1932

Abstract

Single-cell omics studies provide unique information regarding cellular heterogeneity at various levels of the molecular biology central dogma. This knowledge facilitates a deeper understanding of how underlying molecular and architectural changes alter cell behavior, development, and disease processes. The emerging microchip-based tools for single-cell omics analysis are enabling the evaluation of cellular omics with high throughput, improved sensitivity, and reduced cost. We review state-of-the-art microchip platforms for profiling genomics, epigenomics, transcriptomics, proteomics, metabolomics, and multi-omics at single-cell resolution. We also discuss the background of and challenges in the analysis of each molecular layer and integration of multiple levels of omics data, as well as how microchip-based methodologies benefit these fields. Additionally, we examine the advantages and limitations of these approaches. Looking forward, we describe additional challenges and future opportunities that will facilitate the improvement and broad adoption of single-cell omics in life science and medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-060418-052538
2019-06-04
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/21/1/annurev-bioeng-060418-052538.html?itemId=/content/journals/10.1146/annurev-bioeng-060418-052538&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Elowitz MB, Levine AJ, Siggia ED, Swain PS 2002. Stochastic gene expression in a single cell. Science 297:1183–86
    [Google Scholar]
  2. 2.
    Raser JM, O'Shea EK 2005. Noise in gene expression: origins, consequences, and control. Science 309:2010–13
    [Google Scholar]
  3. 3.
    Liang S-B, Fu L-W 2017. Application of single-cell technology in cancer research. Biotechnol. Adv. 35:443–49
    [Google Scholar]
  4. 4.
    Wang D, Bodovitz S 2010. Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28:281–90
    [Google Scholar]
  5. 5.
    Zahreddine H, Borden K 2013. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol 4:28
    [Google Scholar]
  6. 6.
    Gottesman MM 2002. Mechanisms of cancer drug resistance. Annu. Rev. Med. 53:615–27
    [Google Scholar]
  7. 7.
    Zhang J, Campbell RE, Ting AY, Tsien RY 2002. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol 3:906–18
    [Google Scholar]
  8. 8.
    Kunz DJ, Gomes T, James KR 2018. Immune cell dynamics unfolded by single-cell technologies. Front. Immunol. 9:1435
    [Google Scholar]
  9. 9.
    Bendall SC, Nolan GP, Roederer M, Chattopadhyay PK 2012. A deep profiler's guide to cytometry. Trends Immunol 33:323–32
    [Google Scholar]
  10. 10.
    Darzynkiewicz Z, Zhao H 2014. Cell Cycle Analysis by Flow Cytometry Hoboken, NJ: Wiley
    [Google Scholar]
  11. 11.
    Laerum OD, Farsund T 1981. Clinical application of flow cytometry: a review. Cytometry A 2:1–13
    [Google Scholar]
  12. 12.
    Rieseberg M, Kasper C, Reardon KF, Scheper T 2001. Flow cytometry in biotechnology. Appl. Microbiol. Biotechnol. 56:350–60
    [Google Scholar]
  13. 13.
    Marie D, Le Gall F, Edern R, Gourvil P, Vaulot D 2017. Improvement of phytoplankton culture isolation using single cell sorting by flow cytometry. J. Phycol. 53:271–82
    [Google Scholar]
  14. 14.
    Spitzer MH, Nolan GP 2016. Mass cytometry: single cells, many features. Cell 165:780–91
    [Google Scholar]
  15. 15.
    El-Ali J, Sorger PK, Jensen KF 2006. Cells on chips. Nature 442:403–11
    [Google Scholar]
  16. 16.
    Whitesides GM 2006. The origins and the future of microfluidics. Nature 442:368–73
    [Google Scholar]
  17. 17.
    Sackmann EK, Fulton AL, Beebe DJ 2014. The present and future role of microfluidics in biomedical research. Nature 507:181–89
    [Google Scholar]
  18. 18.
    Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM 2001. Laminar flows: subcellular positioning of small molecules. Nature 411:1016
    [Google Scholar]
  19. 19.
    Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM 2003. Selective chemical treatment of cellular microdomains using multiple laminar streams. Chem. Biol. 10:1231–30
    [Google Scholar]
  20. 20.
    Yin H, Marshall D 2012. Microfluidics for single cell analysis. Curr. Opin. Biotechnol. 23:110–19
    [Google Scholar]
  21. 21.
    Lecault V, White AK, Singhal A, Hansen CL 2012. Microfluidic single cell analysis: from promise to practice. Curr. Opin. Chem. Biol. 16:381–90
    [Google Scholar]
  22. 22.
    Schmid A, Kortmann H, Dittrich PS, Blank LM 2010. Chemical and biological single cell analysis. Curr. Opin. Biotechnol. 21:12–20
    [Google Scholar]
  23. 23.
    Junkin M, Tay S 2014. Microfluidic single-cell analysis for systems immunology. Lab Chip 14:1246–60
    [Google Scholar]
  24. 24.
    Reece A, Xia B, Jiang Z, Noren B, McBride R, Oakey J 2016. Microfluidic techniques for high throughput single cell analysis. Curr. Opin. Biotechnol. 40:90–96
    [Google Scholar]
  25. 25.
    Murphy TW, Zhang Q, Naler LB, Ma S, Lu C 2018. Recent advances in the use of microfluidic technologies for single cell analysis. Analyst 143:60–80
    [Google Scholar]
  26. 26.
    Chappell L, Russell AJ, Voet T 2018. Single-cell (multi)omics technologies. Annu. Rev. Genom. Hum. Genet. 19:15–41
    [Google Scholar]
  27. 27.
    Ernst C 2016. Proliferation and differentiation deficits are a major convergence point for neurodevelopmental disorders. Trends Neurosci 39:290–99
    [Google Scholar]
  28. 28.
    Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL et al. 2014. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 25:379–92
    [Google Scholar]
  29. 29.
    Chesnais V, Arcangeli M-L, Delette C, Rousseau A, Guermouche H et al. 2016. Architectural and functional heterogeneity of hematopoietic stem/progenitor cells in non-del (5q) myelodysplastic syndromes. Blood 129:484–96
    [Google Scholar]
  30. 30.
    Pipek O, Ribli D, Molnár J, Póti Á, Krzystanek M et al. 2017. Fast and accurate mutation detection in whole genome sequences of multiple isogenic samples with IsoMut. BMC Bioinform 18:73
    [Google Scholar]
  31. 31.
    Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC et al. 2012. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481:506–10
    [Google Scholar]
  32. 32.
    Tattini L, D'Aurizio R, Magi A 2015. Detection of genomic structural variants from next-generation sequencing data. Front. Bioeng. Biotechnol. 3:92
    [Google Scholar]
  33. 33.
    Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC 2009. Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res 19:1270–78
    [Google Scholar]
  34. 34.
    Mazloom AR, Džakula Ž, Oeth P, Wang H, Jensen T et al. 2013. Noninvasive prenatal detection of sex chromosomal aneuploidies by sequencing circulating cell‐free DNA from maternal plasma. Prenatal Diagn 33:591–97
    [Google Scholar]
  35. 35.
    Lau TK, Jiang FM, Stevenson RJ, Lo TK, Chan LW et al. 2013. Secondary findings from non‐invasive prenatal testing for common fetal aneuploidies by whole genome sequencing as a clinical service. Prenatal Diagn 33:602–8
    [Google Scholar]
  36. 36.
    Marttinen P, Hanage WP, Croucher NJ, Connor TR, Harris SR et al. 2011. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res 40:e6
    [Google Scholar]
  37. 37.
    Evrony GD, Lee E, Mehta BK, Benjamini Y, Johnson RM et al. 2015. Cell lineage analysis in human brain using endogenous retroelements. Neuron 85:49–59
    [Google Scholar]
  38. 38.
    Behjati S, Huch M, van Boxtel R, Karthaus W, Wedge DC et al. 2014. Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature 513:422–25
    [Google Scholar]
  39. 39.
    King DA, Sifrim A, Fitzgerald TW, Rahbari R, Hobson E et al. 2017. Detection of structural mosaicism from targeted and whole-genome sequencing data. Genome Res 27:1704–14
    [Google Scholar]
  40. 40.
    Elgvin TO, Trier CN, Tørresen OK, Hagen IJ, Lien S et al. 2017. The genomic mosaicism of hybrid speciation. Sci. Adv. 3:e1602996
    [Google Scholar]
  41. 41.
    Szulwach KE, Chen P, Wang X, Wang J, Weaver LS et al. 2015. Single-cell genetic analysis using automated microfluidics to resolve somatic mosaicism. PLOS ONE 10:e0135007
    [Google Scholar]
  42. 42.
    Wang Y, Navin NE 2015. Advances and applications of single-cell sequencing technologies. Mol. Cell 58:598–609
    [Google Scholar]
  43. 43.
    Paguirigan AL, Smith J, Meshinchi S, Carroll M, Maley C, Radich JP 2015. Single-cell genotyping demonstrates complex clonal diversity in acute myeloid leukemia. Sci. Transl. Med. 7:281re2
    [Google Scholar]
  44. 44.
    Zong C, Lu S, Chapman AR, Xie XS 2012. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338:1622–26
    [Google Scholar]
  45. 45.
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L et al. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472:90–94
    [Google Scholar]
  46. 46.
    Marie R, Pødenphant M, Koprowska K, Bærlocher L, Vulders RC et al. 2018. Sequencing of human genomes extracted from single cancer cells isolated in a valveless microfluidic device. Lab Chip 18:1891–902
    [Google Scholar]
  47. 47.
    Tian HC, Benitez JJ, Craighead HG 2018. Single cell on-chip whole genome amplification via micropillar arrays for reduced amplification bias. PLOS ONE 13:e0191520
    [Google Scholar]
  48. 48.
    Marcy Y, Ishoey T, Lasken RS, Stockwell TB, Walenz BP et al. 2007. Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLOS Genet 3:e155
    [Google Scholar]
  49. 49.
    Dean FB, Nelson JR, Giesler TL, Lasken RS 2001. Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–99
    [Google Scholar]
  50. 50.
    Dean FB, Hosono S, Fang L, Wu X, Faruqi AF et al. 2002. Comprehensive human genome amplification using multiple displacement amplification. PNAS 99:5261–66
    [Google Scholar]
  51. 51.
    Nishikawa Y, Hosokawa M, Maruyama T, Yamagishi K, Mori T, Takeyama H 2015. Monodisperse picoliter droplets for low-bias and contamination-free reactions in single-cell whole genome amplification. PLOS ONE 10:e0138733
    [Google Scholar]
  52. 52.
    Rhee M, Light YK, Meagher RJ, Singh AK 2016. Digital droplet multiple displacement amplification (ddMDA) for whole genome sequencing of limited DNA samples. PLOS ONE 11:e0153699
    [Google Scholar]
  53. 53.
    Vyawahare S, Griffiths AD, Merten CA 2010. Miniaturization and parallelization of biological and chemical assays in microfluidic devices. Chem. Biol. 17:1052–65
    [Google Scholar]
  54. 54.
    Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR 2000. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–16
    [Google Scholar]
  55. 55.
    Gawad C, Koh W, Quake SR 2014. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. PNAS 111:17947–52
    [Google Scholar]
  56. 56.
    Gole J, Gore A, Richards A, Chiu Y-J, Fung H-L et al. 2013. Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat. Biotechnol. 31:1126–32
    [Google Scholar]
  57. 57.
    Hosokawa M, Nishikawa Y, Kogawa M, Takeyama H 2017. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics. Sci. Rep. 7:5199
    [Google Scholar]
  58. 58.
    Fu Y, Li C, Lu S, Zhou W, Tang F et al. 2015. Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. PNAS 112:11923–28
    [Google Scholar]
  59. 59.
    Sidore AM, Lan F, Lim SW, Abate AR 2015. Enhanced sequencing coverage with digital droplet multiple displacement amplification. Nucleic Acids Res 44:e66
    [Google Scholar]
  60. 60.
    Lan F, Demaree B, Ahmed N, Abate AR 2017. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35:640–46
    [Google Scholar]
  61. 61.
    Benítez JJ, Topolancik J, Tian HC, Wallin CB, Latulippe DR et al. 2012. Microfluidic extraction, stretching and analysis of human chromosomal DNA from single cells. Lab Chip 12:4848–54
    [Google Scholar]
  62. 62.
    Xu L, Brito IL, Alm EJ, Blainey PC 2016. Virtual microfluidics for digital quantification and single-cell sequencing. Nat. Methods 13:759–62
    [Google Scholar]
  63. 63.
    Rotem A, Ram O, Shoresh N, Sperling RA, Schnall-Levin M et al. 2015. High-throughput single-cell labeling (Hi-SCL) for RNA-Seq using drop-based microfluidics. PLOS ONE 10:e0116328
    [Google Scholar]
  64. 64.
    Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W 2016. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol 17:72
    [Google Scholar]
  65. 65.
    Aguilar CA, Craighead HG 2013. Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics. Nat. Nanotechnol. 8:709–18
    [Google Scholar]
  66. 66.
    Kelsey G, Stegle O, Reik W 2017. Single-cell epigenomics: recording the past and predicting the future. Science 358:69–75
    [Google Scholar]
  67. 67.
    Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML et al. 2015. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:486–90
    [Google Scholar]
  68. 68.
    Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H et al. 2014. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11:817–20
    [Google Scholar]
  69. 69.
    Guo HS, Zhu P, Wu XL, Li XL, Wen L, Tang FC 2013. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res 23:2126–35
    [Google Scholar]
  70. 70.
    Zhu P, Guo H, Ren Y, Hou Y, Dong J et al. 2018. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat. Genet. 50:12–19
    [Google Scholar]
  71. 71.
    Luo CY, Keown CL, Kurihara L, Zhou JT, He YP et al. 2017. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357:600–4
    [Google Scholar]
  72. 72.
    Han L, Wu H-J, Zhu H, Kim K-Y, Marjani SL et al. 2017. Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells. Nucleic Acids Res 45:e77
    [Google Scholar]
  73. 73.
    Ma S, Revenga MF, Sun Z, Sun C, Murphy TW et al. 2018. Cell-type-specific brain methylomes profiled via ultralow-input microfluidics. Nat. Biomed. Eng. 2:183–94
    [Google Scholar]
  74. 74.
    Mezger A, Klemm S, Mann I, Brower K, Mir A et al. 2018. High-throughput chromatin accessibility profiling at single-cell resolution. Nat. Commun. 9:3674
    [Google Scholar]
  75. 75.
    Prakadan SM, Shalek AK, Weitz DA 2017. Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat. Rev. Genet. 18:345–61
    [Google Scholar]
  76. 76.
    Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A et al. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–201
    [Google Scholar]
  77. 77.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–14
    [Google Scholar]
  78. 78.
    Streets AM, Zhang X, Cao C, Pang Y, Wu X et al. 2014. Microfluidic single-cell whole-transcriptome sequencing. PNAS 111:7048–53
    [Google Scholar]
  79. 79.
    Chen Z, Chen L, Zhang W 2017. Tools for genomic and transcriptomic analysis of microbes at single-cell level. Front. Microbiol. 8:1831
    [Google Scholar]
  80. 80.
    Bose S, Wan Z, Carr A, Rizvi AH, Vieira G et al. 2015. Scalable microfluidics for single-cell RNA printing and sequencing. Genome Biol 16:120
    [Google Scholar]
  81. 81.
    Kang X, Liu A, Liu GE 2018. Application of multi-omics in single cells. Ann. Biotechnol. 2:1007
    [Google Scholar]
  82. 82.
    Fiers MWEJ, Minnoye L, Aibar S, González-Blas CB, Atak ZK, Aerts S 2018. Mapping gene regulatory networks from single-cell omics data. Brief Funct. Genom. 17:246–54
    [Google Scholar]
  83. 83.
    Fan HC, Fu GK, Fodor SP 2015. Combinatorial labeling of single cells for gene expression cytometry. Science 347:1258367
    [Google Scholar]
  84. 84.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C et al. 2009. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6:377–82
    [Google Scholar]
  85. 85.
    Taniguchi K, Kajiyama T, Kambara H 2009. Quantitative analysis of gene expression in a single cell by qPCR. Nat. Methods 6:503–6
    [Google Scholar]
  86. 86.
    Matsunaga T, Hosokawa M, Arakaki A, Taguchi T, Mori T et al. 2008. High-efficiency single-cell entrapment and fluorescence in situ hybridization analysis using a poly(dimethylsiloxane) microfluidic device integrated with a black poly(ethylene terephthalate) micromesh. Anal. Chem. 80:5139–45
    [Google Scholar]
  87. 87.
    Lubeck E, Cai L 2012. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9:743–48
    [Google Scholar]
  88. 88.
    Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L 2014. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11:360–61
    [Google Scholar]
  89. 89.
    Chen KH, Boettiger AN, Moffitt JR, Wang SY, Zhuang XW 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090
    [Google Scholar]
  90. 90.
    Kao K-J, Tai C-H, Chang W-H, Yeh T-S, Chen T-C, Lee G-B 2015. A fluorescence in situ hybridization (FISH) microfluidic platform for detection of HER2 amplification in cancer cells. Biosensors Bioelectron 69:272–79
    [Google Scholar]
  91. 91.
    White AK, VanInsberghe M, Petriv I, Hamidi M, Sikorski D et al. 2011. High-throughput microfluidic single-cell RT-qPCR. PNAS 108:13999–4004
    [Google Scholar]
  92. 92.
    Eastburn DJ, Sciambi A, Abate AR 2013. Ultrahigh-throughput mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops. Anal. Chem. 85:8016–21
    [Google Scholar]
  93. 93.
    Ramsköld D, Luo S, Wang Y-C, Li R, Deng Q et al. 2012. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30:777–82
    [Google Scholar]
  94. 94.
    Islam S, Zeisel A, Joost S, La Manno G, Zajac P et al. 2014. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11:163–66
    [Google Scholar]
  95. 95.
    Metzker ML 2010. Sequencing technologies—the next generation. Nat. Rev. Genet. 11:31–46
    [Google Scholar]
  96. 96.
    Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B et al. 2014. Quantitative assessment of single-cell RNA-sequencing methods. Nat. Methods 11:41–46
    [Google Scholar]
  97. 97.
    Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D et al. 2014. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510:363–69
    [Google Scholar]
  98. 98.
    Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G et al. 2015. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–42
    [Google Scholar]
  99. 99.
    Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC et al. 2016. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352:1586–90
    [Google Scholar]
  100. 100.
    White JA, Streets AM 2018. Controller for microfluidic large-scale integration. HardwareX 3:135–45
    [Google Scholar]
  101. 101.
    Gierahn TM, Wadsworth MH II, Hughes TK, Bryson BD, Butler A et al. 2017. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Methods 14:395–98
    [Google Scholar]
  102. 102.
    Yuan J, Sims PA 2016. An automated microwell platform for large-scale single cell RNA-Seq. Sci. Rep. 6:33883
    [Google Scholar]
  103. 103.
    Dura B, Choi J, Zhang K, Damsky W, Thakral D et al. 2019. scFTD-seq: freeze-thaw lysis based, portable approach toward highly distributed single-cell 3′ mRNA profiling. Nucleic Acids Res. 47:e16
    [Google Scholar]
  104. 104.
    Garg S, Sharp PA 2016. Single-cell variability guided by microRNAs. Science 352:1390–91
    [Google Scholar]
  105. 105.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J et al. 2005. MicroRNA expression profiles classify human cancers. Nature 435:834–38
    [Google Scholar]
  106. 106.
    Calin GA, Croce CM 2006. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6:857–66
    [Google Scholar]
  107. 107.
    Bushati N, Cohen SM 2007. MicroRNA functions. Annu. Rev. Cell Dev. Biol. 23:175–205
    [Google Scholar]
  108. 108.
    Jang JS, Simon VA, Feddersen RM, Rakhshan F, Schultz DA et al. 2011. Quantitative miRNA expression analysis using fluidigm microfluidics dynamic arrays. BMC Genom 12:144
    [Google Scholar]
  109. 109.
    Wu M, Piccini M, Koh C-Y, Lam KS, Singh AK 2013. Single cell microRNA analysis using microfluidic flow cytometry. PLOS ONE 8:e55044
    [Google Scholar]
  110. 110.
    Guo S, Lin WN, Hu Y, Sun G, Phan D-T, Chen C-H 2018. Ultrahigh-throughput droplet microfluidic device for single-cell miRNA detection with isothermal amplification. Lab Chip 18:1914–20
    [Google Scholar]
  111. 111.
    Wang NY, Cheng JJ, Fan R, Lu J 2017. Capture, amplification, and global profiling of microRNAs from low quantities of whole cell lysate. Analyst 142:3203–11
    [Google Scholar]
  112. 112.
    Faridani OR, Abdullayev I, Hagemann-Jensen M, Schell JP, Lanner F, Sandberg R 2016. Single-cell sequencing of the small-RNA transcriptome. Nat. Biotechnol. 34:1264–66
    [Google Scholar]
  113. 113.
    Wu M, Singh AK 2012. Single-cell protein analysis. Curr. Opin. Biotechnol. 23:83–88
    [Google Scholar]
  114. 114.
    Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS et al. 2014. A draft map of the human proteome. Nature 509:575–81
    [Google Scholar]
  115. 115.
    Yu J, Zhou J, Sutherland A, Wei W, Shin YS et al. 2014. Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications. Annu. Rev. Anal. Chem. 7:275–95
    [Google Scholar]
  116. 116.
    Lu Y, Yang L, Wei W, Shi Q 2017. Microchip-based single-cell functional proteomics for biomedical applications. Lab Chip 17:1250–63
    [Google Scholar]
  117. 117.
    Spiller DG, Wood CD, Rand DA, White MR 2010. Measurement of single-cell dynamics. Nature 465:736–45
    [Google Scholar]
  118. 118.
    Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK 2009. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459:428–32
    [Google Scholar]
  119. 119.
    Tay S, Hughey JJ, Lee TK, Lipniacki T, Quake SR, Covert MW 2010. Single-cell NF-κB dynamics reveal digital activation and analogue information processing. Nature 466:267–71
    [Google Scholar]
  120. 120.
    Batchelor E, Loewer A, Lahav G 2009. The ups and downs of p53: understanding protein dynamics in single cells. Nat. Rev. Cancer 9:371–77
    [Google Scholar]
  121. 121.
    Taylor R, Falconnet D, Niemistö A, Ramsey S, Prinz S et al. 2009. Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform. PNAS 106:3758–63
    [Google Scholar]
  122. 122.
    Wei W, Shin YS, Ma C, Wang J, Elitas M et al. 2013. Microchip platforms for multiplex single-cell functional proteomics with applications to immunology and cancer research. Genome Med 5:75
    [Google Scholar]
  123. 123.
    Love JC, Ronan JL, Grotenbreg GM, van der Veen AG, Ploegh HL 2006. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat. Biotechnol. 24:703–7
    [Google Scholar]
  124. 124.
    Torres AJ, Hill AS, Love JC 2014. Nanowell-based immunoassays for measuring single-cell secretion: characterization of transport and surface binding. Anal. Chem. 86:11562–69
    [Google Scholar]
  125. 125.
    Han Q, Bradshaw EM, Nilsson B, Hafler DA, Love JC 2010. Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving. Lab Chip 10:1391–400
    [Google Scholar]
  126. 126.
    Elitas M, Brower K, Lu Y, Chen JJ, Fan R 2014. A microchip platform for interrogating tumor–macrophage paracrine signaling at the single-cell level. Lab Chip 14:3582–88
    [Google Scholar]
  127. 127.
    Fan R, Vermesh O, Srivastava A, Yen BK, Qin L et al. 2008. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 26:1373–78
    [Google Scholar]
  128. 128.
    Kwak M, Mu L, Lu Y, Chen JJ, Wu Y et al. 2013. Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell–cell interaction. Front. Oncol. 3:10
    [Google Scholar]
  129. 129.
    Lu Y, Chen JJ, Mu L, Xue Q, Wu Y et al. 2013. High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal. Chem. 85:2548–56
    [Google Scholar]
  130. 130.
    Lu Y, Xue Q, Eisele MR, Sulistijo ES, Brower K et al. 2015. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. PNAS 112:E607–15
    [Google Scholar]
  131. 131.
    Ma C, Fan R, Ahmad H, Shi Q, Comin-Anduix B et al. 2011. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat. Med. 17:738–43
    [Google Scholar]
  132. 132.
    Ma C, Cheung AF, Chodon T, Koya RC, Wu Z et al. 2013. Multifunctional T-cell analyses to study response and progression in adoptive cell transfer immunotherapy. Cancer Discov 3:418–29
    [Google Scholar]
  133. 133.
    Ramirez L, Herschkowitz JI, Wang J 2016. Stand-sit microchip for high-throughput, multiplexed analysis of single cancer cells. Sci. Rep. 6:32505
    [Google Scholar]
  134. 134.
    Shi Q, Qin L, Wei W, Geng F, Fan R et al. 2012. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. PNAS 109:419–24
    [Google Scholar]
  135. 135.
    Xue Q, Lu Y, Eisele MR, Sulistijo ES, Khan N et al. 2015. Analysis of single-cell cytokine secretion reveals a role for paracrine signaling in coordinating macrophage responses to TLR4 stimulation. Sci. Signal. 8:ra59
    [Google Scholar]
  136. 136.
    Yang L, Wang Z, Deng Y, Li Y, Wei W, Shi Q 2016. Single-cell, multiplexed protein detection of rare tumor cells based on a beads-on-barcode antibody microarray. Anal. Chem. 88:11077–83
    [Google Scholar]
  137. 137.
    Zhang Y, Tang Y, Sun S, Wang Z, Wu W et al. 2015. Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells. Anal. Chem. 87:9761–68
    [Google Scholar]
  138. 138.
    Bai R, Li L, Liu M, Yan S, Miao C et al. 2018. Based 3D scaffold for multiplexed single cell secretomic analysis. Anal. Chem. 90:5825–32
    [Google Scholar]
  139. 139.
    Elitas M, Brower K, Lu Y, Chen JJ, Fan R 2014. A microchip platform for interrogating tumor-macrophage paracrine signaling at the single-cell level. Lab Chip 14:3582–88
    [Google Scholar]
  140. 140.
    Wang J, Tham D, Wei W, Shin YS, Ma C et al. 2012. Quantitating cell-cell interaction functions with applications to glioblastoma multiforme cancer cells. Nano Lett 12:6101–6
    [Google Scholar]
  141. 141.
    Kravchenko-Balasha N, Wang J, Remacle F, Levine RD, Heath JR 2014. Glioblastoma cellular architectures are predicted through the characterization of two-cell interactions. PNAS 111:6521–26
    [Google Scholar]
  142. 142.
    Kleppe M, Kwak M, Koppikar P, Riester M, Keller M et al. 2015. JAK–STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov 5:316–31
    [Google Scholar]
  143. 143.
    Xue Q, Bettini E, Paczkowski P, Ng C, Kaiser A et al. 2017. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response. J. Immunother. Cancer 5:85
    [Google Scholar]
  144. 144.
    Rossi J, Paczkowski P, Shen YW, Morse K, Flynn B et al. 2018. Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood 132:804–14
    [Google Scholar]
  145. 145.
    Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC 2012. Polyfunctional responses by human T cells result from sequential release of cytokines. PNAS 109:1607–12
    [Google Scholar]
  146. 146.
    McWhorter FY, Smith TD, Luu TU, Rahim MK, Haun JB, Liu WF 2016. Macrophage secretion heterogeneity in engineered microenvironments revealed using a microwell platform. Integr. Biol. 8:751–60
    [Google Scholar]
  147. 147.
    Konry T, Dominguez-Villar M, Baecher-Allan C, Hafler DA, Yarmush ML 2011. Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosensors Bioelectron 26:2707–10
    [Google Scholar]
  148. 148.
    Chokkalingam V, Tel J, Wimmers F, Liu X, Semenov S et al. 2013. Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab Chip 13:4740–44
    [Google Scholar]
  149. 149.
    Akbari S, Pirbodaghi T 2014. A droplet-based heterogeneous immunoassay for screening single cells secreting antigen-specific antibodies. Lab Chip 14:3275–80
    [Google Scholar]
  150. 150.
    Son KJ, Rahimian A, Shin D-S, Siltanen C, Patel T, Revzin A 2016. Microfluidic compartments with sensing microbeads for dynamic monitoring of cytokine and exosome release from single cells. Analyst 141:679–88
    [Google Scholar]
  151. 151.
    An X, Sendra VG, Liadi I, Ramesh B, Romain G et al. 2017. Single-cell profiling of dynamic cytokine secretion and the phenotype of immune cells. PLOS ONE 12:e0181904
    [Google Scholar]
  152. 152.
    Konry T, Golberg A, Yarmush M 2013. Live single cell functional phenotyping in droplet nano-liter reactors. Sci. Rep. 3:3179
    [Google Scholar]
  153. 153.
    Junkin M, Kaestli AJ, Cheng Z, Jordi C, Albayrak C et al. 2016. High-content quantification of single-cell immune dynamics. Cell Rep 15:411–22
    [Google Scholar]
  154. 154.
    Kennedy E, Hokmabadi M, Dong Z, McKelvey K, Nelson EM, Timp G 2018. Method for dynamically detecting secretions from single cells using a nanopore. Nano Lett 18:4263–72
    [Google Scholar]
  155. 155.
    Huang B, Wu H, Bhaya D, Grossman A, Granier S et al. 2007. Counting low-copy number proteins in a single cell. Science 315:81–84
    [Google Scholar]
  156. 156.
    Shahi P, Kim SC, Haliburton JR, Gartner ZJ, Abate AR 2017. Abseq: ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci. Rep. 7:44447
    [Google Scholar]
  157. 157.
    Hughes AJ, Spelke DP, Xu Z, Kang C-C, Schaffer DV, Herr AE 2014. Single-cell western blotting. Nat. Methods 11:749–55
    [Google Scholar]
  158. 158.
    Kang C-C, Lin J-MG, Xu Z, Kumar S, Herr AE 2014. Single-cell western blotting after whole-cell imaging to assess cancer chemotherapeutic response. Anal. Chem. 86:10429–36
    [Google Scholar]
  159. 159.
    Kim JJ, Sinkala E, Herr AE 2017. High-selectivity cytology via lab-on-a-disc western blotting of individual cells. Lab Chip 17:855–63
    [Google Scholar]
  160. 160.
    Yamauchi KA, Herr AE 2017. Subcellular western blotting of single cells. Microsyst. Nanoeng. 3:16079
    [Google Scholar]
  161. 161.
    Faley SL, Copland M, Reboud J, Cooper JM 2011. Cell chip array for microfluidic proteomics enabling rapid in situ assessment of intracellular protein phosphorylation. Biomicrofluidics 5:024106
    [Google Scholar]
  162. 162.
    Kobayashi M, Kim SH, Nakamura H, Kaneda S, Fujii T 2015. Cancer cell analyses at the single cell-level using electroactive microwell array device. PLOS ONE 10:e0139980
    [Google Scholar]
  163. 163.
    Ng AH, Chamberlain MD, Situ H, Lee V, Wheeler AR 2015. Digital microfluidic immunocytochemistry in single cells. Nat. Commun. 6:7513
    [Google Scholar]
  164. 164.
    Dura B, Servos MM, Barry RM, Ploegh HL, Dougan SK, Voldman J 2016. Longitudinal multiparameter assay of lymphocyte interactions from onset by microfluidic cell pairing and culture. PNAS 113:E3599–608
    [Google Scholar]
  165. 165.
    Li X, Fan B, Cao S, Chen D, Zhao X et al. 2017. A microfluidic flow cytometer enabling absolute quantification of single-cell intracellular proteins. Lab Chip 17:3129–37
    [Google Scholar]
  166. 166.
    Rubakhin SS, Lanni EJ, Sweedler JV 2013. Progress toward single cell metabolomics. Curr. Opin. Biotechnol. 24:95–104
    [Google Scholar]
  167. 167.
    Lee WP, Wahjudi PN, Xu J, Go VL 2010. Tracer-based metabolomics: concepts and practices. Clin. Biochem. 43:1269–77
    [Google Scholar]
  168. 168.
    Hiyama E, Ali A, Amer S, Harada T, Shimamoto K et al. 2015. Direct lipido-metabolomics of single floating cells for analysis of circulating tumor cells by live single-cell mass spectrometry. Anal. Sci. 31:1215–17
    [Google Scholar]
  169. 169.
    Nicholson JK, Connelly J, Lindon JC, Holmes E 2002. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1:153–61
    [Google Scholar]
  170. 170.
    Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A et al. 2001. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19:45–50
    [Google Scholar]
  171. 171.
    Nemes P, Vertes A 2007. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79:8098–106
    [Google Scholar]
  172. 172.
    Shrestha B, Patt JM, Vertes A 2011. In situ cell-by-cell imaging and analysis of small cell populations by mass spectrometry. Anal. Chem. 83:2947–55
    [Google Scholar]
  173. 173.
    Rubakhin SS, Sweedler JV 2008. Quantitative measurements of cell−cell signaling peptides with single-cell MALDI MS. Anal. Chem. 80:7128–36
    [Google Scholar]
  174. 174.
    Emara S, Amer S, Ali A, Abouleila Y, Oga A, Masujima T 2017. Single-cell metabolomics. Metabolomics: From Fundamentals to Clinical Applications A Sussulini 323–43 New York: Springer
    [Google Scholar]
  175. 175.
    Mortensen NP, Mercier KA, McRitchie S, Cavallo TB, Pathmasiri W et al. 2016. Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways. Biomed. Microdevices 18:51
    [Google Scholar]
  176. 176.
    Ouattara DA, Prot J-M, Bunescu A, Dumas M-E, Elena-Herrmann B et al. 2012. Metabolomics-on-a-chip and metabolic flux analysis for label-free modeling of the internal metabolism of HepG2/C3A cells. Mol. Biosyst. 8:1908–20
    [Google Scholar]
  177. 177.
    Shintu L, Baudoin R, Navratil V, Prot J-M, Pontoizeau C et al. 2012. Metabolomics-on-a-chip and predictive systems toxicology in microfluidic bioartificial organs. Anal. Chem. 84:1840–48
    [Google Scholar]
  178. 178.
    Cheng W, Klauke N, Sedgwick H, Smith GL, Cooper JM 2006. Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab Chip 6:1424–31
    [Google Scholar]
  179. 179.
    Boedicker JQ, Li L, Kline TR, Ismagilov RF 2008. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8:1265–72
    [Google Scholar]
  180. 180.
    Molter TW, McQuaide SC, Suchorolski MT, Strovas TJ, Burgess LW et al. 2009. A microwell array device capable of measuring single-cell oxygen consumption rates. Sens. Actuators B 135:678–86
    [Google Scholar]
  181. 181.
    Kelbauskas L, Glenn H, Anderson C, Messner J, Lee KB et al. 2017. A platform for high-throughput bioenergy production phenotype characterization in single cells. Sci. Rep. 7:45399
    [Google Scholar]
  182. 182.
    Tang Y, Wang Z, Li Z, Kim J, Deng Y et al. 2017. High-throughput screening of rare metabolically active tumor cells in pleural effusion and peripheral blood of lung cancer patients. PNAS 114:2544–49
    [Google Scholar]
  183. 183.
    Xue M, Wei W, Su Y, Kim J, Shin YS et al. 2015. Chemical methods for the simultaneous quantitation of metabolites and proteins from single cells. J. Am. Chem. Soc. 137:4066–69
    [Google Scholar]
  184. 184.
    Xue M, Wei W, Su Y, Johnson D, Heath JR 2016. Supramolecular probes for assessing glutamine uptake enable semi-quantitative metabolic models in single cells. J. Am. Chem. Soc. 138:3085–93
    [Google Scholar]
  185. 185.
    Macaulay IC, Ponting CP, Voet T 2017. Single-cell multiomics: multiple measurements from single cells. Trends Genet 33:155–68
    [Google Scholar]
  186. 186.
    Wang N, Zheng J, Chen Z, Liu Y, Dura B et al. 2019. Single-cell microRNA/mRNA co-sequencing reveals non-genetic heterogeneity and novel regulatory mechanisms. Nat. Commun. 10:95
    [Google Scholar]
  187. 187.
    Bock C, Farlik M, Sheffield NC 2016. Multi-omics of single cells: strategies and applications. Trends Biotechnol 34:605–8
    [Google Scholar]
  188. 188.
    Han L, Zi X, Garmire LX, Wu Y, Weissman SM et al. 2014. Co-detection and sequencing of genes and transcripts from the same single cells facilitated by a microfluidics platform. Sci. Rep. 4:6485
    [Google Scholar]
  189. 189.
    Hu Y, An Q, Sheu K, Trejo B, Fan S, Guo Y 2018. Single cell multi-omics technology: methodology and application. Front. Cell Dev. Biol. 6:28
    [Google Scholar]
  190. 190.
    Strijp D, Vulders R, Larsen N, Schira J, Baerlocher L et al. 2017. Complete sequence-based pathway analysis by differential on-chip DNA and RNA extraction from a single cell. Sci. Rep. 7:11030
    [Google Scholar]
  191. 191.
    Cheow LF, Courtois ET, Tan Y, Viswanathan R, Xing Q et al. 2016. Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat. Methods 13:833
    [Google Scholar]
  192. 192.
    George J, Wang J 2016. Assay of genome-wide transcriptome and secreted proteins on the same single immune cells by microfluidics and RNA sequencing. Anal. Chem. 88:10309–15
    [Google Scholar]
  193. 193.
    Genshaft AS, Li S, Gallant CJ, Darmanis S, Prakadan SM et al. 2016. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol 17:188
    [Google Scholar]
  194. 194.
    Peterson VM, Zhang KX, Kumar N, Wong J, Li L et al. 2017. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35:936–39
    [Google Scholar]
  195. 195.
    Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK et al. 2017. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14:865–68
    [Google Scholar]
  196. 196.
    Delley CL, Liu L, Sarhan MF, Abate AR 2018. Combined aptamer and transcriptome sequencing of single cells. Sci. Rep. 8:2919
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-060418-052538
Loading
/content/journals/10.1146/annurev-bioeng-060418-052538
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error