1932

Abstract

Recent advancements in soft electronic skin (e-skin) have led to the development of human-like devices that reproduce the skin's functions and physical attributes. These devices are being explored for applications in robotic prostheses as well as for collecting biopotentials for disease diagnosis and treatment, as exemplified by biomedical e-skins. More recently, machine learning (ML) has been utilized to enhance device control accuracy and data processing efficiency. The convergence of e-skin technologies with ML is promoting their translation into clinical practice, especially in healthcare. This review highlights the latest developments in ML-reinforced e-skin devices for robotic prostheses and biomedical instrumentations. We first describe technological breakthroughs in state-of-the-art e-skin devices, emphasizing technologies that achieve skin-like properties. We then introduce ML methods adopted for control optimization and pattern recognition, followed by practical applications that converge the two technologies. Lastly, we briefly discuss the challenges this interdisciplinary research encounters in its clinical and industrial transition.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-103122-032652
2024-07-03
2024-09-21
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-103122-032652.html?itemId=/content/journals/10.1146/annurev-bioeng-103122-032652&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Clippinger FW. 1974.. A sensory feedback system for an upper limb amputation prosthesis. . Bull. Pros. Res. 10::24758
    [Google Scholar]
  2. 2.
    Hammock ML, Chorto A, Tee BCK, Tok JBH, Bao Z. 2013.. 25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. . Adv. Mater. 25:(42):59976038
    [Crossref] [Google Scholar]
  3. 3.
    Kim DH, Lu N, Ma R, Kim YS, Kim RH, et al. 2011.. Epidermal electronics. . Science 333:(6044):83843
    [Crossref] [Google Scholar]
  4. 4.
    Liu F, Deswal S, Christou A, Sandamirskaya Y, Kaboli M, et al. 2022.. Neuro-inspired electronic skin for robots. . Sci. Robot. 7:(67):eabl7344
    [Crossref] [Google Scholar]
  5. 5.
    Wang X, Dong L, Zhang H, Yu R, Pan C, et al. 2015.. Recent progress in electronic skin. . Adv. Sci. 2:(10):1500169
    [Crossref] [Google Scholar]
  6. 6.
    Shih B, Shah D, Li J, Thuruthel TG, Park YL, et al. 2020.. Electronic skins and machine learning for intelligent soft robots. . Sci. Robot. 5:(41):eaaz9239
    [Crossref] [Google Scholar]
  7. 7.
    Chortos A, Liu J, Bao Z. 2016.. Pursuing prosthetic electronic skin. . Nat. Mater. 15:(9):93750
    [Crossref] [Google Scholar]
  8. 8.
    Ma Z, Kong D, Pan L, Bao Z. 2020.. Skin-inspired electronics: emerging semiconductor devices and systems. . J. Semicond. 41::041601
    [Crossref] [Google Scholar]
  9. 9.
    Zhao X, Zhang Z, Liao Q, Xun X, Gao F, et al. 2020.. Self-powered user-interactive electronic skin for programmable touch operation platform. . Sci. Adv. 6:(28):eaba4294
    [Crossref] [Google Scholar]
  10. 10.
    Schwartz G, Tee BCK, Mei J, Appleton AL, Kim DH, et al. 2013.. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. . Nat. Commun. 4:(1):1859
    [Crossref] [Google Scholar]
  11. 11.
    Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, et al. 2016.. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. . Nat. Nanotechnol. 11::56672
    [Crossref] [Google Scholar]
  12. 12.
    Lee G, Bae GY, Son JH, Lee S, Kim SW, et al. 2020.. User-interactive thermotherapeutic electronic skin based on stretchable thermochromic strain sensor. . Adv. Sci. 7:(17):2001184
    [Crossref] [Google Scholar]
  13. 13.
    Lim S, Son D, Kim J, Lee YB, Song JK, et al. 2015.. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. . Adv. Funct. Mater. 25:(3):37583
    [Crossref] [Google Scholar]
  14. 14.
    Yu Y, Nassar J, Xu C, Min J, Yang Y, et al. 2020.. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. . Sci. Robot. 5:(41):eaaz7946
    [Crossref] [Google Scholar]
  15. 15.
    Liu Y, Yiu C, Song Z, Huang Y, Yao K, et al. 2022.. Electronic skin as wireless human-machine interfaces for robotic VR. . Sci. Adv. 8:(2):eabl6700
    [Crossref] [Google Scholar]
  16. 16.
    Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. 2019.. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. . Adv. Mater. 31:(48):1904765
    [Crossref] [Google Scholar]
  17. 17.
    Kim SY, Park S, Park HW, Park DH, Jeong Y, et al. 2015.. Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. . Adv. Mater. 27:(28):417885
    [Crossref] [Google Scholar]
  18. 18.
    Fastier-Wooler JW, Dau VT, Dinh T, Tran CD, Dao DV. 2021.. Pressure and temperature sensitive e-skin for in situ robotic applications. . Mater. Des. 208::109886
    [Crossref] [Google Scholar]
  19. 19.
    Lee Y, Park J, Choe A, Cho S, Kim J, et al. 2020.. Mimicking human and biological skins for multifunctional skin electronics. . Adv. Funct. Mater. 30:(20):1904253
    [Crossref] [Google Scholar]
  20. 20.
    Lee M, Lee GJ, Jang HJ, Joh E, Cho H, et al. 2022.. An amphibious artificial vision system with a panoramic visual field. . Nat. Electron. 5::45259
    [Crossref] [Google Scholar]
  21. 21.
    Li P, Ali HPA, Cheng W, Yang J, Tee BCK. 2020.. Bioinspired prosthetic interfaces. . Adv. Mater. Technol. 5:(3):1900856
    [Crossref] [Google Scholar]
  22. 22.
    Koo JH, Song JK, Yoo S, Sunwoo SH, Son D, et al. 2020.. Unconventional device and material approaches for monolithic biointegration of implantable sensors and wearable electronics. . Adv. Mater. Technol. 5:(10):2000407
    [Crossref] [Google Scholar]
  23. 23.
    Koo JH, Song JK, Kim DH, Son D. 2021.. Soft implantable bioelectronics. . ACS Mater. Lett. 3:(11):152840
    [Crossref] [Google Scholar]
  24. 24.
    Yi FL, Guo FL, Li YQ, Wang DY, Huang P, et al. 2021.. Polyacrylamide hydrogel composite e-skin fully mimicking human skin. . ACS Appl. Mater. Interfaces 13:(27):3208493
    [Crossref] [Google Scholar]
  25. 25.
    Wang Z, Zhou Z, Wang S, Yao X, Han X, et al. 2022.. An anti-freezing and strong wood-derived hydrogel for high-performance electronic skin and wearable sensing. . Compos. B Eng. 239:(15):109954
    [Crossref] [Google Scholar]
  26. 26.
    Liu K, Bian Y, Kuang J, Huang X, Shi W, et al. 2022.. Ultrahigh-performance optoelectronic skin based on intrinsically stretchable perovskite-polymer heterojunction transistors. . Adv. Mater. 34:(4):2107304
    [Crossref] [Google Scholar]
  27. 27.
    Nam S, Park C, Sunwoo SH, Kim M, Lee H, et al. 2023.. Soft conductive nanocomposites for recording biosignals on skin. . Soft Sci. 3::28
    [Crossref] [Google Scholar]
  28. 28.
    Sharma S, Chhetry A, Maharjan P, Zhang S, Shrestha K, et al. 2022.. Polyaniline-nanospines engineered nanofibrous membrane based piezoresistive sensor for high-performance electronic skins. . Nano Energy 95::106970
    [Crossref] [Google Scholar]
  29. 29.
    Claver UP, Zhao G. 2021.. Recent progress in flexible pressure sensors based electronic skin. . Adv. Eng. Mater. 23:(5):2001187
    [Crossref] [Google Scholar]
  30. 30.
    Jung D, Lim C, Shim HJ, Kim Y, Park C, et al. 2021.. Highly conductive and elastic nanomembrane for skin electronics. . Science 373:(6558):102226
    [Crossref] [Google Scholar]
  31. 31.
    Dong W, Yang L, Gravian R, Fortino G. 2021.. ANFIS fusion algorithm for eye movement recognition via soft multi-functional electronic skin. . Inf. Fusion 71::99108
    [Crossref] [Google Scholar]
  32. 32.
    Wang J, Chen Y, Hao S, Peng X, Hu L. 2019.. Deep learning for sensor-based activity recognition: a survey. . Pattern Recognit. Lett. 119::311
    [Crossref] [Google Scholar]
  33. 33.
    Wen F, Sun Z, He T, Shi Q, Zhu M, et al. 2020.. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. . Adv. Sci. 7:(14):2000261
    [Crossref] [Google Scholar]
  34. 34.
    Zhou Z, Chen K, Li X, Zhang S, Wu Y, et al. 2020.. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. . Nat. Electron. 3::57178
    [Crossref] [Google Scholar]
  35. 35.
    Li G, Liu S, Wang L, Zhu R. 2020.. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. . Sci. Robot. 5:(49):eabc8134
    [Crossref] [Google Scholar]
  36. 36.
    Dhillon A, Verma GK. 2020.. Convolutional neural network: a review of models, methodologies and applications to object detection. . Prog. Artif. Intell. 9::85112
    [Crossref] [Google Scholar]
  37. 37.
    Zhang K, Wang J, Liu T, Luo Y, Loh XJ, et al. 2021.. Machine learning-reinforced noninvasive biosensors for healthcare. . Adv. Healthcare Mater. 10:(17):2100734
    [Crossref] [Google Scholar]
  38. 38.
    Baik S, Lee J, Jeon EJ, Park BY, Kim DW, et al. 2021.. Diving beetle–like miniaturized plungers with reversible, rapid biofluid capturing for machine learning–based care of skin disease. . Sci. Adv. 7:(25):eabf5695
    [Crossref] [Google Scholar]
  39. 39.
    Dai N, Lei IM, Li Z, Li Y, Fang P, et al. 2023.. Recent advances in wearable electromechanical sensors—moving towards machine learning-assisted wearable sensing systems. . Nano Energy 105::108041
    [Crossref] [Google Scholar]
  40. 40.
    Son D, Lee J, Qiao S, Ghaffari R, Kim J, et al. 2014.. Multifunctional wearable devices for diagnosis and therapy of movement disorders. . Nat. Nanotechnol. 9:(5):397404
    [Crossref] [Google Scholar]
  41. 41.
    Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, et al. 2016.. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. . Nature 529:(7587):50914
    [Crossref] [Google Scholar]
  42. 42.
    Choi YS, Jeong H, Yin RT, Avila R, Pfenniger A, et al. 2022.. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. . Science 376:(6596):100612
    [Crossref] [Google Scholar]
  43. 43.
    Zhang Y, Tao TH. 2019.. Skin-friendly electronics for acquiring human physiological signatures. . Adv. Mater. 31:(49):1905767
    [Crossref] [Google Scholar]
  44. 44.
    Chun KS, Kang YJ, Lee JY, Nguyen M, Lee B, et al. 2021.. A skin-conformable wireless sensor to objectively quantify symptoms of pruritus. . Sci. Adv. 7:(18):eabf9405
    [Crossref] [Google Scholar]
  45. 45.
    Xu H, Gao L, Zhao H, Huang H, Wang Y, et al. 2021.. Stretchable and anti-impact iontronic pressure sensor with an ultrabroad linear range for biophysical monitoring and deep learning-aided knee rehabilitation. . Microsys. Nanoeng. 7:(1):92
    [Crossref] [Google Scholar]
  46. 46.
    Baker LB, Seib MS, Barnes KA, Brown SD, King MA, 2022.. Skin-interfaced microfluidic system with machine learning-enabled image processing of sweat biomarkers in remote settings. . Adv. Mater. Technol. 7:(11):2200249
    [Crossref] [Google Scholar]
  47. 47.
    Veiga F, Peters J, Hermans T. 2018.. Grip stabilization of novel objects using slip prediction. . IEEE Trans. Haptics 11:(4):53142
    [Crossref] [Google Scholar]
  48. 48.
    Navaraj W, Dahiya R. 2019.. Fingerprint-enhanced capacitive-piezoelectric flexible sensing skin to discriminate static and dynamic tactile stimuli. . Adv. Intell. Syst. 1:(7):1900051
    [Crossref] [Google Scholar]
  49. 49.
    Park K, Yuk H, Yang M, Cho J, Lee H, et al. 2022.. A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing. . Sci. Robot. 7:(67):eabm7187
    [Crossref] [Google Scholar]
  50. 50.
    Barreiros JA, Xu A, Pugach S, Iyengar N, Troxell G, et al. 2022.. Haptic perception using optoelectronic robotic flesh for embodied artificially intelligent agents. . Sci. Robot. 7:(67):eabi6745
    [Crossref] [Google Scholar]
  51. 51.
    Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR, et al. 2014.. Stretchable silicon nanoribbon electronics for skin prosthesis. . Nat. Commun. 5:(1):5747
    [Crossref] [Google Scholar]
  52. 52.
    Gerratt AP, Michaud HO, Lacour SP. 2015.. Elastomeric electronic skin for prosthetic tactile sensation. . Adv. Funct. Mater. 25:(15):228795
    [Crossref] [Google Scholar]
  53. 53.
    Hua Q, Sun J, Liu H, Bao R, Yu R, et al. 2018.. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. . Nat. Commun. 9:(1):244
    [Crossref] [Google Scholar]
  54. 54.
    Wang W, Jiang Y, Zhong D, Zhang Z, Choudhury S, et al. 2023.. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. . Science 380:(6646):73542
    [Crossref] [Google Scholar]
  55. 55.
    Arnold T, Scheutz M. 2017.. The tactile ethics of soft robotics: designing wisely for human–robot interaction. . Soft Robot. 4:(2):8187
    [Crossref] [Google Scholar]
  56. 56.
    Sunwoo SH, Han SI, Park CS, Kim JH, Gergiou JS, et al. 2023.. Soft bioelectronics for the management of cardiovascular diseases. . Nat. Rev. Bioeng. https://doi.org/10.1038/s44222-023-00102-z
    [Google Scholar]
  57. 57.
    Choi C, Lee Y, Cho KW, Koo JH, Kim DH. 2019.. Wearable and implantable soft bioelectronics using two-dimensional materials. . Acc. Chem. Res. 52:(1):7381
    [Crossref] [Google Scholar]
  58. 58.
    Liu Y, Pharr M, Salvatore GA. 2017.. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. . ACS Nano 11:(10):961435
    [Crossref] [Google Scholar]
  59. 59.
    Yuk H, Lu B, Zhao X. 2019.. Hydrogel bioelectronics. . Chem. Soc. Rev. 47::164267
    [Crossref] [Google Scholar]
  60. 60.
    Chen S, Sun L, Zhou X, Guo Y, Song J, et al. 2020.. Mechanically and biologically skin-like elastomers for bio-integrated electronics. . Nat. Commun. 11::1107
    [Crossref] [Google Scholar]
  61. 61.
    Fan JA, Yeo WH, Su Y, Hattori Y, Lee W, et al. 2014.. Fractal design concepts for stretchable electronics. . Nat. Commun. 5::3266
    [Crossref] [Google Scholar]
  62. 62.
    Rogers JA, Someya T, Huang Y. 2010.. Materials and mechanics for stretchable electronics. . Science 327:(5973):16037
    [Crossref] [Google Scholar]
  63. 63.
    Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. . Adv. Mater. 32:(15):1902743
    [Crossref] [Google Scholar]
  64. 64.
    He J, Zhou R, Zhang Y, Gao W, Chen T, et al. 2021.. Strain-insensitive self-powered tactile sensor arrays based on intrinsically stretchable and patternable ultrathin conformal wrinkled graphene-elastomer composite. . Adv. Funct. Mater. 32:(10):2107281
    [Crossref] [Google Scholar]
  65. 65.
    Lipomi DJ, Tee BCK, Vosgueritchian M, Bao Z. 2011.. Stretchable organic solar cells. . Adv. Mater. 23:(15):177175
    [Crossref] [Google Scholar]
  66. 66.
    Yan ZG, Wang BL, Wang KF. 2019.. Stretchability and compressibility of a novel layout design for flexible electronics based on bended wrinkle geometries. . Compos. B Eng. 166:(1):6573
    [Crossref] [Google Scholar]
  67. 67.
    Ko HC, Stoykovich MP, Song J, Malyarchuk V, Choi WM, et al. 2008.. A hemispherical electronic eye camera based on compressible silicon optoelectronics. . Nature 454::74853
    [Crossref] [Google Scholar]
  68. 68.
    Lee J, Wu J, Shi M, Yoon J, Park SI, et al. 2011.. Stretchable GaAs photovoltaics with designs that enable high areal coverage. . Adv. Mater. 23:(8):98691
    [Crossref] [Google Scholar]
  69. 69.
    Gutruf P, Walia S, Ali MN, Sriram S, Bhaskaran M. 2014.. Strain response of stretchable micro-electrodes: controlling sensitivity with serpentine designs and encapsulation. . Appl. Phys. Lett. 104::021908
    [Crossref] [Google Scholar]
  70. 70.
    Pu J, Wang X, Xu R, Komvopoulos K. 2016.. Highly stretchable microsupercapacitor arrays with honeycomb structures for integrated wearable electronic systems. . ACS Nano 10:(10):930615
    [Crossref] [Google Scholar]
  71. 71.
    Morikawa Y, Yamagiwa S, Sawahata H, Numano R, Koida K, et al. 2018.. Ultrastretchable kirigami bioprobes. . Adv. Healthcare Mater. 7:(3):1701100
    [Crossref] [Google Scholar]
  72. 72.
    Li X, Zhu P, Zhang S, Wang X, Luo X, et al. 2022.. A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional e-skin. . ACS Nano 16:(4):590919
    [Crossref] [Google Scholar]
  73. 73.
    Yu KJ, Yan Z, Han M, Rogers JA. 2017.. Inorganic semiconducting materials for flexible and stretchable electronics. . NPJ Flex. Electron. 1::4
    [Crossref] [Google Scholar]
  74. 74.
    Kim DH, Xiao J, Song J, Huang Y, Rogers JA. 2010.. Stretchable, curvilinear electronics based on inorganic materials. . Adv. Mater. 22:(19):210824
    [Crossref] [Google Scholar]
  75. 75.
    Ahn JH, Je JH. 2012.. Stretchable electronics: materials, architectures and integrations. . J. Phys. D Appl. Phys. 45::103001
    [Crossref] [Google Scholar]
  76. 76.
    Prameswati A, Han JW, Kim JH, Wibowo AF, Entifar SAN, et al. 2022.. Highly stretchable and mechanically robust silver nanowires on surface-functionalized wavy elastomers for wearable healthcare electronics. . Org. Electron. 108::106584
    [Crossref] [Google Scholar]
  77. 77.
    Tang J, Guo H, Zhao M, Yang J, Tsoukalas D, et al. 2015.. Highly stretchable electrodes on wrinkled polydimethylsiloxane substrates. . Sci. Rep. 5:(1):16527
    [Crossref] [Google Scholar]
  78. 78.
    Yokota T, Zalar P, Kaltenbrunner M, Jinno H, Matsuhisa N, et al. 2016.. Ultraflexible organic photonic skin. . Sci. Adv. 2:(4):e1501856
    [Crossref] [Google Scholar]
  79. 79.
    Guo H, Lan C, Zhou Z, Sun P, Wei D, et al. 2017.. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. . Nanoscale 9:(19):624653
    [Crossref] [Google Scholar]
  80. 80.
    Kim DS, Lee YH, Kim JW, Lee H, Jung G, et al. 2022.. A stretchable array of high-performance electrochromic devices for displaying skin-attached multi-sensor signals. . Chem. Eng. J. 429::132289
    [Crossref] [Google Scholar]
  81. 81.
    Shang C, Xu Q, Liang N, Zhang J, Li L, et al. 2023.. Multi-parameter e-skin based on biomimetic mechanoreceptors and stress field sensing. . NPJ Flex. Electron. 7:(1):19
    [Crossref] [Google Scholar]
  82. 82.
    Hou Q, Wang M, Han C, Gao K, Liu R, et al. 2022.. Highly flexible and conductive electrodes through combining honeycomb and butterfly pattern bio-inspired structure for ECG signal recording. . Adv. Mater. Interfaces 9:(29):2200821
    [Crossref] [Google Scholar]
  83. 83.
    Choi S, Park J, Hyun W, Kim J, Kim J, et al. 2015.. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. . ACS Nano 9:(6):662633
    [Crossref] [Google Scholar]
  84. 84.
    Choi S, Han SI, Jung D, Hwang HJ, Lim C, et al. 2018.. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. . Nat. Nanotechnol. 13:(11):104856
    [Crossref] [Google Scholar]
  85. 85.
    Won P, Park JJ, Lee T, Ha I, Han S, et al. 2019.. Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. . Nano Lett. 19:(9):608796
    [Crossref] [Google Scholar]
  86. 86.
    Koo JH, Yun HW, Lee W, Sunwoo SH, Shim HJ, et al. 2022.. Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems. . Opto-Electron. Adv. 5::210131
    [Crossref] [Google Scholar]
  87. 87.
    Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, et al. 2022.. Soft bioelectronics based on nanomaterials. . Chem. Rev. 122:(5):506843
    [Crossref] [Google Scholar]
  88. 88.
    Tien HC, Huang YW, Chiu YC, Cheng YH, Chueh CC, et al. 2021.. Intrinsically stretchable polymer semiconductors: molecular design, processing and device applications. . J. Mater. Chem. C 9::266084
    [Crossref] [Google Scholar]
  89. 89.
    Chen J, Zhu Y, Chang X, Pan D, Song G, et al. 2021.. Recent progress in essential functions of soft electronic skin. . Adv. Funct. Mater. 31:(42):2104686
    [Crossref] [Google Scholar]
  90. 90.
    Jung M, Lee J, Vishwanath SK, Kwon OS, Ahn CW, et al. 2020.. Flexible multimodal sensor inspired by human skin based on hair-type flow, temperature, and pressure. . Flex. Print. Electron. 5:(2):025003
    [Crossref] [Google Scholar]
  91. 91.
    Lee G, Son JH, Lee S, Kim SW, Kim D, et al. 2021.. Fingerpad-inspired multimodal electronic skin for material discrimination and texture recognition. . Adv. Sci. 8:(9):2002606
    [Crossref] [Google Scholar]
  92. 92.
    Chen L, Chang X, Wang H, Chen J, Zhu Y. 2022.. Stretchable and transparent multimodal electronic-skin sensors in detecting strain, temperature, and humidity. . Nano Energy 96::107077
    [Crossref] [Google Scholar]
  93. 93.
    Pan L, Chortos A, Yu G, Wang Y, Isaacson S, et al. 2014.. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. . Nat. Commun. 5::3002
    [Crossref] [Google Scholar]
  94. 94.
    Chen Y, Zhang Y, Li H, Shen J, Zhang F, et al. 2023.. Bioinspired hydrogel actuator for soft robotics: opportunity and challenges. . Nano Today 49::101764
    [Crossref] [Google Scholar]
  95. 95.
    Qu X, Wang S, Zhao Y, Huang H, Wang Q, et al. 2021.. Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor. . Chem. Eng. J. 425:(1):131523
    [Crossref] [Google Scholar]
  96. 96.
    Zhang Q, Wang Q, Wang G, Zhang Z, Xia S, et al. 2021.. Ultrathin and highly tough hydrogel films for multifunctional strain sensors. . ACS Appl. Mater. Interfaces 13:(42):5041121
    [Crossref] [Google Scholar]
  97. 97.
    Chen K, Liang K, Liu H, Liu R, Liu Y, et al. 2023.. Skin-inspired ultra-tough supramolecular multifunctional hydrogel electronic skin for human–machine interaction. . Nanomicro Lett. 15:(1):102
    [Google Scholar]
  98. 98.
    Li F, Xu Z, Hu H, Kong Z, Chen C, et al. 2021.. A polyurethane integrating self-healing, anti-aging and controlled degradation for durable and eco-friendly e-skin. . Chem. Eng. J. 410:(15):128363
    [Crossref] [Google Scholar]
  99. 99.
    Xu J, Wang H, Du X, Cheng X, Du Z, et al. 2021.. Self-healing, anti-freezing and highly stretchable polyurethane ionogel as ionic skin for wireless strain sensing. . Chem. Eng. J. 426:(15):130724
    [Crossref] [Google Scholar]
  100. 100.
    Ying WB, Yu Z, Kim DH, Lee KJ, Hu H, et al. 2020.. Waterproof, highly tough, and fast self-healing polyurethane for durable electronic skin. . ACS Appl. Mater. Interfaces 12:(9):1107283
    [Crossref] [Google Scholar]
  101. 101.
    Xun X, Zhang Z, Zhao X, Zhao B, Gao F, et al. 2020.. Highly robust and self-powered electronic skin based on tough conductive self-healing elastomer. . ACS Nano 14:(7):906672
    [Crossref] [Google Scholar]
  102. 102.
    Bai H, Kim YS, Shepherd RF. 2022.. Autonomous self-healing optical sensors for damage intelligent soft-bodied systems. . Sci. Adv. 8:(49):eabq2104
    [Crossref] [Google Scholar]
  103. 103.
    Baik S, Kim DW, Park Y, Lee TJ, Pang C, et al. 2017.. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. . Nature 546::396400
    [Crossref] [Google Scholar]
  104. 104.
    Kim DW, Song KI, Seong D, Lee YS, Pang C, et al. 2022.. Electrostatic–mechanical synergistic in situ multiscale tissue adhesion for sustainable residue-free bioelectronics interfaces. . Adv. Mater. 34:(5):2105338
    [Crossref] [Google Scholar]
  105. 105.
    Koo JH, Jeong S, Shim HJ, Son D, Kim DC, et al. 2017.. Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. . ACS Nano 11:(10):1003241
    [Crossref] [Google Scholar]
  106. 106.
    Jeong JW, Yeo WH, Akhtar A, Norton JJS, Kwack YJ, et al. 2013.. Materials and optimized designs for human-machine interfaces via epidermal electronics. . Adv. Mater. 25:(47):683946
    [Crossref] [Google Scholar]
  107. 107.
    Webb RC, Bonifas AP, Behnaz A, Zhang Y, Yu KJ, et al. 2013.. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. . Nat. Mater. 12::93844
    [Crossref] [Google Scholar]
  108. 108.
    Kim Y, Zhu J, Yeom B, Di Prima M, Su X, et al. 2013.. Stretchable nanoparticle conductors with self-organized conductive pathways. . Nature 500:(7460):5963
    [Crossref] [Google Scholar]
  109. 109.
    Xu J, Wang S, Wang GJN, Zhu C, Luo S, et al. 2017.. Highly stretchable polymer semiconductor films through the nanoconfinement effect. . Science 355:(6320):5964
    [Crossref] [Google Scholar]
  110. 110.
    Wang S, Xu J, Wang W, Wang GJN, Rastak R, et al. 2017.. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. . Nature 555::8388
    [Crossref] [Google Scholar]
  111. 111.
    Koo JH, Kang J, Lee S, Song JK, Choi J, et al. 2023.. A vacuum-deposited polymer dielectric for wafer-scale stretchable electronics. . Nat. Electron. 6::13745
    [Crossref] [Google Scholar]
  112. 112.
    Yeon H, Lee H, Kim Y, Lee D, Lee Y, et al. 2021.. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. . Sci. Adv. 7::eabg8459
    [Crossref] [Google Scholar]
  113. 113.
    Peng X, Dong K, Zhang Y, Wang L, Wei C, et al. 2022.. Sweat-permeable, biodegradable, transparent and self-powered chitosan-based electronic skin with ultrathin elastic gold nanofibers. . Adv. Funct. Mater. 30:(20):2112241
    [Crossref] [Google Scholar]
  114. 114.
    Luo Y, Li Y, Sharma P, Shou W, Wu K, et al. 2021.. Learning human–environment interactions using conformal tactile textiles. . Nat. Electron. 4::193201
    [Crossref] [Google Scholar]
  115. 115.
    Del Preto J, Liu C, Foshey M, Li Y, Torralba A, et al. 2022.. ActionSense: a multimodal dataset and recording framework for human activities using wearable sensors in a kitchen environment. . In 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmark, ed. S Koyejo, S Mohamed, A Agarwal, D Belgrave, K Cho, A Oh , pp. 114. San Diego, CA:: NeurIPS Foundation
    [Google Scholar]
  116. 116.
    Jeong H, Rogers JA, Xu S. 2020.. Continuous on-body sensing for the COVID-19 pandemic: gaps and opportunities. . Sci. Adv. 6:(36):eabd4794
    [Crossref] [Google Scholar]
  117. 117.
    Li Z, Zhu M, Shen J, Qiu Q, Yu J, Ding B. 2020.. All-fiber structured electronic skin with high elasticity and breathability. . Adv Funct Mater. 30:(6):1908411
    [Crossref] [Google Scholar]
  118. 118.
    Heikenfeld J. 2016.. Technological leap for sweat sensing. . Nature 529:(7587):47576
    [Crossref] [Google Scholar]
  119. 119.
    Cortes C, Vapnik V. 1995.. Support-vector networks. . Mach. Learn. 20:(3):27397
    [Google Scholar]
  120. 120.
    Cover T, Hart P. 1967.. Nearest neighbor pattern classification. . IEEE Trans. Inform. Theory 13:(1):2127
    [Crossref] [Google Scholar]
  121. 121.
    Quinlan JR. 1986.. Induction of decision trees. . Mach. Learn. 1:(1):81106
    [Google Scholar]
  122. 122.
    Breiman L. 2001.. Random forests. . Mach. Learn. 45:(1):532
    [Crossref] [Google Scholar]
  123. 123.
    Macqueen JB. 1967.. Some methods for classification and analysis of multivariate observations. . In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, ed. L Lecam, J Neyman , pp. 28197. Berkeley:: Univ. Calif. Press
    [Google Scholar]
  124. 124.
    Ward JH. 1963.. Hierarchical grouping to optimize an objective function. . J. Am. Stat. Assoc. 58:(301):23644
    [Crossref] [Google Scholar]
  125. 125.
    Jolliffe IT. 2002.. Principal Component Analysis. New York:: Springer-Verlag
    [Google Scholar]
  126. 126.
    Hinton GE, Roweis ST. 2002.. Stochastic neighbor embedding. . In Advances in Neural Information Processing Systems (NeurIPS), Vol. 15, ed. S Becker, S Thrun, K Obermayer , pp. 85764. Cambridge, MA:: MIT Press
    [Google Scholar]
  127. 127.
    Howard RA. 1970.. Dynamic Programming and Markov Processes. Cambridge, MA:: MIT Press. , 6th ed..
    [Google Scholar]
  128. 128.
    Lenz I, Knepper R, Saxena A. 2015.. DeepMPC: learning deep latent features for model predictive control. . In Robotics: Science and Systems XI. San Francisco:: RSS Found.
    [Google Scholar]
  129. 129.
    Watkins CJCH, Dayan P. 1992.. Q-learning. . Mach. Learn. 8:(3–4):27992
    [Google Scholar]
  130. 130.
    Rummery G, Niranjan M. 1994.. On-line Q-learning using connectionist systems. Tech. Rep. CUED/F-INFENG/TR 166 , Cambridge Univ. Eng. Dep., Cambridge, England:
    [Google Scholar]
  131. 131.
    Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M. 2014.. Deterministic policy gradient algorithms. . Proc. Mach. Learn. Res. 32:(1):38795
    [Google Scholar]
  132. 132.
    Xu J, Kim S, Chen T, Garcia AR, Agrawal P, et al. 2023.. Efficient tactile simulation with differentiability for robotic manipulation. . Proc. Mach. Learn. Res. 205::148898
    [Google Scholar]
  133. 133.
    Ozioko O, Dahiya R. 2022.. Smart tactile gloves for haptic interaction, communication, and rehabilitation. . Adv. Intell. Syst. 4:(2):2100091
    [Crossref] [Google Scholar]
  134. 134.
    Guo ZH, Wang HL, Shao JJ, Shao Y, Jia L, et al. 2022.. Bioinspired soft electroreceptors for artificial precontact somatosensation. . Sci. Adv. 8:(21):eabo5201
    [Crossref] [Google Scholar]
  135. 135.
    Pang G, Yang G, Pang Z. 2021.. Review of robot skin: a potential enabler for safe collaboration, immersive teleoperation, and affective interaction of future collaborative robots. . IEEE Trans. Med. Robot. Bionics 3:(3):681700
    [Crossref] [Google Scholar]
  136. 136.
    Heng W, Solomon S, Gao W. 2022.. Flexible electronics and devices as human–machine interfaces for medical robotics. . Adv. Mater. 34:(16):2107902
    [Crossref] [Google Scholar]
  137. 137.
    Barreiros JA, Xu A, Pugach S, Iyengar N, Troxell G, et al. 2022.. Haptic perception using optoelectronic robotic flesh for embodied artificially intelligent agents. . Sci. Robot. 7:(67):eabi6745
    [Crossref] [Google Scholar]
  138. 138.
    Li Z, Liu F, Yang W, Peng S, Zhou J. 2022.. A survey of convolutional neural networks: analysis, applications, and prospects. . IEEE Trans. Neural Netw. Learn. Syst. 33:(12):69997019
    [Crossref] [Google Scholar]
  139. 139.
    Yu J, De Antonio A, Villalba-Mora E. 2022.. Deep learning (CNN, RNN) applications for smart homes: a systematic review. . Computers 11:(2):26
    [Crossref] [Google Scholar]
  140. 140.
    Yamashita R, Nishio M, Do RKG, Togashi K. 2018.. Convolutional neural networks: an overview and application in radiology. . Insights Imaging 9:(4):61129
    [Crossref] [Google Scholar]
  141. 141.
    Park K, Yuk H, Yang M, Cho J, Lee H, Kim J. 2022.. A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing. . Sci. Robot. 7:(67):eabm7187
    [Crossref] [Google Scholar]
  142. 142.
    Sundaram S, Kellnhofer P, Li Y, Zhu J-Y, Torralba A, Matusik W. 2019.. Learning the signatures of the human grasp using a scalable tactile glove. . Nature 569:(7758):698702
    [Crossref] [Google Scholar]
  143. 143.
    Kim KK, Kim M, Pyun K, Kim J, Min J, et al. 2022.. A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. . Nat. Electron. 6::6475
    [Google Scholar]
  144. 144.
    Min J, Tu J, Xu C, Lukas H, Shin S, et al. 2023.. Skin-interfaced wearable sweat sensors for precision medicine. . Chem. Rev. 123:(8):5049138
    [Crossref] [Google Scholar]
  145. 145.
    Hu H, Huang H, Li M, Gao X, Yin L, et al. 2023.. A wearable cardiac ultrasound imager. . Nature 613:(7945):66775
    [Crossref] [Google Scholar]
  146. 146.
    Baker LB, Seib MS, Barnes KA, Brown SD, King MA, et al. 2022.. Skin-interfaced microfluidic system with machine learning-enabled image processing of sweat biomarkers in remote settings. . Adv. Mater. Technol. 7:(11):2200249
    [Crossref] [Google Scholar]
  147. 147.
    Kim Y, Mahmood M, Lee Y, Kim NK, Kwon S, et al. 2019.. All-in-one, wireless, stretchable hybrid electronics for smart, connected, and ambulatory physiological monitoring. . Adv. Sci. 6:(17):1900939
    [Crossref] [Google Scholar]
  148. 148.
    Jeong H, Yoo J-Y, Ouyang W, Greane ALJX, Wiebe AJ, et al. 2023.. Closed-loop network of skin-interfaced wireless devices for quantifying vocal fatigue and providing user feedback. . PNAS 120:(9):e2219394120
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-103122-032652
Loading
/content/journals/10.1146/annurev-bioeng-103122-032652
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error