Moghimi S, Dehghaan F, Rahimpanah A 2008. Association of occupational and non-occupational risk factors with the prevalence of work related carpal tunnel syndrome. J. Occup. Rehabil. 18:152–66
    [Google Scholar]
  82. 82.
    Yang K, Freeman C, Torah R, Beeby S, Tudor J 2014. Screen printed fabric electrode array for wearable functional electrical stimulation. Sens. Actuators A 213:108–15
    [Google Scholar]
  83. 83.
    Xu B, Akhtar A, Liu Y, Chen H, Yeo WH et al. 2016. An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv. Mater. 28:4462–71
    [Google Scholar]
  84. 84.
    Jang NS, Kim KH, Ha SH, Jung SH, Lee HM, Kim JM 2017. Simple approach to high-performance stretchable heaters based on Kirigami patterning of conductive paper for wearable thermotherapy applications. ACS Appl. Mater. Interfaces 9:19612–21
    [Google Scholar]
  85. 85.
    DeMuth PC, Li AV, Abbink P, Liu J, Li H et al. 2013. Vaccine delivery with microneedle skin patches in nonhuman primates. Nat. Biotechnol. 31:1082–85
    [Google Scholar]
  86. 86.
    Prausnitz MR, Langer R. 2008. Transdermal drug delivery. Nat. Biotechnol. 26:1261–68
    [Google Scholar]
  87. 87.
    Di J, Yao S, Ye Y, Cui Z, Yu J et al. 2015. Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano 9:9407–15
    [Google Scholar]
  88. 88.
    Kim YC, Park JH, Prausnitz MR 2012. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64:1547–68
    [Google Scholar]
  89. 89.
    Mitragotri S, Blankschtein D, Langer R 1995. Ultrasound-mediated transdermal protein delivery. Science 269:850–53
    [Google Scholar]
  90. 90.
    Shin J, Shin K, Lee H, Nam JB, Jung JE et al. 2010. Non-invasive transdermal delivery route using electrostatically interactive biocompatible nanocapsules. Adv. Mater. 22:739–43
    [Google Scholar]
  91. 91.
    Sullivan SP, Koutsonanos DG, Del Pilar Martin M, Lee JW, Zarnitsyn V et al. 2010. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 16:915–20
    [Google Scholar]
  92. 92.
    Yu J, Zhang Y, Ye Y, DiSanto R, Sun W et al. 2015. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. PNAS 112:8260–65
    [Google Scholar]
  93. 93.
    Vadlapatla R, Wong EY, Gayakwad SG 2017. Electronic drug delivery systems: an overview. J. Drug Deliv. Sci. Technol. 41:359–66
    [Google Scholar]
  94. 94.
    Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R et al. 2016. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11:566–72
    [Google Scholar]
  95. 95.
    Lee JW, Park JH, Prausnitz MR 2008. Dissolving microneedles for transdermal drug delivery. Biomaterials 29:2113–24
    [Google Scholar]
  96. 96.
    Ita K. 2017. Dissolving microneedles for transdermal drug delivery: advances and challenges. Biomed. Pharmacother. 93:1116–27
    [Google Scholar]
  97. 97.
    Kim J, Son D, Lee M, Song C, Song JK et al. 2016. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement. Sci. Adv. 2:e1501101
    [Google Scholar]
  98. 98.
    Choi MK, Park OK, Choi C, Qiao S, Ghaffari R et al. 2016. Cephalopod-inspired miniaturized suction cups for smart medical skin. Adv. Healthc. Mater. 5:80–87
    [Google Scholar]
  99. 99.
    Ogawa Y, Kato K, Miyake T, Nagamine K, Ofuji T et al. 2015. Organic transdermal iontophoresis patch with built-in biofuel cell. Adv. Healthc. Mater. 4:506–10
    [Google Scholar]
  100. 100.
    Son D, Lee J, Qiao S, Ghaffari R, Kim J et al. 2014. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9:397–404
    [Google Scholar]
  101. 101.
    Lee JE, Lee N, Kim T, Kim J, Hyeon T 2011. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res. 44:893–902
    [Google Scholar]
  102. 102.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R 2007. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2:751–60
    [Google Scholar]
  103. 103.
    Herbert R, Kim JH, Kim YS, Lee H, Yeo WH 2018. Soft material–enabled, flexible hybrid electronics for medicine, healthcare, and human–machine interfaces. Materials 11:E187
    [Google Scholar]
  104. 104.
    Wagner S, Bauer S. 2012. Materials for stretchable electronics. MRS Bull 37:207–13
    [Google Scholar]
  105. 105.
    Gonzalez M, Vandevelde B, Christiaens W, Hsu YY, Iker F et al. 2011. Design and implementation of flexible and stretchable systems. Microelectron. Reliab. 51:1069–76
    [Google Scholar]
  106. 106.
    Sterken T, Vanfleteren J, Torfs T, de Beeck MO, Bossuyt F, Van Hoof C 2011. Ultra-thin chip package (UTCP) and stretchable circuit technologies for wearable ECG system. Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society6886–89 Piscataway, NJ: IEEE
    [Google Scholar]
  107. 107.
    Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K et al. 2013. An ultra-lightweight design for imperceptible plastic electronics. Nature 499:458–63
    [Google Scholar]
  108. 108.
    White MS, Kaltenbrunner M, Głowacki ED, Gutnichenko K, Kettlgruber G et al. 2013. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7:811–16
    [Google Scholar]
  109. 109.
    Xu S, Zhang Y, Jia L, Mathewson KE, Jang KI et al. 2014. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344:70–74
    [Google Scholar]
  110. 110.
    Lee CH, Ma Y, Jang KI, Banks A, Pan T et al. 2015. Soft core/shell packages for stretchable electronics. Adv. Funct. Mater. 25:3698–704
    [Google Scholar]
  111. 111.
    Lipomi DJ, Vosgueritchian M, Tee BCK, Hellstrom SL, Lee JA et al. 2011. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6:788–92
    [Google Scholar]
  112. 112.
    Choong CL, Shim MB, Lee BS, Jeon S, Ko DS et al. 2014. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26:3451–58
    [Google Scholar]
  113. 113.
    Gong S, Schwalb W, Wang Y, Chen Y, Tang Y et al. 2014. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5:3132
    [Google Scholar]
  114. 114.
    Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A et al. 2011. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6:296–301
    [Google Scholar]
  115. 115.
    Pang C, Lee GY, Kim TI, Kim SM, Kim HN et al. 2012. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11:795–801
    [Google Scholar]
  116. 116.
    Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I 2014. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8:5154–63
    [Google Scholar]
  117. 117.
    Boland CS, Khan U, Backes C, O'Neill A, McCauley J et al. 2014. Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano 8:8819–30
    [Google Scholar]
  118. 118.
    Kenry, Yeo JC, Yu J, Shang M, Loh KP, Lim CT 2016. Highly flexible graphene oxide nanosuspension liquid–based microfluidic tactile sensor. Small 12:1593–604
    [Google Scholar]
  119. 119.
    Jung T, Yang S. 2015. Highly stable liquid metal–based pressure sensor integrated with a microfluidic channel. Sensors 15:11823–35
    [Google Scholar]
  120. 120.
    Chossat JB, Park YL, Wood RJ, Duchaine V 2013. A soft strain sensor based on ionic and metal liquids. IEEE Sens. J. 13:3405–14
    [Google Scholar]
  121. 121.
    Kim SY, Park S, Park HW, Park DH, Jeong Y, Kim DH 2015. Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv. Mater. 27:4178–85
    [Google Scholar]
  122. 122.
    Gerratt AP, Michaud HO, Lacour SP 2015. Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 25:2287–95
    [Google Scholar]
  123. 123.
    Wang J, Jiu J, Nogi M, Sugahara T, Nagao S et al. 2015. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires. Nanoscale 7:2926–32
    [Google Scholar]
  124. 124.
    Li R, Nie B, Digiglio P, Pan T 2014. Microflotronics: a flexible, transparent, pressure-sensitive microfluidic film. Adv. Funct. Mater. 24:6195–203
    [Google Scholar]
  125. 125.
    Cohen DJ, Mitra D, Peterson K, Maharbiz MM 2012. A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett 12:1821–25
    [Google Scholar]
  126. 126.
    Gullapalli H, Vemuru VSM, Kumar A, Botello-Mendez A, Vajtai R et al. 2010. Flexible piezoelectric ZnO–paper nanocomposite strain sensor. Small 6:1641–46
    [Google Scholar]
  127. 127.
    Dagdeviren C, Su Y, Joe P, Yona R, Liu Y et al. 2014. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5:4496
    [Google Scholar]
  128. 128.
    Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S et al. 2013. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4:1633
    [Google Scholar]
  129. 129.
    Nie B, Li R, Brandt JD, Pan T 2014. Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab Chip 14:1107–16
    [Google Scholar]
  130. 130.
    Nie B, Li R, Brandt JD, Pan T 2014. Microfluidic tactile sensors for three-dimensional contact force measurements. Lab Chip 14:4344–53
    [Google Scholar]
  131. 131.
    Mitsubayashi K, Wakabayashi Y, Murotomi D, Yamada T, Kawase T et al. 2003. Wearable and flexible oxygen sensor for transcutaneous oxygen monitoring. Sens. Actuators B 95:373–77
    [Google Scholar]
  132. 132.
    Yang YL, Chuang MC, Lou SL, Wang J 2010. Thick-film textile–based amperometric sensors and biosensors. Analyst 135:1230–34
    [Google Scholar]
  133. 133.
    Xuan X, Yoon HS, Park JY 2018. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 109:75–82
    [Google Scholar]
  134. 134.
    Martín A, Kim J, Kurniawan JF, Sempionatto JR, Moreto JR et al. 2017. Epidermal microfluidic electrochemical detection system: enhanced sweat sampling and metabolite detection. ACS Sens 2:1860–68
    [Google Scholar]
  135. 135.
    Schazmann B, Morris D, Slater C, Beirne S, Fay C et al. 2010. A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration. Anal. Methods 2:342–48
    [Google Scholar]
  136. 136.
    Gonzalo-Ruiz J, Mas R, de Haro C, Cabruja E, Camero R et al. 2009. Early determination of cystic fibrosis by electrochemical chloride quantification in sweat. Biosens. Bioelectron. 24:1788–91
    [Google Scholar]
  137. 137.
    Bandodkar AJ, Hung VWS, Jia W, Valdés-Ramírez G, Windmiller JR et al. 2013. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 138:123–28
    [Google Scholar]
  138. 138.
    Guinovart T, Bandodkar AJ, Windmiller JR, Andrade FJ, Wang J 2013. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst 138:7031–38
    [Google Scholar]
  139. 139.
    Bandodkar AJ, Molinnus D, Mirza O, Guinovart T, Windmiller JR et al. 2014. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron. 54:603–9
    [Google Scholar]
  140. 140.
    Khodagholy D, Curto VF, Fraser KJ, Gurfinkel M, Byrne R et al. 2012. Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. J. Mater. Chem. 22:4440–43
    [Google Scholar]
  141. 141.
    Jessen C. 2000. Temperature Regulation in Humans and Other Mammals Berlin: Springer
  142. 142.
    Mukamal R, Harrison DA. 2016. Facts About Tears San Francisco: Am. Acad. Ophthalmol https://www.aao.org/eye-health/tips-prevention/facts-about-tears
  143. 143.
    Baker LB. 2017. Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med 47:111–28
    [Google Scholar]
  144. 144.
    Farandos NM, Yetisen AK, Monteiro MJ, Lowe CR, Yun SH 2015. Contact lens sensors in ocular diagnostics. Adv. Healthc. Mater. 4:792–810
    [Google Scholar]
  145. 145.
    Autran de Morais HA, DiBartola SB 2012. Advances in Fluid, Electrolyte, and Acid‐Base Disorders in Small Animal Practice Columbus, OH: Elsevier Saunders. , 4th ed..
  146. 146.
    Stahl U, Willcox M, Stapleton F 2012. Osmolality and tear film dynamics. Clin. Exp. Optom. 95:3–11
    [Google Scholar]
  147. 147.
    Abelson MB, Udell IJ, Weston JH 1981. Normal human tear pH by direct measurement. Arch. Ophthalmol. 99:301
    [Google Scholar]
  148. 148.
    Badugu R, Lakowicz JR, Geddes CD 2004. Ophthalmic glucose monitoring using disposable contact lenses—a review. J. Fluoresc. 14:617–33
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-060418-052315
Loading
/content/journals/10.1146/annurev-bioeng-060418-052315
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error