1932

Abstract

The Computational Anatomy project is the morphome-scale study of shape and form, which we model as an orbit under diffeomorphic group action. Metric comparison calculates the geodesic length of the diffeomorphic flow connecting one form to another. Geodesic connection provides a positioning system for coordinatizing the forms and positioning their associated functional information. This article reviews progress since the Euler-Lagrange characterization of the geodesics a decade ago. Geodesic positioning is posed as a series of problems in Hamiltonian control, which emphasize the key reduction from the Eulerian momentum with dimension of the flow of the group, to the parametric coordinates appropriate to the dimension of the submanifolds being positioned. The Hamiltonian viewpoint provides important extensions of the core setting to new, object-informed positioning systems. Several submanifold mapping problems are discussed as they apply to metamorphosis, multiple shape spaces, and longitudinal time series studies of growth and atrophy via shape splines.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071114-040601
2015-12-07
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/17/1/annurev-bioeng-071114-040601.html?itemId=/content/journals/10.1146/annurev-bioeng-071114-040601&mimeType=html&fmt=ahah

Literature Cited

  1. Trouvé A. 1.  1995. An approach of pattern recognition through infinite dimensional group action. Rep. LMENS-95-9, Lab. Math. l'Ecole Norm. Superieure, Paris [Google Scholar]
  2. Christensen G, Miller MI, Rabbit RD. 2.  1995. Deformable templates using large deformation kinematics. IEEE Trans. Med. Imaging 5:101435–47 [Google Scholar]
  3. Grenander U, Miller MI. 3.  1998. Computational anatomy: an emerging discipline. Q. Appl. Math. 56:617–94 [Google Scholar]
  4. Dupuis P, Grenander U, Miller MI. 4.  1998. Variation problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56:587–600 [Google Scholar]
  5. Miller MI, Younes L. 5.  2001. Group actions, homeomorphisms, and matching: a general framework. Int. J. Comput. Vis. 41:61–84 [Google Scholar]
  6. Toga A, Thompson PM. 6.  2001. Maps of the brain. Anat. Rec. 265:37–53 [Google Scholar]
  7. Miller MI, Trouvé A, Younes L. 7.  2002. On the metrics and Euler-Lagrange equations of computational anatomy. Annu. Rev. Biomed. Eng. 4:375–405 [Google Scholar]
  8. Thompson PM, Toga AW. 8.  2002. A framework for computational anatomy. Comput. Vis. Sci. 5:13–34 [Google Scholar]
  9. Miller MI. 9.  2004. Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms. NeuroImage 29:Suppl. 1S19–33 [Google Scholar]
  10. Joshi S, Davis B, Jomier M, Gerig G. 10.  2004. Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23:Suppl. 1S151–60 [Google Scholar]
  11. Csernansky JG, Wang L, Joshi SC, Ratnanather JT, Miller MI. 11.  2004. Computational anatomy and neuropsychiatric disease: probabilistic assessment of variation and statistical inference of group difference, hemispheric asymmetry, and time-dependent change. NeuroImage 23:Suppl. 1S56–68 [Google Scholar]
  12. Ashburner J, Friston KJ. 12.  2007. Computational anatomy. Statistical Parametric Mapping: The Analysis of Functional Brain Images KJ Friston, JT Ashburner, SJ Kiebel, TE Nichols, WD Penny 49–100 London: Academic [Google Scholar]
  13. Grenander U, Miller MI. 13.  2007. Pattern Theory: From Representation to Inference Oxford, UK: Oxford Univ. Press [Google Scholar]
  14. Durrleman S, Pennec X, Trouvé A, Thompson P, Ayache N. 14.  2008. Inferring brain variability from diffeomorphic deformations of currents: an integrative approach. Med. Image Anal. 12:626–37 [Google Scholar]
  15. Ashburner J. 15.  2009. Computational anatomy with the SPM software. Magn. Reson. Imaging 27:81163–74 [Google Scholar]
  16. Younes L. 16.  2010. Shapes and Diffeomorphisms Appl. Math. Sci. 171 Berlin/Heidelberg: Springer438 [Google Scholar]
  17. Pennec X. 17.  2009. Statistical computing on manifolds: From Riemannian geometry to computational anatomy. Emerging Trends in Visual Computing F Nielsen 347–86 Lect. Notes Comput. Sci. Vol. 5416 Berlin/Heidelberg: Springer-Verlag [Google Scholar]
  18. Adams RA, Stephan KE, Brown HR, Frith CD, Friston KJ. 18.  2013. The computational anatomy of psychosis. Front. Psychiatry 4:47 [Google Scholar]
  19. Draganski B, Kherif F, Lutti A. 19.  2014. Computational anatomy for studying use-dependant brain plasticity. Front. Hum. Neurosci. 8:380 [Google Scholar]
  20. Reivich M, Bajcsy R, Lieberson R. 20.  1983. A computerized system for the elastic matching of deformed radiographic images to idealized atlas images. J. Comput. Assist. Tomogr. 7:4618–25 [Google Scholar]
  21. Gee JC, Reivich M, Bajcsy R. 21.  1993. Elastically deforming a three-dimensional atlas to match anatomical brain images. J. Comput. Assist. Tomogr. 17:225–36 [Google Scholar]
  22. Amit Y, Grenander U, Piccioni M. 22.  1991. Structural image restoration through deformable templates. J. Am. Stat. Assoc. 86:376–87 [Google Scholar]
  23. Grenander U, Chow Y, Keenan DM. 23.  1990. Hands: A Pattern Theoretic Study of Biological Shapes Res. Notes Neural Comput. 2 New York: Springer [Google Scholar]
  24. Bookstein FL. 24.  1989. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11.6:567–85 [Google Scholar]
  25. Haller JW, Banerjee A, Christensen GE, Gado M, Joshi S. 25.  1997. Three-dimensional hippocampal MR morphometry with high-dimensional transformation of neuroanatomic atlas. Radiology 202:504–10 [Google Scholar]
  26. Piccioni M, Scarlatti S, Trouvé A. 26.  1998. A variational problem arising from speech recognition. SIAM J. Appl. Math. 58:3753–71 [Google Scholar]
  27. Davatzikos C, Karacali B. 27.  2004. Estimating topology preserving and smooth displacement fields. IEEE Trans. Med. Imaging 23:7868–80 [Google Scholar]
  28. Joshi SC, Miller MI. 28.  2000. Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9:81357–70 [Google Scholar]
  29. Camion V, Younes L. 29.  2001. Geodesic interpolating splines. Energy Minimization Methods in Computer Vision and Pattern Recognition MAT Figueiredo, J Zerubia, AK Jain 513–27 Lect. Notes Comput. Sci 2134 Berlin/Heidelberg: Springer-Verlag [Google Scholar]
  30. Glaunès J, Trouvé A, Younes L. 30.  2004. Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching. Proc. Conf. Comput. Vis. Pattern Recognit., June 27–July 2, Washington, DCII–71218 Piscataway, NJ: IEEE [Google Scholar]
  31. Beg MF, Miller MI, Trouvé A, Younes L. 31.  2005. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61:2139–57 [Google Scholar]
  32. Vaillant M, Glaunès J. 32.  2005. Surface matching via currents. Information Processing in Medical Imaging GE Christensen, M Sonka 381–92 Lect. Notes Comput. Sci. Vol. 3565 Berlin/Heidelberg: Springer-Verlag [Google Scholar]
  33. Miller MI, Trouvé A, Younes L. 33.  2006. Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24:209–28 [Google Scholar]
  34. Glaunès J, Qiu A, Miller MI, Younes L. 34.  2008. Large deformation diffeomorphic metric curve matching. Int. J. Comput. Vis. 80:3317–36 [Google Scholar]
  35. Ceritoglu C, Wang L, Selemon LD, Csernansky JG, Miller MI, Ratnanather JT. 35.  2010. Large deformation diffeomorphic metric mapping registration of reconstructed 3D histological section images and in vivo MR images. Front. Hum. Neurosci. 4:43 [Google Scholar]
  36. Risser L, Vialard FX, Wolz R, Murgasova M, Holm DD. 36.  et al. 2011. Simultaneous multi-scale registration using large deformation diffeomorphic metric mapping. IEEE Trans. Med. Imaging 30:101746–59 [Google Scholar]
  37. Sommer S, Nielsen M, Lauze F, Pennec X. 37.  2011. A multi-scale kernel bundle for LDDMM: towards sparse deformation description across space and scales. Inf. Process. Med. Imaging 22:624–35 [Google Scholar]
  38. Tward DJ, Ceritoglu C, Kolasny A, Sturgeon GM, Segars WP. 38.  et al. 2011. Patient specific dosimetry phantoms using multichannel LDDMM of the whole body. Int. J. Biomed. Imaging 2011:481064 [Google Scholar]
  39. Du J, Younes L, Qiu A. 39.  2011. Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images. NeuroImage 56:1162–73 [Google Scholar]
  40. Vadakkumpadan F, Arevalo H, Ceritoglu C, Miller M, Trayanova N. 40.  2012. Image-based estimation of ventricular fiber orientations for personalized modeling of cardiac electrophysiology. IEEE Trans. Med. Imaging 31:51051–60 [Google Scholar]
  41. Du J, Hosseinbor AP, Chung MK, Bendlin BB, Suryawanshi G. 41.  et al. 2014. Diffeomorphic metric mapping and probabilistic atlas generation of hybrid diffusion imaging based on BFOR signal basis. Med. Image Anal. 18:71002–14 [Google Scholar]
  42. Schmah T, Risser L, Vialard F-X. 42.  2013. Left-invariant metrics for diffeomorphic image registration with spatially-varying regularisation. Med. Image Comput. Comput. Assist. Interv. 16:Part 1203–10 [Google Scholar]
  43. Tang X, Oishi K, Faria AV, Hillis AE, Albert MS. 43.  et al. 2013. Bayesian parameter estimation and segmentation in the multi-atlas random orbit model. PLOS ONE 8:6e65591 [Google Scholar]
  44. Tward DJ, Ma J, Miller MI, Younes L. 44.  2013. Robust diffeomorphic mapping via geodesically controlled active shapes. Int. J. Biomed. Imaging 2013:205494 [Google Scholar]
  45. Khan AR, Wang L, Beg MF. 45.  2013. Multistructure large deformation diffeomorphic brain registration. IEEE Trans. Biomed. Eng. 60:2544–53 [Google Scholar]
  46. Singh N, Fletcher PT, Preston JS, King RD, Marron JS. 46.  et al. 2014. Quantifying anatomical shape variations in neurological disorders. Med. Image Anal. 18:3616–33 [Google Scholar]
  47. Avants B, Gee JC. 47.  2004. Geodesic estimation for large deformation anatomical shape averaging and interpolation. NeuroImage 23:Suppl. 1S139–50 [Google Scholar]
  48. Beg MF, Khan A. 48.  2007. Symmetric data attachment terms for large deformation image registration. IEEE Trans. Med. Imaging 26:91179–89 [Google Scholar]
  49. Avants BB, Epstein CL, Grossman M, Gee JC. 49.  2008. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12:126–41 [Google Scholar]
  50. Vercauteren T, Pennec X, Perchant A, Ayache N. 50.  2009. Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45:1, Suppl. 1S61–72 [Google Scholar]
  51. Hernandez M, Bossa MN, Olmos S. 51.  2009. Registration of anatomical images using paths of diffeomorphisms parameterized with stationary vector field flows. Int. J. Comput. Vis. 85:3291–306 [Google Scholar]
  52. Hernandez M, Olmos S, Pennec X. 52.  2008. Comparing algorithms for diffeomorphic registration: stationary LDDMM and diffeomorphic Demons. Proc. 2nd MICCAI Workshop Math. Found. Comput. Anat., Sept. 6–10, New York24–35 Berlin/Heidelberg: Springer-Verlag [Google Scholar]
  53. Sotiras A, Davatzikos C, Paragios N. 53.  2013. Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32:71153–90 [Google Scholar]
  54. Thompson DW. 54.  1992 (1917). On Growth and Form: The Complete Revised Edition. New York: Dover [Google Scholar]
  55. Grenander U. 55.  1994. General Pattern Theory: A Mathematical Study of Regular Structures Oxford Math. Monogr Oxford, UK: Clarendon/Oxford Univ. Press [Google Scholar]
  56. Lang S. 56.  1962. Introduction to Differentiable Manifolds London/New York: Wiley Intersci, 1st. ed.. [Google Scholar]
  57. Abraham RH, Smale S. 57.  1963. Lectures of Smale on Differential Topology New York: Columbia Univ. [Google Scholar]
  58. Palais RS. 58.  1968. Foundations of Global Non-Linear Analysis New York: W.A. Benjamin [Google Scholar]
  59. Ebin D. 59.  1970. The manifold of Riemannian metrics. Proc. Symp. AMS 15:11–40 [Google Scholar]
  60. Ebin DG, Marsden JE. 60.  1970. Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92:102–63 [Google Scholar]
  61. Misiołek G, Preston SC. 61.  2010. Fredholm properties of Riemannian exponential maps on diffeomorphism groups. Invent. Math. 179:1191–227 [Google Scholar]
  62. Inci H, Kappeler T, Topalov P. 62.  2013. On the Regularity of the Composition of Diffeomorphisms Mem. Am. Math. Soc. Vol. 226, No. 1062 Providence, RI: Am. Math. Soc. [Google Scholar]
  63. Arnold VI. 63.  1966. Sur un principe variationnel pour les ecoulements stationnaires des liquides parfaits et ses applications aux problèmes de stabilité non linéaires. J. Méc 5:29–43 [Google Scholar]
  64. Arnold VI. 64.  1989. Mathematical Methods of Classical Mechanics New York: Springer, 2nd ed.. [Google Scholar]
  65. Marsden JE. 65.  1992. Lectures on Geometric Mechanics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  66. Camassa R, Holm DD. 66.  1993. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71:1661–64 [Google Scholar]
  67. Holm DD, Marsden JE, Ratiu TS. 67.  1998. The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137:1–81 [Google Scholar]
  68. Holm DD. 68.  2008. Geometric Mechanics London: Imperial College Press [Google Scholar]
  69. Mumford D, Michor PW. 69.  2013. On Euler's equation and ‘EPDiff.’. J. Geom. Mech. 5:3319–44 [Google Scholar]
  70. Michor PW, Mumford D. 70.  2013. A zoo of diffeomorphism groups on . Ann. Glob. Anal. Geom. 44:4529–40 [Google Scholar]
  71. Michor PW, Mumford D. 71.  2007. An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmonic Anal. 23:174–113 [Google Scholar]
  72. Micheli M, Michor PW, Mumford D. 72.  2013. Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds. Izvestiya: Math. 77:3541–570 [Google Scholar]
  73. Kurtek S, Klassen E, Gore JC, Zhaohua D, Srivastava A. 73.  2012. Elastic geodesic paths in shape space of parameterized surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 34:91717–30 [Google Scholar]
  74. Bauer M, Bruveris M, Michor PW. 74.  2014. Overview of the geometries of shape spaces and diffeomorphism groups. J. Math. Imaging Vis. 50:1–260–97 [Google Scholar]
  75. Bruveris M. 75.  2014. Completeness properties of Sobolev metrics on the space of curves. arXiv:1407.0601 [math.DG]
  76. Miller MI, Younes L, Trouvé A. 76.  2014. Diffeomorphometry and geodesic positioning systems for human anatomy. Technology 2:136 [Google Scholar]
  77. Bassingthwaighte JB. 77.  2000. Strategies for the physiome project. Ann. Biomed. Eng. 28:81043–58 [Google Scholar]
  78. Trouvé A. 78.  1995. Action de groupe de dimension infinie et reconnaissance de formes. C. R. Acad. Sci. Paris Sér. I Math. 321:81031–34 [Google Scholar]
  79. Miller MI, Qiu A. 79.  2009. The emerging discipline of Computational Functional Anatomy. NeuroImage 45:Suppl. 1S16–39 [Google Scholar]
  80. Young AA, Cowan BR, Thrupp SF, Hedley WJ, Dell'Italia LJ. 80.  2000. Left ventricular mass and volume: fast calculation with guide-point modeling on MR images. Radiology 216:2597–602 [Google Scholar]
  81. Qiu A, Adler M, Crocetti D, Miller MI, Mostofsky SH. 81.  2010. Basal ganglia shapes predict social, communication, and motor dysfunctions in boys with autism spectrum disorder. J. Am. Acad. Child Adolesc. Psychiatry 49:6539–51 [Google Scholar]
  82. Qiu A, Fennema-Notestine C, Dale AM, Miller MI. 82.  Alzheimer's Dis. Neuroimaging Initiat 2009. Regional shape abnormalities in mild cognitive impairment and Alzheimer's disease. NeuroImage 45:3656–61 [Google Scholar]
  83. Ardekani S, Weiss RG, Lardo AC, George RT, Lima JA. 83.  et al. 2009. Computational method for identifying and quantifying shape features of human left ventricular remodeling. Ann. Biomed. Eng. 37:61043–54 [Google Scholar]
  84. Ardekani S, Jain A, Jain S, Abraham TP, Abraham MR. 84.  et al. 2012. Matching sparse sets of cardiac image cross-sections using large deformation diffeomorphic metric mapping algorithm. Statistical Atlases and Computational Models of the Heart: Imaging and Modelling Challenges O Camara, E Konukoglu, M Pop, K Rhode, M Sermesant, A Young 234–43 Lect. Notes Comput. Sci. Vol. 7085 Berlin/Heidelberg: Springer [Google Scholar]
  85. Younes L, Ratnanather JT, Brown T, Aylward E, Nopoulos P. 85.  et al. 2012. Regionally selective atrophy of subcortical structures in prodromal HD as revealed by statistical shape analysis. Hum. Brain Mapp. 35:3792–809 [Google Scholar]
  86. Li X, Samei E, Williams CH, Segars WP, Tward DJ. 86.  et al. 2012. Effects of protocol and obesity on dose conversion factors in adult body CT. Med. Phys. 39:116550–71 [Google Scholar]
  87. Segars WP, Bond J, Frush J, Hon S, Eckersley C. 87.  et al. 2013. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization. Med. Phys. 40:4043701 [Google Scholar]
  88. Vaillant M, Miller MI, Younes L, Trouvé A. 88.  2004. Statistics on diffeomorphisms via tangent space representations. NeuroImage 23:Suppl. 1S161–69 [Google Scholar]
  89. Glaunès J, Trouvé A, Younes L. 89.  2006. Modeling planar shape variation via Hamiltonian flows of curves. Statistics and Analysis of Shapes H Krim, A Yezzi Jr 335–61 Model. Simul. Sci. Eng. Technol Boston: Birkhauser [Google Scholar]
  90. Azencott R, Glowinski R, He J, Hoppe RHW, Jajoo A. 90.  et al. 2010. Optimal diffeomorphic matching in biomedical image processing Work. Pap. 14/2010, Inst. Math., Univ. Augsburg, Ger. [Google Scholar]
  91. Trouvé A, Younes L. 91.  2011. Shape spaces. Handbook of Mathematical Methods in Imaging O Schertzer 1309–62 New York: Springer [Google Scholar]
  92. Hoppe RHW. 92.  2011. Optimal diffeomorphic matching in biomedical image processing Presented at Workshop on Optimal Control in Image Processing, May 31–June 1, 2010, Heidelberg, Ger. [Google Scholar]
  93. Vialard F-X, Risser L, Rueckert D, Cotter CJ. 93.  2012. Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int. J. Comput. Vis. 97:2229–41 [Google Scholar]
  94. Trouvé A, Vialard F-X. 94.  2012. Shape splines and stochastic shape evolutions: a second order point of view. Q. Appl. Math. 70:2219–51 [Google Scholar]
  95. Ashburner J. 95.  2007. A fast diffeomorphic image registration algorithm. NeuroImage 38:195–113 [Google Scholar]
  96. Oishi K, Faria A, Jiang H, Li X, Akhter K. 96.  et al. 2009. Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants. NeuroImage 46:2486–99 [Google Scholar]
  97. Risser L, Vialard FX, Wolz R, Holm DD, Rueckert D. 97.  2010. Simultaneous fine and coarse diffeomorphic registration: application to atrophy measurement in Alzheimer's disease. Med. Image Comput. Comput. Assist. Interv. 13:Part 2610–17 [Google Scholar]
  98. Günther A, Lamecker H, Weiser M. 98.  2013. Flexible shape matching with finite element based LDDMM. Int. J. Comput. Vis. 105:2128–43 [Google Scholar]
  99. Seo D, Ho J, Vemuri BC. 99.  2013. Computing diffeomorphic paths for large motion interpolation. Proc. Conf. Comput. Vis. Pattern Recognit., June 23–28, Portland, Ore.1227–32 Piscataway, NJ: IEEE [Google Scholar]
  100. Zolfaghari R, Epain N, Jin CT, Glaunès J, Tew A. 100.  2014. Large deformation diffeomorphic metric mapping and fast-multipole boundary element method provide new insights for binaural acoustics. arXiv:1401.7100v1 [cs.CG]
  101. Ceritoglu C, Oishi K, Li X, Chou MC, Younes L. 101.  et al. 2009. Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. NeuroImage 47:2618–27 [Google Scholar]
  102. Thirion J-P. 102.  1998. Image matching as a diffusion process: an analogy with Maxwell's demons. Med. Image Anal. 2:3243–60 [Google Scholar]
  103. Christensen GE, Johnson HJ. 103.  2001. Consistent image registration. IEEE Trans. Med. Imaging 20:7568–82 [Google Scholar]
  104. Ma J, Miller MI, Trouvé A, Younes L. 104.  2008. Bayesian template estimation in computational anatomy. NeuroImage 42:1252–61 [Google Scholar]
  105. Ma J, Miller MI, Younes L. 105.  2010. A Bayesian generative model for surface template estimation. Int. J. Biomed. Imaging 2010:974957 [Google Scholar]
  106. Mori S, Oishi K, Faria AV, Miller MI. 106.  2013. Atlas-based neuroinformatics via MRI: harnessing information from past clinical cases and quantitative image analysis for patient care. Annu. Rev. Biomed. Eng. 15:71–92 [Google Scholar]
  107. Miller MI, Faria AV, Oishi K, Mori S. 107.  2013. High-throughput neuro-imaging informatics. Front. Neuroinform. 731 [Google Scholar]
  108. Cao Y, Miller MI, Winslow RL, Younes L. 108.  2005. Large deformation diffeomorphic metric mapping of fiber orientations. Proc. Tenth Int. Conf. Comput. Vis. (ICCV 2005), Oct. 17–21, Beijing1379–86 Piscataway, NJ: IEEE [Google Scholar]
  109. Alexander DC, Gee JC, Bajcsy R. 109.  1999. Strategies for data reorientation during non-rigid warps of diffusion tensor images. Medical Image Computing and Computer-Assisted Intervention—MICCAI'99 C Taylor, A Colchester 463–72 Lect. Notes Comput. Sci. Vol. 1679 Berlin/Heidelberg: Springer-Verlag [Google Scholar]
  110. Cao Y, Miller MI, Mori S, Winslow RL, Younes L. 110.  2006. Diffeomorphic matching of diffusion tensor images. Proc. Comput. Vis. Pattern Recognit. Workshop, June 17–22, New York, NY67 Piscataway, NJ: IEEE [Google Scholar]
  111. Hsu YC, Hsu CH, Tseng WY. 111.  2012. A large deformation diffeomorphic metric mapping solution for diffusion spectrum imaging datasets. NeuroImage 63:2818–34 [Google Scholar]
  112. Van Essen DC, Drury HA. 112.  1989. Structural and functional analyses of human cerebral cortex using a machine-based atlas. J. Neurosci. 17:7079–102 [Google Scholar]
  113. Van Essen DC, Lewis JW, Drury HA, Hadjikhani N, Tootell RB. 113.  et al. 2001. Mapping visual cortex in monkeys and humans using surface-based atlases. Vis. Res. 41:10–111359–78 [Google Scholar]
  114. Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, Anderson CH. 114.  2001. An integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assoc. 8:5443–59 [Google Scholar]
  115. Fischl B, Sereno MI, Tootell RB, Dale AM. 115.  1999. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8:4272–84 [Google Scholar]
  116. Fischl B, Dale AM. 116.  2000. Measuring the thickness of the human cerebral cortex from magnetic resonance images. PNAS 97:2011050–55 [Google Scholar]
  117. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC. 117.  et al. 2006. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31:3968–80 [Google Scholar]
  118. Csernansky JG, Joshi S, Wang L, Haller JW, Gado M. 118.  et al. 1998. Hippocampal morphometry in schizophrenia by high dimensional brain mapping. PNAS 95:1911406–11 [Google Scholar]
  119. Csernansky JG. 119.  et al. 2004. Abnormalities of thalamic volume and shape in schizophrenia. Am. J. Psychiatry 161.5:896–902 [Google Scholar]
  120. Mémoli F, Sapiro G, Thompson P. 120.  2004. Implicit brain imaging. NeuroImage 23:Suppl. 1S179–88 [Google Scholar]
  121. Csernansky JG, Wang L, Swank J, Miller JP, Gado M. 121.  et al. 2005. Preclinical detection of Alzheimer's disease: hippocampal shape and volume predict dementia onset in the elderly. NeuroImage 25:3783–92 [Google Scholar]
  122. Vaillant M, Qiu A, Glaunès J, Miller MI. 122.  2007. Diffeomorphic metric surface mapping in subregion of the superior temporal gyrus. NeuroImage 34:31149–59 [Google Scholar]
  123. Bakker A, Kirwan CB, Miller M, Stark CE. 123.  2008. Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319:58701640–42 [Google Scholar]
  124. Qiu A, Miller MI. 124.  2008. Multi-structure network shape analysis via normal surface momentum maps. NeuroImage 42:41430–38 [Google Scholar]
  125. Miller MI, Younes L, Ratnanather JT, Brown T, Trinh H. 125.  et al. 2013. The diffeomorphometry of temporal lobe structures in preclinical Alzheimer's disease. NeuroImage Clin. 3:352–60 [Google Scholar]
  126. Tang X, Holland D, Dale AM, Younes L, Miller MI. 126.  Alzheimer's Dis. Neuroimaging Initiat. 2014. Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer's disease: detecting, quantifying, and predicting. Hum. Brain Mapp. 35:83701–25 [Google Scholar]
  127. Remme E, Young AA, Augenstein KF, Cowan B, Hunter PJ. 127.  2004. Extraction and quantification of left ventricular deformation modes. IEEE Trans. Biomed. Eng. 51:111923–31 [Google Scholar]
  128. Helm PA, Younes L, Beg MF, Ennis DB, Leclercq C. 128.  et al. 2006. Evidence of structural remodeling in the dyssynchronous failing heart. Circ. Res. 98:1125–32 [Google Scholar]
  129. Young AA, Frangi AF. 129.  2009. Computational cardiac atlases: from patient to population and back. Exp. Physiol. 94:5578–96 [Google Scholar]
  130. Durrleman S, Pennec X, Trouvé A, Ayache N. 130.  2007. Measuring brain variability via sulcal lines registration: a diffeomorphic approach. Med. Image Comput. Comput. Assist. Interv. 10:Part 1675–82 [Google Scholar]
  131. Durrleman S, Fillard P, Pennec X, Trouvé A, Ayache N. 131.  2011. Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents. NeuroImage 55:31073–90 [Google Scholar]
  132. Charon N, Trouvé A. 132.  2013. The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM J. Imaging Sci. 6:42547–80 [Google Scholar]
  133. Hamm J, Lee D. 133.  2008. Grassmann discriminant analysis: a unifying view on subspace-based learning. Proc. 25th Int. Conf. Mach. Learn., July 5–9, Helsinki, Finl.376–83 New York: Assoc. Comput. Mach. [Google Scholar]
  134. Wolf L, Shashua A. 134.  2003. Learning over sets using kernel principal angles. J. Mach. Learn. Res. 4:913–31 [Google Scholar]
  135. Charon N, Charlier B, Trouvé A. 135.  2015. The fshape framework for the variability analysis of functional shapes. arXiv:1404.6039v1 [cs.CG]
  136. Foias C, Holm DD, Titi ES. 136.  2001. The Navier-Stokes-alpha model of fluid turbulence. Phys. D 152:505–19 [Google Scholar]
  137. Arrate F, Ratnanather JT, Younes L. 137.  2010. Diffeomorphic active contours. SIAM J. Imaging Sci. 3:2176–98 [Google Scholar]
  138. Staneva V, Younes L. 138.  2014. Modeling and estimation of shape deformation for topology-preserving object tracking. SIAM J. Imaging Sci. 7:1427–55 [Google Scholar]
  139. Durrleman S, Allassonnière S, Joshi S. 139.  2013. Sparse adaptive parameterization of variability in image ensembles. Int. J. Comput. Vis. 101:1161–83 [Google Scholar]
  140. Younes L. 140.  2012. Constrained diffeomorphic shape evolution. Found. Comput. Math. 12:3295–325 [Google Scholar]
  141. Younes L. 141.  2014. Gaussian diffeons for surface and image matching within a Lagrangian framework. Geom. Imaging Comput. 1:1141–71 [Google Scholar]
  142. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S. 142.  et al. 2002. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:4539–42 [Google Scholar]
  143. Steinert-Threlkeld S, Ardekani S, Mejino JL, Detwiler LT, Brinkley JF. 143.  et al. 2012. Ontological labels for automated location of anatomical shape differences. J. Biomed. Inform. 45:3522–27 [Google Scholar]
  144. Hung J, Francois C, Nelson NA, Young A, Cowan BR. 144.  et al. 2009. Cardiac image modeling tool for quantitative analysis of global and regional cardiac wall motion. Investig. Radiol. 44:5271–78 [Google Scholar]
  145. Arguillère S, Trélat E, Trouvé A, Younes L. 145.  2014. Shape deformation analysis from the optimal control viewpoint. arXiv:1401.0661 [math.OC]
  146. Arguillère S, Trélat E. 146.  2014. Sub-Riemannian structures on groups of diffeomorphisms. arXiv:1409.8378 [math.OC]
  147. Trouvé A, Younes L. 147.  2005. Metamorphoses through lie group action. Found. Comput. Math. 5:2173–98 [Google Scholar]
  148. Lian NX, Davatzikos C. 148.  2011. Morphological appearance manifolds for group-wise morphometric analysis. Med. Image Anal. 6:814–29 [Google Scholar]
  149. Trouvé A, Younes L. 149.  2005. Local geometry of deformable templates. SIAM J. Math. Anal. 37:117–59 [Google Scholar]
  150. Garcin L, Younes L. 150.  2005. Geodesic image matching: a wavelet based energy minimization scheme. Energy Minimization Methods in Computer Vision and Pattern Recognition A Rangarajan, B Vemuri, AL Yuille 349–64 Lect. Notes Comput. Sci. Vol. 3757 Berlin/Heidelberg: Springer-Verlag [Google Scholar]
  151. Garcin L, Younes L. 151.  2006. Geodesic matching with free extremities. J. Math. Imaging Vis. 25:3329–40 [Google Scholar]
  152. Holm DD, Trouvé A, Younes L. 152.  2009. The Euler-Poincare theory of metamorphosis. Q. Appl. Math. 67:661–85 [Google Scholar]
  153. Bruveris M, Gay-Balmaz F, Holm DD, Ratiu TS. 153.  2011. The momentum map representation of images. J. Nonlinear Sci. 21:1115–50 [Google Scholar]
  154. Richardson CL, Younes L. 154.  2014. Metamorphosis of images in reproducing kernel Hilbert spaces. arXiv:1409.6573 [math.OC]
  155. Richardson CL, Younes L. 155.  2013. Computing metamorphoses between discrete measures. J. Geom. Mech. 5:1131–50 [Google Scholar]
  156. Allassonnière S, Trouvé A, Younes L. 156.  2005. Geodesic shooting and diffeomorphic matching via textured meshes. Energy Minimization Methods in Computer Vision and Pattern Recognition A Rangarajan, B Vemuri, AL Yuille 365–81 Lect. Notes Comput. Sci. Vol. 3757 Berlin/Heidelberg: Springer-Verlag [Google Scholar]
  157. Niethammer M, Huang Y, Vialard F-X. 157.  2011. Geodesic regression for image time-series. Med. Image Comput. Comput. Assist. Interv. 14:Part 2655–62 [Google Scholar]
  158. Qiu A, Younes L, Miller MI. 158.  2012. Principal component based diffeomorphic surface mapping. IEEE Trans. Med. Imaging 31:2302–11 [Google Scholar]
  159. Fletcher PT. 159.  2012. Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. 105:171–85 [Google Scholar]
  160. Hinkle J, Szegedi M, Wang B, Salter B, Joshi S. 160.  2012. 4D CT image reconstruction with diffeomorphic motion model. Med. Image Anal. 16:61307–16 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071114-040601
Loading
/content/journals/10.1146/annurev-bioeng-071114-040601
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error