1932

Abstract

▪ Abstract 

Views of how cell membranes are organized are presently changing. The lipid bilayer that constitutes these membranes is no longer understood to be a homogeneous fluid. Instead, lipid assemblies, termed rafts, have been introduced to provide fluid platforms that segregate membrane components and dynamically compartmentalize membranes. These assemblies are thought to be composed mainly of sphingolipids and cholesterol in the outer leaflet, somehow connected to domains of unknown composition in the inner leaflet. Specific classes of proteins are associated with the rafts. This review critically analyzes what is known of phase behavior and liquid-liquid immiscibility in model systems and compares these data with what is known of domain formation in cell membranes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biophys.32.110601.141803
2004-06-09
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/bb/33/1/annurev.biophys.32.110601.141803.html?itemId=/content/journals/10.1146/annurev.biophys.32.110601.141803&mimeType=html&fmt=ahah

Literature Cited

  1. Almeida PF, Vaz WL, Thompson TE. 1992. Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31:6739–47 [Google Scholar]
  2. Almeida PF, Vaz WL, Thompson TE. 1993. Percolation and diffusion in three-component lipid bilayers: effect of cholesterol on an equimolar mixture of two phosphatidylcholines. Biophys. J. 64:399–412 [Google Scholar]
  3. Anderson RG. 1998. The caveolae membrane system. Annu. Rev. Biochem. 67:199–225 [Google Scholar]
  4. Anderson RG, Jacobson K. 2002. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296:1821–25 [Google Scholar]
  5. Bretscher MS, Munro S. 1993. Cholesterol and the Golgi apparatus. Science 261:1280–81 [Google Scholar]
  6. Briggs JA, Wilk T, Fuller SD. 2003. Do lipid rafts mediate virus assembly and pseudotyping. J. Gen. Virol. 84:757–68 [Google Scholar]
  7. Brown DA, London E. 2000. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275:17221–24 [Google Scholar]
  8. Brown DA, Rose JK. 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–44 [Google Scholar]
  9. Brown RE. 1998. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J. Cell Sci. 111:(Pt. 1)1–9 [Google Scholar]
  10. Caroni P. 2001. New EMBO members' review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts. EMBO J. 20:4332–36 [Google Scholar]
  11. de Almeida RF, Fedorov A, Prieto M. 2003. Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys. J. 85:2406–16 [Google Scholar]
  12. de Almeida RF, Loura LM, Fedorov A, Prieto M. 2002. Nonequilibrium phenomena in the phase separation of a two-component lipid bilayer. Biophys. J. 82:823–34 [Google Scholar]
  13. Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M. et al. 2001. Lipid rafts reconstituted in model membranes. Biophys. J. 80:1417–28 [Google Scholar]
  14. Dietrich C, Volovyk ZN, Levi M, Thompson NL, Jacobson K. 2001. Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. USA 98:10642–47 [Google Scholar]
  15. Dietrich C, Yang B, Fujiwara T, Kusumi A, Jacobson K. 2002. Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 82:274–84 [Google Scholar]
  16. Edidin M. 2003. The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32:257–83 [Google Scholar]
  17. Ekroos K, Ejsing CS, Bahr U, Karas M, Simons K, Shevchenko A. 2003. Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J. Lipid Res. 44:2181–92 [Google Scholar]
  18. Eroglu C, Brugger B, Wieland F, Sinning I. 2003. Glutamate-binding affinity of Drosophila metabotropic glutamate receptor is modulated by association with lipid rafts. Proc. Natl. Acad. Sci. USA 100:10219–24 [Google Scholar]
  19. Feigenson GW, Buboltz JT. 2001. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol. Biophys. J. 80:2775–88 [Google Scholar]
  20. Foster LJ, De Hoog CL, Mann M. 2003. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Natl. Acad. Sci. USA 100:5813–18 [Google Scholar]
  21. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A. 2002. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157:1071–81 [Google Scholar]
  22. Gally HU, Seelig A, Seelig J. 1976. Cholesterol-induced rod-like motion of fatty acyl chains in lipid bilayers a deuterium magnetic resonance study. Hoppe Seylers Z. Physiol. Chem. 357:1447–50 [Google Scholar]
  23. Glaser M. 1993. Lipid domains in biological membranes. Curr. Opin. Struct. Biol. 3:475–81 [Google Scholar]
  24. Gomez-Puertas P, Albo C, Perez-Pastrana E, Vivo A, Portela A. 2000. Influenza virus matrix protein is the major driving force in virus budding. J. Virol. 74:11538–47 [Google Scholar]
  25. Guo W, Kurze V, Huber T, Afdhal NH, Beyer K, Hamilton JA. 2002. A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems. Biophys. J. 83:1465–78 [Google Scholar]
  26. Haines TH. 2001. Do sterols reduce proton and sodium leaks through lipid bilayers. Prog. Lipid Res. 40:299–324 [Google Scholar]
  27. Hakomori SI. 2002. Inaugural article: the glycosynapse. Proc. Natl. Acad. Sci. USA 99:225–32 [Google Scholar]
  28. Harder T, Kuhn M. 2000. Selective accumulation of raft-associated membrane protein LAT in T cell receptor signaling assemblies. J. Cell Biol. 151:199–208 [Google Scholar]
  29. Harder T, Scheiffele P, Verkade P, Simons K. 1998. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141:929–42 [Google Scholar]
  30. Heerklotz H. 2002. Triton promotes domain formation in lipid raft mixtures. Biophys. J. 83:2693–701 [Google Scholar]
  31. Holopainen J, Metso AJ, Mattila JP, Jutila A, Kinnunen PKJ. 2003. Evidence for the lack of a specific interaction between cholesterol and sphingomyelin. Biophys. J. 86:1510–20 [Google Scholar]
  32. Hörber JKH, Miles J. 2003. Scanning probe evolution in biology. Science 302:1002 [Google Scholar]
  33. Huang J, Buboltz JT, Feigenson GW. 1999. Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochim. Biophys. Acta 1417:89–100 [Google Scholar]
  34. Huang J, Feigenson GW. 1999. A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys. J. 76:2142–57 [Google Scholar]
  35. Ilangumaran S, Hoessli DC. 1998. Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem. J. 335:(Pt. 2)433–40 [Google Scholar]
  36. Ipsen JH, Karlstrom G, Mouritsen OG, Wennerstrom H, Zuckermann MJ. 1987. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta 905:162–72 [Google Scholar]
  37. Ipsen JH, Mouritsen OG, Zuckermann MJ. 1989. Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol. Biophys. J. 56:661–67 [Google Scholar]
  38. Israelachvili JN. 1977. Refinement of the fluid-mosaic model of membrane structure. Biochim. Biophys. Acta 469:221–25 [Google Scholar]
  39. Jacobson K, Vaz WL. 1992. Special issue dedicated to “Domains in biological membranes.”. Comments Mol. Cell. Biophys.(8)1–144 [Google Scholar]
  40. Jain MK, White HB 3rd. 1977. Long-range order in biomembranes. Adv. Lipid Res. 15:1–60 [Google Scholar]
  41. Jorgensen K, Klinger A, Biltonen RL. 2000. Non-equilibrium lipid domain growth in the gel-fluid two phase region of a DC16PC-DC22PC lipid mixture investigated by Monte Carlo computer simulation, FTIR, and fluorescence spectroscopy. J. Phys. Chem. 104:11763–73 [Google Scholar]
  42. Keller S, Pitcher WH, Huestis WH, McConnell HM. 1998. Red blood cells form immiscible liquids. Phys. Rev. Lett. 81:5019–22 [Google Scholar]
  43. Kenworthy AK, Petranova N, Edidin M. 2000. High-resolution FRET microscopy of cholera tocin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell. 11:(5)1645–84 [Google Scholar]
  44. Kholodenko BN, Hoek JB, Westerhoff HV. 2000. Why cytoplasmic signalling proteins should be recruited to cell membranes. Trends Cell Biol. 10:173–78 [Google Scholar]
  45. Kurzchalia TV, Parton RG. 1999. Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11:424–31 [Google Scholar]
  46. Lipowsky R. 2002. Domains and rafts in membranes—hidden dimensions of self-organization. J. Biol. Phys. 28:195–210 [Google Scholar]
  47. London E. 2002. Insights into lipid raft structure and formation from experiments in model membranes. Curr. Opin. Struct. Biol. 12:480–86 [Google Scholar]
  48. London E, Brown DA. 2000. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim. Biophys. Acta 1508:182–95 [Google Scholar]
  49. Mahfoud R, Garmy N, Maresca M, Yahi N, Puigserver A, Fantini J. 2002. Identification of a common sphingolipid-binding domain in Alzheimer, prion, and HIV-1 proteins. J. Biol. Chem. 277:11292–96 [Google Scholar]
  50. Marsh D, Horvath LI. 1998. Structure, dynamics and composition of the lipid-protein interface. Perspectives from spin-labelling Biochim. Biophys. Acta 1376:267–96 [Google Scholar]
  51. Mateo R, Acuna A, Brochon JC. 1995. Liquid-crystalline phases of cholesterol/lipid bilayers as revealed by the fluorescence of trans-parinaric acid. Biophys. J. 68:978–87 [Google Scholar]
  52. McConnell HM. 1996. Equilibration rates in lipid monolayers. Proc. Natl. Acad. Sci. USA 93:15001–3 [Google Scholar]
  53. McConnell HM, Radhakrishnan A. 2003. Condensed complexes of cholesterol and phospholipids. Biochim. Biophys. Acta 1610:159–73 [Google Scholar]
  54. McConnell HM, Vrljic M. 2003. Liquid-liquid immiscibility in membranes. Annu. Rev. Biophys. Biomol. Struct. 32:469–92 [Google Scholar]
  55. McLaughlin S, Wang J, Gambhir A, Murray D. 2002. PIP(2) and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31:151–75 [Google Scholar]
  56. Milhiet P, Vie V, Giocondi M, Le Grimellec C. 2001. AFM characterization of model rafts in supported bilayers. Single Mol. 2:119–21 [Google Scholar]
  57. Miljan EA, Bremer EG. 2002. Regulation of growth factor receptors by gangliosides. STKE 160:15 [Google Scholar]
  58. Munro S. 2003. Lipid rafts: elusive or illusive. Cell 115:377–88 [Google Scholar]
  59. Murata M, Peranen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K. 1995. VIP21/caveolin is a cholesterol-binding protein. Proc. Natl. Acad. Sci. USA 92:10339–43 [Google Scholar]
  60. Nielsen M, Miao L, Ipsen JH, Zuckermann MJ, Mouritsen OG. 1999. Off-lattice model for the phase behavior of lipid-cholesterol bilayers. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 59:5790–803 [Google Scholar]
  61. Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte JP. 2002. Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 41:66–97 [Google Scholar]
  62. Pickl WF, Pimentel-Muinos FX, Seed B. 2001. Lipid rafts and pseudotyping. J. Virol. 75:7175–83 [Google Scholar]
  63. Pike LJ, Han X, Chung KN, Gross RW. 2002. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 41:2075–88 [Google Scholar]
  64. Pizzo P, Giurisato E, Tassi M, Benedetti A, Pozzan T, Viola A. 2002. Lipid rafts and T cell receptor signaling: a critical re-evaluation. Eur. J. Immunol. 32:3082–91 [Google Scholar]
  65. Pralle A, Keller P, Florin EL, Simons K, Horber JK. 2000. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148:997–1008 [Google Scholar]
  66. Prior IA, Muncke C, Parton RG, Hancock JF. 2003. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160:165–70 [Google Scholar]
  67. Ramstedt B, Slotte JP. 2002. Membrane properties of sphingomyelins. FEBS Lett. 531:33–37 [Google Scholar]
  68. Rinia HA, Snel MM, van der Eerden JP, de Kruijff B. 2001. Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 501:92–96 [Google Scholar]
  69. Rodemer C, Thai TP, Brugger B, Kaercher T, Werner H. et al. 2003. Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet. 12:1881–95 [Google Scholar]
  70. Samsonov AV, Mihalyov I, Cohen FS. 2001. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. Biophys. J. 81:1486–500 [Google Scholar]
  71. Sankaram MB, Thompson TE. 1990. Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry 29:10670–75 [Google Scholar]
  72. Sankaram MB, Thompson TE. 1990. Modulation of phospholipid acyl chain order by cholesterol. A solid-state 2H nuclear magnetic resonance study Biochemistry 29:10676–84 [Google Scholar]
  73. Sankaram MB, Thompson TE. 1991. Cholesterol-induced fluid-phase immiscibility in membranes. Proc. Natl. Acad. Sci. USA 88:8686–90 [Google Scholar]
  74. Saslowsky DE, Lawrence J, Ren X, Brown DA, Henderson RM, Edwardson JM. 2002. Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers. J. Biol. Chem. 277:26966–70 [Google Scholar]
  75. Scheiffele P, Rietveld A, Wilk T, Simons K. 1999. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274:2038–44 [Google Scholar]
  76. Scheiffele P, Roth MG, Simons K. 1997. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J. 16:5501–8 [Google Scholar]
  77. Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K. 2003. Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. USA 100:5795–800 [Google Scholar]
  78. Schütz GJ, Kada G, Pastushenko VP, Schindler H. 2000. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19:892–901 [Google Scholar]
  79. Sharma P, Sabharanjak S, Satyajit M. 2002. Endocytosis of lipid rafts: an identity crisis. Sem. Cell. Dev. Biol. 13:205 [Google Scholar]
  80. Silvius JR. 2003. Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim. Biophys. Acta 1610:174–83 [Google Scholar]
  81. Silvius JR, del Giudice D, Lafleur M. 1996. Cholesterol at different bilayer concentrations can promote or antagonize lateral segregation of phospholipids of differing acyl chain length. Biochemistry 35:15198–208 [Google Scholar]
  82. Simons K, Ehehalt R. 2002. Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110:597–603 [Google Scholar]
  83. Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387:569–72 [Google Scholar]
  84. Simons K, Toomre D. 2000. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1:31–39 [Google Scholar]
  85. Simons K, van Meer G. 1988. Lipid sorting in epithelial cells. Biochemistry 27:6197–202 [Google Scholar]
  86. Smaby JM, Brockman HL, Brown RE. 1994. Cholesterol's interfacial interactions with sphingomyelins and phosphatidylcholines: Hydrocarbon chain structure determines the magnitude of condensation. Biochemistry 33:9135–42 [Google Scholar]
  87. Smaby JM, Kulkarni VS, Momsen M, Brown RE. 1996. The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines. Biophys. J. 70:868–77 [Google Scholar]
  88. Smart EJ, Ying YS, Mineo C, Anderson RG. 1995. A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc. Natl. Acad. Sci. USA 92:10104–8 [Google Scholar]
  89. Smorodin V, Melo E. 2001. Shape and dimensions of gel domains in phospholipid bilayers: a theoretical study. J. Phys. Chem. 105:6010–16 [Google Scholar]
  90. Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP. 1996. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains J. Biol. Chem. 271:9690–97 [Google Scholar]
  91. Subczynski WK, Kusumi A. 2003. Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochim. Biophys. Acta 1610:231–43 [Google Scholar]
  92. Varma R, Mayor S. 1998. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801 [Google Scholar]
  93. Vaz WL. 1996. Consequences of phase separations in membranes. In Handbook of Non-Medical Applications of Liposomes ed. Y Barenholz, D Lasic pp.51–60 Boca Raton, FL: CRC Press [Google Scholar]
  94. Vaz WL, Almeida P. 1993. Phase topology and percolation in multi-phase lipid bilayers: Is the biological membrane a domain mosaic. Curr. Opin. Struct. Biol. 3:482–88 [Google Scholar]
  95. Veiga MP, Arrondo JL, Goni FM, Alonso A, Marsh D. 2001. Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol Biochemistry 40:2614–22 [Google Scholar]
  96. Vist MR, Davis JH. 1990. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry 29:451–64 [Google Scholar]
  97. Wang TY, Leventis R, Silvius JR. 2000. Fluorescence-based evaluation of the partitioning of lipids and lipidated peptides into liquid-ordered lipid microdomains: a model for molecular partitioning into “lipid rafts”. Biophys. J. 79:919–33 [Google Scholar]
  98. Wang TY, Silvius JR. 2001. Cholesterol does not induce segregation of liquid-ordered domains in bilayers modeling the inner leaflet of the plasma membrane. Biophys. J. 81:2762–73 [Google Scholar]
  99. White DA. 1973. The phospholipid composition of mammalian tissues. In Form and Function of Phospholipids ed. G Ansell, J Hawthorne, R Dawson pp.441–82 New York: Elsevier [Google Scholar]
  100. Wu ES, Jacobson K, Papahadjopoulos D. 1977. Lateral diffusion in phospholipid multibilayers measured by fluorescence recovery after photobleaching. Biochemistry 16:3836–41 [Google Scholar]
  101. Yuan C, Furlong J, Burgos P, Johnston LJ. 2002. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys. J. 82:2526–35 [Google Scholar]
  102. Zhang J, Pekosz A, Lamb RA. 2000. Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J. Virol. 74:4634–44 [Google Scholar]
/content/journals/10.1146/annurev.biophys.32.110601.141803
Loading
/content/journals/10.1146/annurev.biophys.32.110601.141803
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error