Comparative modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target–template alignment, model building, and model evaluation. The number of protein sequences that can be modeled and the accuracy of the predictions are increasing steadily because of the growth in the number of known protein structures and because of the improvements in the modeling software. Further advances are necessary in recognizing weak sequence–structure similarities, aligning sequences with structures, modeling of rigid body shifts, distortions, loops and side chains, as well as detecting errors in a model. Despite these problems, it is currently possible to model with useful accuracy significant parts of approximately one third of all known protein sequences. The use of individual comparative models in biology is already rewarding and increasingly widespread. A major new challenge for comparative modeling is the integration of it with the torrents of data from genome sequencing projects as well as from functional and structural genomics. In particular, there is a need to develop an automated, rapid, robust, sensitive, and accurate comparative modeling pipeline applicable to whole genomes. Such large-scale modeling is likely to encourage new kinds of applications for the many resulting models, based on their large number and completeness at the level of the family, organism, or functional network.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error