1932

Abstract

The rate of protein synthesis is slower than many folding reactions and varies depending on the synonymous codons encoding the protein sequence. Synonymous codon substitutions thus have the potential to regulate cotranslational protein folding mechanisms, and a growing number of proteins have been identified with folding mechanisms sensitive to codon usage. Typically, these proteins have complex folding pathways and kinetically stable native structures. Kinetically stable proteins may fold only once over their lifetime, and thus, codon-mediated regulation of the pioneer round of protein folding can have a lasting impact. Supporting an important role for codon usage in folding, conserved patterns of codon usage appear in homologous gene families, hinting at selection. Despite these exciting developments, there remains few experimental methods capable of quantifying translation elongation rates and cotranslational folding mechanisms in the cell, which challenges the development of a predictive understanding of how biology uses codons to regulate protein folding.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-030722-020555
2024-07-16
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-030722-020555.html?itemId=/content/journals/10.1146/annurev-biophys-030722-020555&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agashe D, Sane M, Singhal S. 2023.. Revisiting the role of genetic variation in adaptation. . Am. Nat. 202:(4):486502
    [Crossref] [Google Scholar]
  2. 2.
    Agirrezabala X, Samatova E, Macher M, Liutkute M, Maiti M, et al. 2022.. A switch from α-helical to β-strand conformation during co-translational protein folding. . EMBO J. 41:(4):e109175
    [Crossref] [Google Scholar]
  3. 3.
    Ahnert SE, Marsh JA, Hernández H, Robinson CV, Teichmann SA. 2015.. Principles of assembly reveal a periodic table of protein complexes. . Science 350:(6266):aaa2245
    [Crossref] [Google Scholar]
  4. 4.
    Alexaki A, Hettiarachchi GK, Athey JC, Katneni UK, Simhadri V, et al. 2019.. Effects of codon optimization on coagulation factor IX translation and structure: implications for protein and gene therapies. . Sci. Rep. 9::15449
    [Crossref] [Google Scholar]
  5. 5.
    Anfinsen CB. 1973.. Principles that govern the folding of protein chains. . Science 181:(4096):22330
    [Crossref] [Google Scholar]
  6. 6.
    Angov E, Hillier CJ, Kincaid RL, Lyon JA. 2008.. Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. . PLOS ONE 3:(5):e2189
    [Crossref] [Google Scholar]
  7. 7.
    Badonyi M, Marsh JA. 2023.. Hallmarks and evolutionary drivers of cotranslational protein complex assembly. . FEBS J. In press
    [Google Scholar]
  8. 8.
    Bae H, Coller J. 2022.. Codon optimality-mediated mRNA degradation: linking translational elongation to mRNA stability. . Mol. Cell 82:(8):146776
    [Crossref] [Google Scholar]
  9. 9.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, et al. 2021.. Accurate prediction of protein structures and interactions using a three-track neural network. . Science 373:(6557):87176
    [Crossref] [Google Scholar]
  10. 10.
    Bailey SF, Morales LAA, Kassen R. 2021.. Effects of synonymous mutations beyond codon bias: the evidence for adaptive synonymous substitutions from microbial evolution experiments. . Genome Biol. Evol. 13:(9):evab141
    [Crossref] [Google Scholar]
  11. 11.
    Baker D, Agard DA. 1994.. Kinetics versus thermodynamics in protein folding. . Biochemistry 33:(24):75059
    [Crossref] [Google Scholar]
  12. 12.
    Balchin D, Hayer-Hartl M, Hartl FU. 2016.. In vivo aspects of protein folding and quality control. . Science 353:(6294):aac4354
    [Crossref] [Google Scholar]
  13. 13.
    Bardy SL, Eichler J, Jarrell KF. 2003.. Archaeal signal peptides—a comparative survey at the genome level. . Protein Sci. 12:(9):183343
    [Crossref] [Google Scholar]
  14. 14.
    Bartoszewski R, Króliczewski J, Piotrowski A, Jasiecka AJ, Bartoszewska S, et al. 2016.. Codon bias and the folding dynamics of the cystic fibrosis transmembrane conductance regulator. . Cell Mol. Biol. Lett. 21::23
    [Crossref] [Google Scholar]
  15. 15.
    Bartoszewski RA, Jablonsky M, Bartoszewska S, Stevenson L, Dai Q, et al. 2010.. A synonymous single nucleotide polymorphism in ΔF508 CFTR alters the secondary structure of the mRNA and the expression of the mutant protein. . J. Biol. Chem. 285:(37):2874148
    [Crossref] [Google Scholar]
  16. 16.
    Bergman S, Tuller T. 2020.. Widespread non-modular overlapping codes in the coding regions. . Phys. Biol. 17:(3):031002
    [Crossref] [Google Scholar]
  17. 17.
    Berndt U, Oellerer S, Zhang Y, Johnson AE, Rospert S. 2009.. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. . PNAS 106:(5):1398403
    [Crossref] [Google Scholar]
  18. 18.
    Bertolini M, Fenzl K, Kats I, Wruck F, Tippmann F, et al. 2021.. Interactions between nascent proteins translated by adjacent ribosomes drive homomer assembly. . Science 371:(6524):5764
    [Crossref] [Google Scholar]
  19. 19.
    Bhattacharyya S, Jacobs WM, Adkar BV, Yan J, Zhang W, Shakhnovich EI. 2018.. Accessibility of the Shine-Dalgarno sequence dictates N-terminal codon bias in E. coli. . Mol. Cell 70:(5):894905.e5
    [Crossref] [Google Scholar]
  20. 20.
    Bitran A, Jacobs WM, Zhai X, Shakhnovich E. 2020.. Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps. . PNAS 117:(3):148595
    [Crossref] [Google Scholar]
  21. 21.
    Bose SJ, Krainer G, Ng DRS, Schenkel M, Shishido H, et al. 2020.. Towards next generation therapies for cystic fibrosis: folding, function and pharmacology of CFTR. . J. Cyst. Fibros. 19::S2532
    [Crossref] [Google Scholar]
  22. 22.
    Braselmann E, Chaney JL, Clark PL. 2013.. Folding the proteome. . Trends Biochem. Sci. 38:(7):33744
    [Crossref] [Google Scholar]
  23. 23.
    Brodsky JL, Skach WR. 2011.. Protein folding and quality control in the endoplasmic reticulum: recent lessons from yeast and mammalian cell systems. . Curr. Opin. Cell Biol. 23:(4):46475
    [Crossref] [Google Scholar]
  24. 24.
    Brule CE, Grayhack EJ. 2017.. Synonymous codons: Choose wisely for expression. . Trends Genet. 33:(4):28397
    [Crossref] [Google Scholar]
  25. 25.
    Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, et al. 2016.. Synonymous codons direct cotranslational folding toward different protein conformations. . Mol. Cell 61:(3):34151 25. Experimental study showing codon harmonization that alters elongation rate can alter the encoded protein structure.
    [Crossref] [Google Scholar]
  26. 26.
    Campos LA, Sadqi M, Muñoz V. 2020.. Lessons about protein folding and binding from archetypal folds. . Acc. Chem. Res. 53:(10):218088
    [Crossref] [Google Scholar]
  27. 27.
    Chandra S, Gupta K, Khare S, Kohli P, Asok A, et al. 2022.. The high mutational sensitivity of ccdA antitoxin is linked to codon optimality. . Mol. Biol. Evol. 39:(10):msac187
    [Crossref] [Google Scholar]
  28. 28.
    Chaney JL, Clark PL. 2015.. Roles for synonymous codon usage in protein biogenesis. . Annu. Rev. Biophys. 44::14366
    [Crossref] [Google Scholar]
  29. 29.
    Chaney JL, Steele A, Carmichael R, Rodriguez A, Specht AT, et al. 2017.. Widespread position-specific conservation of synonymous rare codons within coding sequences. . PLOS Comput. Biol. 13:(5):e1005531 29. Identified position-specific conservation of codon usage across the tree of life but not at domain boundaries.
    [Crossref] [Google Scholar]
  30. 30.
    Chartron JW, Hunt KCL, Frydman J. 2016.. Cotranslational signal-independent SRP preloading during membrane targeting. . Nature 536:(7615):22428
    [Crossref] [Google Scholar]
  31. 31.
    Chen SJ, Hassan M, Jernigan RL, Jia K, Kihara D, et al. 2023.. Protein folds versus protein folding: differing questions, different challenges. . PNAS 120:(1):e2214423119
    [Crossref] [Google Scholar]
  32. 32.
    Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, et al. 1990.. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. . Cell 63::82734
    [Crossref] [Google Scholar]
  33. 33.
    Clark PL. 2004.. Protein folding in the cell: reshaping the folding funnel. . Trends Biochem. Sci. 29:(10):52734
    [Crossref] [Google Scholar]
  34. 34.
    Clarke TF, Clark PL. 2010.. Increased incidence of rare codon clusters at 5′ and 3′ gene termini: implications for function. . BMC Genom. 11::118
    [Crossref] [Google Scholar]
  35. 35.
    Costantini M, Musto H. 2017.. The isochores as a fundamental level of genome structure and organization: a general overview. . J. Mol. Evol. 84:(2–3):93103
    [Crossref] [Google Scholar]
  36. 36.
    Dessen P, Képè F. 2000.. The PAUSE software for analysis of translational control over protein targeting: application to E. nidulans membrane proteins. . Gene 244::8996
    [Crossref] [Google Scholar]
  37. 37.
    Drummond DA, Wilke CO. 2008.. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. . Cell 134:(2):34152
    [Crossref] [Google Scholar]
  38. 38.
    Engel AJ, Kithil M, Langhans M, Rauh O, Cartolano M, et al. 2021.. Codon bias can determine sorting of a potassium channel protein. . Cells 10:(5):1128
    [Crossref] [Google Scholar]
  39. 39.
    Faber MS, Wrenbeck EE, Azouz LR, Steiner PJ, Whitehead TA. 2019.. Impact of in vivo protein folding probability on local fitness landscapes. . Mol. Biol. Evol. 36:(12):276477
    [Crossref] [Google Scholar]
  40. 40.
    Fagerberg L, Jonasson K, Von Heijne G, Uhlén M, Berglund L. 2010.. Prediction of the human membrane proteome. . Proteomics 10:(6):114149
    [Crossref] [Google Scholar]
  41. 41.
    Fedorov AN, Baldwin TO. 1995.. Contribution of cotranslational folding to the rate of formation of native protein structure. . PNAS 92:(4):122731
    [Crossref] [Google Scholar]
  42. 42.
    Flanagan JJ, Chen JC, Miao Y, Shao Y, Lin J, et al. 2003.. Signal recognition particle binds to ribosome-bound signal sequences with fluorescence-detected subnanomolar affinity that does not diminish as the nascent chain lengthens. . J. Biol. Chem. 278:(20):1862837
    [Crossref] [Google Scholar]
  43. 43.
    Garofalo R, Wohlgemuth I, Pearson M, Lenz C, Urlaub H, Rodnina MV. 2019.. Broad range of missense error frequencies in cellular proteins. . Nucleic Acids Res. 47:(6):293245
    [Crossref] [Google Scholar]
  44. 44.
    Goldberger RF, Epstein CJ, Anfinsen CB. 1963.. Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. . J. Biol. Chem. 238:(2):62835
    [Crossref] [Google Scholar]
  45. 45.
    Grantham R, Gautier C, Gouy M, Jacobzone M, Mercier R. 1981.. Codon catalog usage is a genome strategy modulated for gene expressivity. . Nucleic Acids Res. 9:(1):4374
    [Crossref] [Google Scholar]
  46. 46.
    Gustafsson C, Govindarajan S, Minshull J. 2004.. Codon bias and heterologous protein expression. . Trends Biotechnol. 22:(7):34653
    [Crossref] [Google Scholar]
  47. 47.
    Haber E, Anfinsen CB. 1961.. Regeneration of enzyme activity by air oxidation of reduced subtilisin-modified ribonuclease. . J. Biol. Chem. 236:(2):42224
    [Crossref] [Google Scholar]
  48. 48.
    Hsieh HH, Shan SO. 2022.. Fidelity of cotranslational protein targeting to the endoplasmic reticulum. . Int. J. Mol. Sci. 23:(1):281
    [Crossref] [Google Scholar]
  49. 49.
    Hui X, Chen Z, Zhang J, Lu M, Cai X, et al. 2021.. Computational prediction of secreted proteins in gram-negative bacteria. . Comput. Struct. Biotechnol. J. 19::180628
    [Crossref] [Google Scholar]
  50. 50.
    Hunt RC, Kimchi-Sarfaty C. 2022.. When silence disrupts. . N. Engl. J. Med. 387:(8):75356
    [Crossref] [Google Scholar]
  51. 51.
    Hunt RC, Simhadri VL, Iandoli M, Sauna ZE, Kimchi-Sarfaty C. 2014.. Exposing synonymous mutations. . Trends Genet. 30:(7):30821
    [Crossref] [Google Scholar]
  52. 52.
    Ikemura T. 1981.. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. . J. Mol. Biol. 151::389409
    [Crossref] [Google Scholar]
  53. 53.
    Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. 2009.. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. . Science 324:(5924):21823
    [Crossref] [Google Scholar]
  54. 54.
    Ionescu RM, Smith VF, O'Neill JC, Matthews CR. 2000.. Multistate equilibrium unfolding of Escherichia coli dihydrofolate reductase: thermodynamic and spectroscopic description of the native, intermediate, and unfolded ensembles. . Biochemistry 39:(31):954050
    [Crossref] [Google Scholar]
  55. 55.
    Jacobs WM, Shakhnovich EI. 2017.. Evidence of evolutionary selection for cotranslational folding. . PNAS 114:(43):1143439 55. Pairs identification of conserved rare codon clusters with cotranslational folding predictions.
    [Crossref] [Google Scholar]
  56. 56.
    Jiang Y, Neti SS, Sitarik I, Pradhan P, To P, et al. 2023.. How synonymous mutations alter enzyme structure and function over long timescales. . Nat. Chem. 15:(3):30818
    [Crossref] [Google Scholar]
  57. 57.
    Kane JF. 1995.. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. . Curr. Opin. Biotechnol. 6:(5):494500
    [Crossref] [Google Scholar]
  58. 58.
    Kepes F. 1996.. The “+70 pause”: hypothesis of a translational control of membrane protein assembly. . J. Mol. Biol. 1996::7786
    [Crossref] [Google Scholar]
  59. 59.
    Kim SJ, Skach WR. 2012.. Mechanisms of CFTR folding at the endoplasmic reticulum. . Front. Pharmacol. 3::201
    [Google Scholar]
  60. 60.
    Kim SJ, Yoon JS, Shishido H, Yang Z, Rooney LA, et al. 2015.. Translational tuning optimizes nascent protein folding in cells. . Science 348:(6233):44448 60. Showed that codon usage modulates the elongation rate of the ribosome to support folding of an integral membrane protein.
    [Crossref] [Google Scholar]
  61. 61.
    Kimchi-Sarfaty C, Oh JM, Kim I-W, Sauna ZE, Calcagno AM, et al. 2007.. A “silent” polymorphism in the MDR1 gene changes substrate specificity. . Science 315:(5811):52528
    [Crossref] [Google Scholar]
  62. 62.
    Kirchner S, Cai Z, Rauscher R, Kastelic N, Anding M, et al. 2017.. Alteration of protein function by a silent polymorphism linked to tRNA abundance. . PLOS Biol. 15:(5):e2000779
    [Crossref] [Google Scholar]
  63. 63.
    Komar AA. 2009.. A pause for thought along the co-translational folding pathway. . Trends Biochem. Sci. 34:(1):1624
    [Crossref] [Google Scholar]
  64. 64.
    Komar AA. 2021.. A code within a code: how codons fine-tune protein folding in the cell. . Biochemistry 86:(8):97691
    [Google Scholar]
  65. 65.
    Kosolapov A, Deutsch C. 2009.. Tertiary interactions within the ribosomal exit tunnel. . Nat. Struct. Mol. Biol. 16:(4):40511
    [Crossref] [Google Scholar]
  66. 66.
    Koutmou KS, Radhakrishnan A, Green R. 2015.. Synthesis at the speed of codons. . Trends Biochem. Sci. 40:(12):71718
    [Crossref] [Google Scholar]
  67. 67.
    Kramer G, Shiber A, Bukau B. 2019.. Mechanisms of cotranslational maturation of newly synthesized proteins. . Annu. Rev. Biochem. 88::33764
    [Crossref] [Google Scholar]
  68. 68.
    Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL. 2001.. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. . J. Mol. Biol. 305:(3):56780
    [Crossref] [Google Scholar]
  69. 69.
    Kruglyak L, Beyer A, Bloom JS, Grossbach J, Lieberman TD, et al. 2023.. Insufficient evidence for non-neutrality of synonymous mutations. . Nature 616:(7957):E8E9
    [Crossref] [Google Scholar]
  70. 70.
    Kudla G, Murray AW, Tollervey D, Plotkin JB. 2009.. Coding-sequence determinants of gene expression in Escherichia coli. . Science 324:(5924):25558
    [Crossref] [Google Scholar]
  71. 71.
    Kulmala A, Lappalainen M, Lamminmäki U, Huovinen T. 2022.. Synonymous codons and hydrophobicity optimization of post-translational signal peptide PelB increase phage display efficiency of DARPins. . ACS Synth. Biol. 11:(10):317481
    [Crossref] [Google Scholar]
  72. 72.
    Lakkaraju AKK, Mary C, Scherrer A, Johnson AE, Strub K. 2008.. SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. . Cell 133:(3):44051
    [Crossref] [Google Scholar]
  73. 73.
    Lazrak A, Fu L, Bali V, Bartoszewski R, Rab A, et al. 2013.. The silent codon change I507-ATC→ATT contributes to the severity of the ΔF508 CFTR channel dysfunction. . FASEB J. 27:(11):463045
    [Crossref] [Google Scholar]
  74. 74.
    Liberles DA, Teichmann SA, Bahar I, Bastolla U, Bloom J, et al. 2012.. The interface of protein structure, protein biophysics, and molecular evolution. . Protein Sci. 21:(6):76985
    [Crossref] [Google Scholar]
  75. 75.
    Liu Y, Yang Q, Zhao F. 2021.. Synonymous but not silent: the codon usage code for gene expression and protein folding. . Annu. Rev. Biochem. 90::375401
    [Crossref] [Google Scholar]
  76. 76.
    Livingston NM, Kwon J, Valera O, Saba JA, Sinha NK, et al. 2023.. Bursting translation on single mRNAs in live cells. . Mol. Cell 83::227689.e11
    [Crossref] [Google Scholar]
  77. 77.
    Lu J, Deutsch C. 2005.. Folding zones inside the ribosomal exit tunnel. . Nat. Struct. Mol. Biol. 12:(12):112329
    [Crossref] [Google Scholar]
  78. 78.
    Lukacs GL, Verkman AS. 2012.. CFTR: folding, misfolding and correcting the ΔF508 conformational defect. . Trends Mol. Med. 18:(2):8191
    [Crossref] [Google Scholar]
  79. 79.
    Lynch M. 2012.. The evolution of multimeric protein assemblages. . Mol. Biol. Evol. 29:(5):135366
    [Crossref] [Google Scholar]
  80. 80.
    Lyu X, Liu Y. 2020.. Nonoptimal codon usage is critical for protein structure and function of the master general amino acid control regulator CPC-1. . mBio 11:(5):e0260520 80. Showed that synonymous codon substitutions can affect protein folding and fitness in Neurospora.
    [Crossref] [Google Scholar]
  81. 81.
    Marinko JT, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. 2019.. Folding and misfolding of human membrane proteins in health and disease: from single molecules to cellular proteostasis. . Chem. Rev. 119:(9):5537606
    [Crossref] [Google Scholar]
  82. 82.
    Marsh JA, Teichmann SA. 2011.. Relative solvent accessible surface area predicts protein conformational changes upon binding. . Structure 19:(6):85967
    [Crossref] [Google Scholar]
  83. 83.
    Mignon C, Mariano N, Stadthagen G, Lugari A, Lagoutte P, et al. 2018.. Codon harmonization—going beyond the speed limit for protein expression. . FEBS Lett. 592:(9):155464
    [Crossref] [Google Scholar]
  84. 84.
    Mordret E, Dahan O, Asraf O, Rak R, Yehonadav A, et al. 2019.. Systematic detection of amino acid substitutions in proteomes reveals mechanistic basis of ribosome errors and selection for translation fidelity. . Mol. Cell 75:(3):42741.e5
    [Crossref] [Google Scholar]
  85. 85.
    Natan E, Endoh T, Haim-Vilmovsky L, Flock T, Chalancon G, et al. 2018.. Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins. . Nat. Struct. Mol. Biol. 25:(3):27988
    [Crossref] [Google Scholar]
  86. 86.
    Natan E, Wells JN, Teichmann SA, Marsh JA. 2017.. Regulation, evolution and consequences of cotranslational protein complex assembly. . Curr. Opin. Struct. Biol. 42::9097
    [Crossref] [Google Scholar]
  87. 87.
    Nieuwkoop T, Finger-Bou M, van der Oost J, Claassens NJ. 2020.. The ongoing quest to crack the genetic code for protein production. . Mol. Cell 80:(2):193209
    [Crossref] [Google Scholar]
  88. 88.
    O'Brien EP, Ciryam P, Vendruscolo M, Dobson CM. 2014.. Understanding the influence of codon translation rates on cotranslational protein folding. . Acc. Chem. Res. 47:(5):153644
    [Crossref] [Google Scholar]
  89. 89.
    Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. 2021.. The dynamic SecYEG translocon. . Front. Mol. Biosci. 8::664241
    [Crossref] [Google Scholar]
  90. 90.
    Park C, Zhou S, Gilmore J, Marqusee S. 2007.. Energetics-based protein profiling on a proteomic scale: identification of proteins resistant to proteolysis. . J. Mol. Biol. 368::142637
    [Crossref] [Google Scholar]
  91. 91.
    Pechmann S, Chartron JW, Frydman J. 2014.. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. . Nat. Struct. Mol. Biol. 21:(12):11005
    [Crossref] [Google Scholar]
  92. 92.
    Pechmann S, Frydman J. 2013.. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. . Nat. Struct. Mol. Biol. 20:(2):23743
    [Crossref] [Google Scholar]
  93. 93.
    Perach M, Zafrir Z, Tuller T, Lewinson O. 2021.. Identification of conserved slow codons that are important for protein expression and function. . RNA Biol. 18:(12):2296307
    [Crossref] [Google Scholar]
  94. 94.
    Plaxco KW, Simons KT, Baker D. 1998.. Contact order, transition state placement and the refolding rates of single domain proteins. . J. Mol. Biol. 277::98594
    [Crossref] [Google Scholar]
  95. 95.
    Polte C, Wedemeyer D, Oliver KE, Wagner J, Bijvelds MJC, et al. 2019.. Assessing cell-specific effects of genetic variations using tRNA microarrays. . BMC Genom. 20::549
    [Crossref] [Google Scholar]
  96. 96.
    Qu B-H, Thomas PJ. 1996.. Alteration of the cystic fibrosis transmembrane conductance regulator folding pathway. . J. Biol. Chem. 271:(13):726164
    [Crossref] [Google Scholar]
  97. 97.
    Rauscher R, Bampi GB, Guevara-Ferrer M, Santos LA, Joshi D, et al. 2021.. Positive epistasis between disease-causing missense mutations and silent polymorphism with effect on mRNA translation velocity. . PNAS 118:(4):e2010612118 97. Showed that synonymous mutations can act synergistically with nonsynonymous mutations to affect protein folding.
    [Crossref] [Google Scholar]
  98. 98.
    Rauscher R, Ignatova Z. 2018.. Timing during translation matters: Synonymous mutations in human pathologies influence protein folding and function. . Biochem. Soc. Trans. 46:(4):93744
    [Crossref] [Google Scholar]
  99. 99.
    Rojano-Nisimura AM, Haning K, Janovsky J, Vasquez KA, Thompson JP, Contreras LM. 2020.. Codon selection affects recruitment of ribosome-associating factors during translation. . ACS Synth. Biol. 9:(2):32942
    [Crossref] [Google Scholar]
  100. 100.
    Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Ballard AJ, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  101. 101.
    Rumfeldt JAO, Vassall KA, Meiering EM. 2008.. Conformational stability and folding mechanisms of dimeric proteins. . Prog. Biophys. Mol. Biol. 98::6168
    [Crossref] [Google Scholar]
  102. 102.
    Sander IM, Chaney JL, Clark PL. 2014.. Expanding Anfinsen's principle: contributions of synonymous codon selection to rational protein design. . J. Am. Chem. Soc. 136:(3):85861 102. Provided the first direct demonstration that synonymous substitutions can predictably affect a protein folding mechanism in vivo.
    [Crossref] [Google Scholar]
  103. 103.
    Sarkar A, Panati K, Narala VR. 2022.. Code inside the codon: the role of synonymous mutations in regulating splicing machinery and its impact on disease. . Mutat. Res. Rev. Mutat. Res. 790::108444
    [Crossref] [Google Scholar]
  104. 104.
    Shen X, Song S, Li C, Zhang J. 2022.. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. . Nature 606:(7915):72531
    [Crossref] [Google Scholar]
  105. 105.
    Shiber A, Döring K, Friedrich U, Klann K, Merker D, et al. 2018.. Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. . Nature 561:(7722):26872
    [Crossref] [Google Scholar]
  106. 106.
    Shieh Y-W, Minguez P, Bork P, Auburger JJ, Guilbride DL, et al. 2015.. Operon structure and cotranslational subunit association direct protein assembly in bacteria. . Science 350:(6261):67880
    [Crossref] [Google Scholar]
  107. 107.
    Sikosek T, Chan HS. 2014.. Biophysics of protein evolution and evolutionary protein biophysics. . J. R. Soc. Interface 11:(100):20140419
    [Crossref] [Google Scholar]
  108. 108.
    Smalinskaitė L, Hegde RS. 2023.. The biogenesis of multipass membrane proteins. . Cold Spring Harb. Perspect. Biol. 15:(4):a041251
    [Crossref] [Google Scholar]
  109. 109.
    Sosnick TR, Barrick D. 2011.. The folding of single domain proteins—have we reached a consensus?. Curr. Opin. Struct. Biol. 21:(1):1224
    [Crossref] [Google Scholar]
  110. 110.
    Spencer PS, Siller E, Anderson JF, Barral JM. 2012.. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. . J. Mol. Biol. 422:(3):32835
    [Crossref] [Google Scholar]
  111. 111.
    Thiel G, Baumeister D, Schroeder I, Kast SM, Van Etten JL, Moroni A. 2011.. Minimal art: or why small viral K+ channels are good tools for understanding basic structure and function relations. . Biochim. Biophys. Acta Biomembr. 1808:(2):58088
    [Crossref] [Google Scholar]
  112. 112.
    To P, Whitehead B, Tarbox HE, Fried SD. 2021.. Nonrefoldability is pervasive across the E. coli proteome. . J. Am. Chem. Soc. 143:(30):1143548
    [Crossref] [Google Scholar]
  113. 113.
    To P, Xia Y, Lee SO, Devlin T, Fleming KG, Fried SD. 2022.. A proteome-wide map of chaperone-assisted protein refolding in a cytosol-like milieu. . PNAS 119:(48):e2210536119
    [Crossref] [Google Scholar]
  114. 114.
    Veit G, Avramescu RG, Chiang AN, Houck SA, Cai Z, et al. 2016.. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. . Mol. Biol. Cell 27:(3):42433
    [Crossref] [Google Scholar]
  115. 115.
    Walsh IM, Bowman MA, Soto Santarriaga IF, Rodriguez A, Clark PL. 2020.. Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness. . PNAS 117:(7):352834 115. Showed that synonymous codon substitutions alter folding of a homotrimeric protein, decreasing fitness.
    [Crossref] [Google Scholar]
  116. 116.
    Wright CF, Teichmann SA, Clarke J, Dobson CM. 2005.. The importance of sequence diversity in the aggregation and evolution of proteins. . Nature 438:(7069):87881
    [Crossref] [Google Scholar]
  117. 117.
    Wright G, Rodriguez A, Li J, Milenkovic T, Emrich SJ, Clark PL. 2022.. CHARMING: harmonizing synonymous codon usage to replicate a desired codon usage pattern. . Protein Sci. 31:(1):22131
    [Crossref] [Google Scholar]
  118. 118.
    Wruck F, Tian P, Kudva R, Best RB, von Heijne G, et al. 2021.. The ribosome modulates folding inside the ribosomal exit tunnel. . Commun. Biol. 4::523
    [Crossref] [Google Scholar]
  119. 119.
    Xia K, Manning M, Hesham H, Lin Q, Bystroff C, Coló W. 2007.. Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE. . PNAS 104:(44):1732934
    [Crossref] [Google Scholar]
  120. 120.
    Young TA, Skordalakes E, Marqusee S. 2007.. Comparison of proteolytic susceptibility in phosphoglycerate kinases from yeast and E. coli: modulation of conformational ensembles without altering structure or stability. . J. Mol. Biol. 368:(5):143847
    [Crossref] [Google Scholar]
  121. 121.
    Yu CH, Dang Y, Zhou Z, Wu C, Zhao F, et al. 2015.. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. . Mol. Cell 59:(5):74454
    [Crossref] [Google Scholar]
  122. 122.
    Zhang Y, Bebok Z. 2022.. An examination of mechanisms by which synonymous mutations may alter protein levels, structure and functions. . In Single Nucleotide Polymorphisms: Human Variation and a Coming Revolution in Biology and Medicine, ed. ZE Sauna, C Kimchi-Sarfaty , pp. 99132. Berlin:: Springer
    [Google Scholar]
  123. 123.
    Zhao F, Yu C-H, Liu Y. 2017.. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells. . Nucleic Acids Res. 45:(14):848492
    [Crossref] [Google Scholar]
  124. 124.
    Zhou M, Guo J, Cha J, Chae M, Chen S, et al. 2013.. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. . Nature 495::11115 124. Showed that synonymous codon substitutions can significantly affect folding and function of a protein lacking a well-defined native structure.
    [Crossref] [Google Scholar]
  125. 125.
    Zhou M, Wang T, Fu J, Xiao G, Liu Y. 2015.. Nonoptimal codon usage influences protein structure in intrinsically disordered regions. . Mol. Microbiol. 97:(5):97487
    [Crossref] [Google Scholar]
  126. 126.
    Zhou Z, Dang Y, Zhou M, Li L, Yu CH, et al. 2016.. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. . PNAS 113:(41):E611725
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-030722-020555
Loading
/content/journals/10.1146/annurev-biophys-030722-020555
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error