1932

Abstract

The treatment of end-stage heart failure has evolved substantially with advances in medical treatment, cardiac transplantation, and mechanical circulatory support (MCS) devices such as left ventricular assist devices and total artificial hearts. However, current MCS devices are inherently blood contacting and can lead to potential complications including pump thrombosis, hemorrhage, stroke, and hemolysis. Attempts to address these issues and avoid blood contact led to the concept of compressing the failing heart from the epicardial surface and the design of direct cardiac compression (DCC) devices. We review the fundamental concepts related to DCC, present the foundational devices and recent devices in the research and commercialization stages, and discuss the milestones required for clinical translation and adoption of this technology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110220-025309
2022-06-06
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/24/1/annurev-bioeng-110220-025309.html?itemId=/content/journals/10.1146/annurev-bioeng-110220-025309&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S et al. 2021. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. Eur. J. Heart Fail. 23:352–80
    [Google Scholar]
  2. 2.
    Lippi G, Sanchis-Gomar F. 2020. Global epidemiology and future trends of heart failure. AME Med. J. 5:15
    [Google Scholar]
  3. 3.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG et al. 2016. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. J. Heart Fail. 18:891–975
    [Google Scholar]
  4. 4.
    Vasan RS, Benjamin EJ. 2016. The future of cardiovascular epidemiology. Circulation 133:2626–33
    [Google Scholar]
  5. 5.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr. et al. 2013. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128:e240–327
    [Google Scholar]
  6. 6.
    Jackson SL, Tong X, King RJ, Loustalot F, Hong Y, Ritchey MD. 2018. National burden of heart failure events in the United States, 2006 to 2014. Circ. Heart Fail. 11:e004873
    [Google Scholar]
  7. 7.
    Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW et al. 2020. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation 141:e139–596
    [Google Scholar]
  8. 8.
    Metra M, Teerlink JR. 2017. Heart failure. Lancet 390:1981–95
    [Google Scholar]
  9. 9.
    van Diepen S, Katz JN, Albert NM, Henry TD, Jacobs AK et al. 2017. Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. Circulation 136:e232–68
    [Google Scholar]
  10. 10.
    Ziaeian B, Fonarow GC. 2016. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 13:368–78
    [Google Scholar]
  11. 11.
    Konstam MA, Kiernan MS, Bernstein D, Bozkurt B, Jacob M et al. 2018. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation 137:e578–622
    [Google Scholar]
  12. 12.
    Guyton AC, Hall JE. 2006. Textbook of Medical Physiology Philadelphia: Elsevier Saunders. , 11th ed..
    [Google Scholar]
  13. 13.
    Borlaug BA. 2014. The pathophysiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 11:507–15
    [Google Scholar]
  14. 14.
    Arrigo M, Jessup M, Mullens W, Reza N, Shah AM et al. 2020. Acute heart failure. Nat. Rev. Dis. Primers 6:16
    [Google Scholar]
  15. 15.
    Suga H, Sagawa K. 1974. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35:117–26
    [Google Scholar]
  16. 16.
    Suga H, Sagawa K, Shoukas AA. 1973. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32:314–22
    [Google Scholar]
  17. 17.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr. et al. 2017. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 136:e137–61
    [Google Scholar]
  18. 18.
    Farmakis D, Agostoni P, Baholli L, Bautin A, Comin-Colet J et al. 2019. A pragmatic approach to the use of inotropes for the management of acute and advanced heart failure: an expert panel consensus. Int. J. Cardiol. 297:83–90
    [Google Scholar]
  19. 19.
    Baran DA, Grines CL, Bailey S, Burkhoff D, Hall SA et al. 2019. SCAI clinical expert consensus statement on the classification of cardiogenic shock. Catheter. Cardiovasc. Interv. 94:29–37
    [Google Scholar]
  20. 20.
    Combes A. 2017. Mechanical circulatory support for end-stage heart failure. Metabolism 69:S30–35
    [Google Scholar]
  21. 21.
    Thiele H, Schuler G, Neumann FJ, Hausleiter J, Olbrich HG et al. 2012. Intraaortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock: design and rationale of the Intraaortic Balloon Pump in Cardiogenic Shock II (IABP-SHOCK II) trial. Am. Heart J. 163:938–45
    [Google Scholar]
  22. 22.
    Combes A, Brodie D, Chen YS, Fan E, Henriques JPS et al. 2017. The ICM research agenda on extracorporeal life support. Intensive Care Med 43:1306–18
    [Google Scholar]
  23. 23.
    Broman LM, Taccone FS, Lorusso R, Malfertheiner MV, Pappalardo F et al. 2019. The ELSO Maastricht Treaty for ECLS Nomenclature: abbreviations for cannulation configuration in extracorporeal life support—a position paper of the Extracorporeal Life Support Organization. Crit. Care 23:36
    [Google Scholar]
  24. 24.
    Combes A, Price S, Slutsky AS, Brodie D. 2020. Temporary circulatory support for cardiogenic shock. Lancet 396:199–212
    [Google Scholar]
  25. 25.
    Arabia FA. 2020. The total artificial heart: Where are we?. Cardiol. Rev. 28:275–82
    [Google Scholar]
  26. 26.
    Mehra MR, Uriel N, Naka Y, Cleveland JC Jr., Yuzefpolskaya M et al. 2019. A fully magnetically levitated left ventricular assist device—final report. N. Engl. J. Med. 380:1618–27Recent clinical trial evaluating the use of LVAD for the treatment of terminal heart failure.
    [Google Scholar]
  27. 27.
    Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV et al. 2009. Advanced heart failure treated with continuous-flow left ventricular assist device. N. Engl. J. Med. 361:2241–51
    [Google Scholar]
  28. 28.
    Miller LW, Pagani FD, Russell SD, John R, Boyle AJ et al. 2007. Use of a continuous-flow device in patients awaiting heart transplantation. N. Engl. J. Med. 357:885–96
    [Google Scholar]
  29. 29.
    Moonsamy P, Axtell AL, Ibrahim NE, Funamoto M, Tolis G et al. 2020. Survival after heart transplantation in patients bridged with mechanical circulatory support. J. Am. Coll. Cardiol. 75:2892–905
    [Google Scholar]
  30. 30.
    Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW et al. 2001. Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 345:1435–43
    [Google Scholar]
  31. 31.
    Jakovljevic DG, Yacoub MH, Schueler S, MacGowan GA, Velicki L et al. 2017. Left ventricular assist device as a bridge to recovery for patients with advanced heart failure. J. Am. Coll. Cardiol. 69:1924–33
    [Google Scholar]
  32. 32.
    Aissaoui N, Jouan J, Gourjault M, Diebold B, Ortuno S et al. 2018. Understanding left ventricular assist devices. Blood Purif. 46:292–300
    [Google Scholar]
  33. 33.
    Han J, Trumble D. 2019. Cardiac assist devices: early concepts, current technologies, and future innovations. Bioengineering 6:18
    [Google Scholar]
  34. 34.
    Schramm R, Morshuis M, Schoenbrodt M, Boergermann J, Hakim-Meibodi K et al. 2019. Current perspectives on mechanical circulatory support. Eur. J. Cardiothorac. Surg. 55:i31–37
    [Google Scholar]
  35. 35.
    Eckman PM, John R. 2012. Bleeding and thrombosis in patients with continuous-flow ventricular assist devices. Circulation 125:3038–47
    [Google Scholar]
  36. 36.
    Hilal T, Mudd J, Deloughery TG 2019. Hemostatic complications associated with ventricular assist devices. Res. Pract. Thromb. Haemost. 3:589–98
    [Google Scholar]
  37. 37.
    Samura T, Yoshioka D, Toda K, Sakaniwa R, Shimizu M et al. 2019. Risk of stroke early after implantation of a left ventricular assist device. J. Thorac. Cardiovasc. Surg. 157:259–67
    [Google Scholar]
  38. 38.
    Mehra MR, Cleveland JC, Uriel N, Cowger JA, Hall S et al. 2021. Primary results of long-term outcomes in the MOMENTUM 3 pivotal trial and continued access protocol study phase: a study of 2200 HeartMate 3 left ventricular assist device implants. Eur. J. Heart Fail. 23:1392–400
    [Google Scholar]
  39. 39.
    Devore AD, Patel PA, Patel CB. 2017. Medical management of patients with a left ventricular assist device for the non-left ventricular assist device specialist. JACC Heart Fail 5:621–31
    [Google Scholar]
  40. 40.
    Aburjania N, Hay CM, Sohail MR. 2021. Continuous-flow left ventricular assist device systems infections: current outcomes and management strategies. Ann. Cardiothorac. Surg. 10:233–39
    [Google Scholar]
  41. 41.
    Rivas-Lasarte M, Kumar S, Derbala MH, Ferrall J, Cefalu M et al. 2021. Prediction of right heart failure after left ventricular assist implantation: external validation of the EUROMACS right-sided heart failure risk score. Eur. Heart J. Acute Cardiovasc. Care 10:723–32
    [Google Scholar]
  42. 42.
    Maradey JA, Singleton MJ, O'Neill TJ, Bhave PD. 2020. Management of ventricular arrhythmias in patients with LVAD. Curr. Opin. Cardiol. 35:289–94
    [Google Scholar]
  43. 43.
    Ankersmit HJ, Tugudea S, Spanier T, Weinberg AD, Artrip JH et al. 1999. Activation-induced T-cell death and immune dysfunction after implantation of left-ventricular assist device. Lancet 354:550–55
    [Google Scholar]
  44. 44.
    Itescu S, John R. 2003. Interactions between the recipient immune system and the left ventricular assist device surface: immunological and clinical implications. Ann. Thorac. Surg. 75:S58–65
    [Google Scholar]
  45. 45.
    Ko B-S, Drakos S, Kfoury AG, Hurst D, Stoddard GJ et al. 2016. Immunologic effects of continuous-flow left ventricular assist devices before and after heart transplant. J. Heart Lung Transplant. 35:1024–30
    [Google Scholar]
  46. 46.
    Rus D, Tolley MT. 2015. Design, fabrication and control of soft robots. Nature 521:467–75Comprehensive review of soft robotics and its current and future applications.
    [Google Scholar]
  47. 47.
    Anstadt GL, Blakemore W, Baue AE. 1965. A new instrument for prolonged mechanical massage. Circulation 31/32:43–44
    [Google Scholar]
  48. 48.
    Kawaguchi O, Goto Y, Futaki S, Ohgoshi Y, Yaku H, Suga H. 1992. Mechanical enhancement and myocardial oxygen saving by synchronized dynamic left ventricular compression. J. Thorac. Cardiovasc. Surg. 103:573–81
    [Google Scholar]
  49. 49.
    Kawaguchi O, Goto Y, Futaki S, Ohgoshi Y, Yaku H, Suga H 1994. The effects of dynamic cardiac compression on ventricular mechanics and energetics. Role of ventricular size and contractility. J. Thorac. Cardiovasc. Surg. 107:850–59
    [Google Scholar]
  50. 50.
    Kawaguchi O, Goto Y, Ohgoshi Y, Yaku H, Murase M, Suga H 1997. Dynamic cardiac compression improves contractile efficiency of the heart. J. Thorac. Cardiovasc. Surg. 113:923–31
    [Google Scholar]
  51. 51.
    Artrip JH, Wang J, Leventhal AR, Tsitlik JE, Levin HR, Burkhoff D 1999. Hemodynamic effects of direct biventricular compression studied in isovolumic and ejecting isolated canine hearts. Circulation 99:2177–84
    [Google Scholar]
  52. 52.
    Oz MC, Artrip JH, Burkhoff D. 2002. Direct cardiac compression devices. J. Heart Lung Transplant. 21:1049–55In-depth review of the pathophysiology of DCC.
    [Google Scholar]
  53. 53.
    Bencini A, Parola PL. 1956. The pneumo-massage of the heart; experimental research. Surgery 39:375–84
    [Google Scholar]
  54. 54.
    Anstadt GL, Schiff P, Baue AE. 1966. Prolonged circulatory support by direct mechanical ventricular assistance. Trans. Am. Soc. Artif. Intern. Organs 12:72–79
    [Google Scholar]
  55. 55.
    Lowe JE, Hughes GC, Biswas SS. 1999. Blood-contacting biventricular support: direct mechanical ventricular actuation. Oper. Tech. Thorac. Cardiovasc. Surg. 4:345–51
    [Google Scholar]
  56. 56.
    Baue AE, Tragus ET, Anstadt GL, Blakemore WS. 1968. Mechanical ventricular assistance in man. Circulation 37:II33–36
    [Google Scholar]
  57. 57.
    Anstadt MP, Bartlett RL, Malone JP, Brown GR, Martin S et al. 1991. Direct mechanical ventricular actuation for cardiac arrest in humans. A clinical feasibility trial. Chest 100:86–92Early clinical study where DCC was applied on 22 patients with refractory cardiac arrest.
    [Google Scholar]
  58. 58.
    Lowe JE, Anstadt MP, Van Trigt P, Smith PK, Hendry PJ et al. 1991. First successful bridge to cardiac transplantation using direct mechanical ventricular actuation. Ann. Thorac. Surg. 52:1237–45
    [Google Scholar]
  59. 59.
    Anstadt MP, Malone JP, Brown GR, Nolan DS, Quinones JD, Anstadt GL. 1987. Direct mechanical ventricular assistance promotes salvage of ischemic myocardium. ASAIO Trans 33:720–25
    [Google Scholar]
  60. 60.
    Anstadt MP, Hendry PJ, Plunkett MD, Menius JA Jr., Pacifico AD Jr., Lowe JE. 1990. Mechanical myocardial actuation during ventricular fibrillation improves tolerance to ischemia compared with cardiopulmonary bypass. Circulation 82:IV284–90
    [Google Scholar]
  61. 61.
    Anstadt MP, Tedder SD, Heide RS, Tedder M, Hilleren DJ et al. 1992. Cardiac pathology following resuscitative circulatory support. Direct mechanical ventricular actuation versus cardiopulmonary bypass. ASAIO J 38:75–81
    [Google Scholar]
  62. 62.
    Griffith RF, Anstadt M, Hoekstra J, Van Ligten PF, Anstadt GV et al. 1992. Regional cerebral blood flow with manual internal cardiac massage versus direct mechanical ventricular assistance. Ann. Emerg. Med. 21:137–41
    [Google Scholar]
  63. 63.
    Anstadt GL, Rawlings CA, Krahwinkel DT, Casey HW, Schiff P 1971. Prolonged circulatory support by direct mechanical ventricular assistance for two to three days of ventricular fibrillation. Trans. Am. Soc. Artif. Intern. Organs 17:174–82
    [Google Scholar]
  64. 64.
    Perez-Tamayo RA, Anstadt MP, Cothran RL Jr., Reisinger RJ, Schenkman DI et al. 1995. Prolonged total circulatory support using direct mechanical ventricular actuation. ASAIO J 41:M512–17
    [Google Scholar]
  65. 65.
    Anstadt MP, Budharaju S, Darner RJ, Schmitt BA, Prochaska LJ et al. 2009. Ventricular actuation improves systolic and diastolic myocardial function in the small failing heart. Ann. Thorac. Surg. 88:1982–88
    [Google Scholar]
  66. 66.
    McConnell PI, Anstadt MP, Del Rio CL, Preston TJ, Ueyama Y, Youngblood BL. 2014. Cardiac function after acute support with direct mechanical ventricular actuation in chronic heart failure. ASAIO J 60:701–6
    [Google Scholar]
  67. 67.
    Artrip JH, Yi G-H, Levin HR, Burkhoff D, Wang J 1999. Physiological and hemodynamic evaluation of nonuniform direct cardiac compression. Circulation 100:II236–43
    [Google Scholar]
  68. 68.
    Williams MR, Artrip JH. 2001. Direct cardiac compression for cardiogenic shock with the Cardio-Support system. Ann. Thorac. Surg. 71:S188–89
    [Google Scholar]
  69. 69.
    Artrip JH, Yi GH, Shimizo J, Feihn E, Sciacca RR et al. 2000. Maximizing hemodynamic effectiveness of biventricular assistance by direct cardiac compression studied in ex vivo and in vivo canine models of acute heart failure. J. Thorac. Cardiovasc. Surg. 120:379–86
    [Google Scholar]
  70. 70.
    Kung RTV, Rosenberg M. 1999. Heart Booster: a pericardial support device. Ann. Thorac. Surg. 68:764–67
    [Google Scholar]
  71. 71.
    Kavarana MN, Helman DN, Williams MR, Barbone A, Sanchez JA et al. 2001. Circulatory support with a direct cardiac compression device: a less invasive approach with the AbioBooster device. J. Thorac. Cardiovasc. Surg. 122:786–87
    [Google Scholar]
  72. 72.
    Kavarana MN, Loree HM 2nd, Stewart RB, Milbocker MT, Hannan RL et al. 2013. Pediatric mechanical support with an external cardiac compression device. J. Cardiovasc. Dis. Diagn. 1:21000105
    [Google Scholar]
  73. 73.
    Mau J, Menzie S, Huang Y, Ward M, Hunyor S 2011. Nonsurround, nonuniform, biventricular-capable direct cardiac compression provides Frank-Starling recruitment independent of left ventricular septal damage. J. Thorac. Cardiovasc. Surg. 142:209–15
    [Google Scholar]
  74. 74.
    Gallagher GL, Huang Y, Morita S, Zielinski RR, Hunyor SN. 2007. Efficacy and mechanisms of biventricular and left/right direct cardiac compression in acute heart failure sheep. Artif. Organs 31:39–44
    [Google Scholar]
  75. 75.
    Huang Y, Gallagher G, Plekhanov S, Morita S, Brady PW, Hunyor SN. 2003. HeartPatch implanted direct cardiac compression: effect on coronary flow and flow patterns in acute heart failure sheep. ASAIO J 49:309–13
    [Google Scholar]
  76. 76.
    Gallagher GL, Huang Y, Zielinski RR, Morita S, Hunyor SN 2007. Effect of direct cardiac compression on left ventricular axial dynamics in sheep. ASAIO J 53:292–97
    [Google Scholar]
  77. 77.
    Bautista-Salinas D, Hammer PE, Payne CJ, Wamala I, Saeed M et al. 2020. Synchronization of a soft robotic ventricular assist device to the native cardiac rhythm using an epicardial electrogram. J. Med. Devices 14:031003
    [Google Scholar]
  78. 78.
    Horvath MA, Wamala I, Rytkin E, Doyle E, Payne CJ et al. 2017. An intracardiac soft robotic device for augmentation of blood ejection from the failing right ventricle. Ann. Biomed. Eng. 45:2222–33
    [Google Scholar]
  79. 79.
    Park E, Mehandru N, Lievano Beltran T, Kraus E, Holland D et al. 2014. An intraventricular soft robotic pulsatile assist device for right ventricular heart failure. J. Med. Devices 8:020908
    [Google Scholar]
  80. 80.
    Wamala I, Payne CJ, Saeed MY, Bautista-Salinas D, Van Story D et al. 2022. Importance of preserved tricuspid valve function for effective soft robotic augmentation of the right ventricle in cases of elevated pulmonary artery pressure. Cardiovasc. Eng. Technol 13:12028
    [Google Scholar]
  81. 81.
    Payne CJ, Wamala I, Bautista-Salinas D, Saeed M, Van Story D et al. 2017. Soft robotic ventricular assist device with septal bracing for therapy of heart failure. Sci. Robot. 2:eaan6736
    [Google Scholar]
  82. 82.
    Saeed MY, Van Story D, Payne CJ, Wamala I, Shin B et al. 2020. Dynamic augmentation of left ventricle and mitral valve function with an implantable soft robotic device. JACC Basic Transl. Sci. 5:229–42
    [Google Scholar]
  83. 83.
    Trumble DR, Park CS, Magovern JA. 1999. Copulsation balloon for right ventricular assistance: preliminary trials. Circulation 99:2815–18
    [Google Scholar]
  84. 84.
    van Dort DIM, Thannhauser J, Gommans FDH, Ten Cate TJ, Duncker DJ et al. 2020. Proof of principle of a novel co-pulsating intra-ventricular membrane pump. Artif. Organs 44:1267–75
    [Google Scholar]
  85. 85.
    Gharaie SH, Amir Moghadam AA, Al'Aref SJ, Caprio A, Alaie S et al. 2019. A proof-of-concept demonstration for a novel soft ventricular assist device. J. Med. Devices 13:021009
    [Google Scholar]
  86. 86.
    Roche ET, Wohlfarth R, Overvelde JT, Vasilyev NV, Pigula FA et al. 2014. A bioinspired soft actuated material. Adv. Mater. 26:1200–6
    [Google Scholar]
  87. 87.
    Roche ET, Horvath MA, Wamala I, Alazmani A, Song SE et al. 2017. Soft robotic sleeve supports heart function. Sci. Transl. Med. 9:eaaf3925Describes the development of a soft robotic sleeve to provide cardiac assistance in an acute heart failure model.
    [Google Scholar]
  88. 88.
    Payne CJ, Wamala I, Abah C, Thalhofer T, Saeed M et al. 2017. An implantable extracardiac soft robotic device for the failing heart: mechanical coupling and synchronization. Soft Robot. 4:241–50
    [Google Scholar]
  89. 89.
    Horvath MA, Varela CE, Dolan EB, Whyte W, Monahan DS et al. 2018. Towards alternative approaches for coupling of a soft robotic sleeve to the heart. Ann. Biomed. Eng. 46:1534–47
    [Google Scholar]
  90. 90.
    Kongahage D, Ruhparwar A, Foroughi J 2021. High performance artificial muscles to engineer a ventricular cardiac assist device and future prospective of a cardiac sleeve. Adv. Mater. Technol. 6:2000894
    [Google Scholar]
  91. 91.
    Gu H, Bertrand T, Boehler Q, Chautems C, Vasilyev NV, Nelson BJ. 2021. Magnetically active cardiac patches as an untethered, non-blood contacting ventricular assist device. Adv. Sci. 8:2000726
    [Google Scholar]
  92. 92.
    Han J, Kubala M, Trumble DR. 2018. Design of a muscle-powered soft robotic Bi-VAD for long-term circulatory support. Proceedings of the 2018 Design of Medical Devices Conference, Minneapolis, MN, USA, April 9–12, 2018 New York: ASME
    [Google Scholar]
  93. 93.
    Moreno MR, Biswas S, Harrison LD, Pernelle G, Miller MW et al. 2011. Assessment of minimally invasive device that provides simultaneous adjustable cardiac support and active synchronous assist in an acute heart failure model. J. Med. Devices 5:041008
    [Google Scholar]
  94. 94.
    Mann DL, Bristow MR. 2005. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 111:2837–49
    [Google Scholar]
  95. 95.
    Moreno MR, Biswas S, Harrison LD, Pernelle G, Miller MW et al. 2011. Development of a non-blood contacting cardiac assist and support device: an in vivo proof of concept study. J. Med. Devices 5:041007
    [Google Scholar]
  96. 96.
    Hord EC, Bolch CM, Tuzun E, Cohn WE, Leschinsky B, Criscione JC. 2019. Evaluation of the CorInnova heart assist device in an acute heart failure model. J. Cardiovasc. Transl. Res. 12:155–63
    [Google Scholar]
  97. 97.
    Jagschies L, Hirschvogel M, Matallo J, Maier A, Mild K et al. 2018. Individualized biventricular epicardial augmentation technology in a drug-induced porcine failing heart model. ASAIO J 64:480–88
    [Google Scholar]
  98. 98.
    Dolan EB, Hofmann B, De Vaal MH, Bellavia G, Straino S et al. 2019. A bioresorbable biomaterial carrier and passive stabilization device to improve heart function post-myocardial infarction. Mater. Sci. Eng. C Mater. Biol. Appl. 103:109751
    [Google Scholar]
  99. 99.
    Hirschvogel M, Bassilious M, Jagschies L, Wildhirt SM, Gee MW. 2017. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: experiment-based parameter estimation for patient-specific cardiac mechanics. Int. J. Numer. Methods Biomed. Eng. 33:e2842
    [Google Scholar]
  100. 100.
    Hirschvogel M, Jagschies L, Maier A, Wildhirt SM, Gee MW. 2019. An in silico twin for epicardial augmentation of the failing heart. Int. J. Numer. Methods Biomed. Eng. 35:e3233
    [Google Scholar]
  101. 101.
    Criscione JC. 2017. Cardiovascular devices: soft hugs for healing hearts. Nat. Biomed. Eng. 1:0046
    [Google Scholar]
  102. 102.
    Anstadt MP, Schulte-Eistrup SA, Motomura T, Soltero ER, Takano T et al. 2002. Non-blood contacting biventricular support for severe heart failure. Ann. Thorac. Surg. 73:556–62
    [Google Scholar]
  103. 103.
    Schueler S, Bowles CT, Hinkel R, Wohlfarth R, Schmid MRet al 2022. A novel intrapericardial pulsatile device, reBEAT, for individualized, biventricular circulatory support without direct blood contact. J. Thorac. Cardiovasc. Surg In press https://doi.org/10.1016/j.jtcvs.2021.11.093
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110220-025309
Loading
/content/journals/10.1146/annurev-bioeng-110220-025309
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error