1932

Abstract

Genetically encoded fluorescent biosensors have revolutionized the study of cell signaling and metabolism, as they allow for live-cell measurements with high spatiotemporal resolution. This success has spurred the development of tailor-made biosensors that enable the study of dynamic phenomena on different timescales and length scales. In this review, we discuss different approaches to enhancing and developing new biosensors. We summarize the technologies used to gain structural insights into biosensor design and comment on useful screening technologies. Furthermore, we give an overview of different applications where biosensors have led to key advances over recent years. Finally, we give our perspective on where future work is bound to make a large impact.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-030722-021359
2024-07-16
2025-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-030722-021359.html?itemId=/content/journals/10.1146/annurev-biophys-030722-021359&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, et al. 2022.. Neurophotonic tools for microscopic measurements and manipulation: status report. . Neurophotonics 9:(1):013001
    [Google Scholar]
  2. 2.
    Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, et al. 2019.. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. . Science 364::699704
    [Crossref] [Google Scholar]
  3. 3.
    Abdelfattah AS, Zheng J, Singh A, Huang Y-C, Reep D, et al. 2023.. Sensitivity optimization of a rhodopsin-based fluorescent voltage indicator. . Neuron 111:(10):154763.e9
    [Crossref] [Google Scholar]
  4. 4.
    Akerboom J, Chen T-W, Wardill TJ, Tian L, Marvin JS, et al. 2012.. Optimization of a GCaMP calcium indicator for neural activity imaging. . J. Neurosci. 32:(40):1381940
    [Crossref] [Google Scholar]
  5. 5.
    Akerboom J, Vélez Rivera JD, Rodríguez Guilbe MM, Alfaro Malavé EC, Hernandez HH, et al. 2009.. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. . J. Biol. Chem. 284:(10):645564
    [Crossref] [Google Scholar]
  6. 6.
    Alford SC, Abdelfattah AS, Ding Y, Campbell RE. 2012.. A fluorogenic red fluorescent protein heterodimer. . Chem. Biol. 19:(3):35360
    [Crossref] [Google Scholar]
  7. 7.
    Alford SC, Ding Y, Simmen T, Campbell RE. 2012.. Dimerization-dependent green and yellow fluorescent proteins. . ACS Synth. Biol. 1::56975
    [Crossref] [Google Scholar]
  8. 8.
    Ananthanarayanan B, Ni Q, Zhang J. 2005.. Signal propagation from membrane messengers to nuclear effectors revealed by reporters of phosphoinositide dynamics and Akt activity. . PNAS 102:(42):1508186
    [Crossref] [Google Scholar]
  9. 9.
    Ando R, Sakaue-Sawano A, Shoda K, Miyawaki A. 2023.. Two coral fluorescent proteins of distinct colors for sharp visualization of cell-cycle progression. . Cell Struct. Funct. 48:(2):13544
    [Crossref] [Google Scholar]
  10. 9a.
    Ando R, Shimozono S, Ago H, Takagi M, Sugiyama M, . 2023.. StayGold variants for molecular fusion and membrane-targeting applications. . Nat. Methods. https://doi.org/10.1038/s41592-023-02085-6
    [Google Scholar]
  11. 10.
    Anton SE, Kayser C, Maiellaro I, Nemec K, Möller J, et al. 2022.. Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. . Cell 185:(7):113042.e11
    [Crossref] [Google Scholar]
  12. 11.
    Augustine GJ, Santamaria F, Tanaka K. 2003.. Local calcium signaling in neurons. . Neuron 40::33146
    [Crossref] [Google Scholar]
  13. 12.
    Austen K, Ringer P, Mehlich A, Chrostek-Grashoff A, Kluger C, et al. 2015.. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. . Nat. Cell Biol. 17:(12):1597606
    [Crossref] [Google Scholar]
  14. 13.
    Bachert C, Linstedt AD. 2013.. A sensor of protein O-glycosylation based on sequential processing in the Golgi apparatus. . Traffic 14::4756
    [Crossref] [Google Scholar]
  15. 14.
    Belal ASF, Sell BR, Hoi H, Davidson MW, Campbell RE. 2014.. Optimization of a genetically encoded biosensor for cyclin B1-cyclin dependent kinase 1. . Mol. Biosyst. 10::19195
    [Crossref] [Google Scholar]
  16. 15.
    Benaissa H, Ounoughi K, Aujard I, Fischer E, Goïame R, et al. 2021.. Engineering of a fluorescent chemogenetic reporter with tunable color for advanced live-cell imaging. . Nat. Commun. 12::6989
    [Crossref] [Google Scholar]
  17. 16.
    Broch F, Gautier A. 2020.. Illuminating cellular biochemistry: fluorogenic chemogenetic biosensors for biological imaging. . Chempluschem 85::148797
    [Crossref] [Google Scholar]
  18. 17.
    Chandris P, Giannouli CC, Panayotou G. 2022.. Imaging approaches for the study of metabolism in real time using genetically encoded reporters. . Front. Cell Dev. Biol. 9::725114
    [Crossref] [Google Scholar]
  19. 18.
    Chen K, Li W, Xu K. 2022.. Super-multiplexing excitation spectral microscopy with multiple fluorescence bands. . Biomed. Opt. Exp. 13:(11):604860
    [Crossref] [Google Scholar]
  20. 19.
    Chen K, Yan R, Xiang L, Xu K. 2021.. Excitation spectral microscopy for highly multiplexed fluorescence imaging and quantitative biosensing. . Light Sci. Appl. 10::97
    [Crossref] [Google Scholar]
  21. 20.
    Chen M, Sun T, Zhong Y, Zhou X, Zhang J. 2021.. A highly sensitive fluorescent Akt biosensor reveals lysosome-selective regulation of lipid second messengers and kinase activity. . ACS Cent. Sci. 7::200920
    [Crossref] [Google Scholar]
  22. 21.
    Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, et al. 2013.. Ultrasensitive fluorescent proteins for imaging neuronal activity. . Nature 499::295300
    [Crossref] [Google Scholar]
  23. 22.
    Chernov KG, Redchuk TA, Omelina ES, Verkhusha VV. 2017.. Near-infrared fluorescent proteins, biosensors, and optogenetic tools engineered from phytochromes. . Chem. Rev. 117::642346
    [Crossref] [Google Scholar]
  24. 23.
    Chia HE, Marsh ENG, Biteen JS. 2019.. Extending fluorescence microscopy into anaerobic environments. . Curr. Opin. Chem. Biol. 51::98104
    [Crossref] [Google Scholar]
  25. 24.
    Dana H, Mohar B, Sun Y, Narayan S, Gordus A, et al. 2016.. Sensitive red protein calcium indicators for imaging neural activity. . eLife 5::e12727
    [Crossref] [Google Scholar]
  26. 25.
    Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, et al. 2019.. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. . Nat. Methods 16::64957
    [Crossref] [Google Scholar]
  27. 26.
    Day-Cooney J, Dalangin R, Zhong H, Mao T. 2023.. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. . J. Neurochem. 164:(3):284308
    [Crossref] [Google Scholar]
  28. 27.
    Deo C, Abdelfattah AS, Bhargava HK, Berro AJ, Falco N, et al. 2021.. The HaloTag as a general scaffold for far-red tunable chemigenetic indicators. . Nat. Chem. Biol. 17::71823
    [Crossref] [Google Scholar]
  29. 28.
    Ding Y, Li J, Enterina JR, Shen Y, Zhang I, et al. 2015.. Ratiometric biosensors based on dimerization-dependent fluorescent protein exchange. . Nat. Methods 12:(3):19598
    [Crossref] [Google Scholar]
  30. 29.
    Dong C, Zheng Y, Long-Iyer K, Wright EC, Li Y, Tian L. 2022.. Fluorescence imaging of neural activity, neurochemical dynamics, and drug-specific receptor conformation with genetically encoded sensors. . Annu. Rev. Neurosci. 45::27394
    [Crossref] [Google Scholar]
  31. 30.
    Dou J, Vorobieva AA, Sheffler W, Doyle LA, Park H, et al. 2018.. De novo design of a fluorescence-activating β-barrel. . Nature 561::48591
    [Crossref] [Google Scholar]
  32. 31.
    Dwyer MA, Hellinga HW. 2004.. Periplasmic binding proteins: a versatile superfamily for protein engineering. . Curr. Opin. Struct. Biol. 14::495504
    [Crossref] [Google Scholar]
  33. 32.
    Faccio G, Salentinig S. 2017.. Enzyme-triggered dissociation of a FRET-based protein biosensor monitored by synchrotron SAXS. . Biophys. J. 113::173137
    [Crossref] [Google Scholar]
  34. 33.
    Fehr M, Lalonde S, Lager I, Wolff MW, Frommer WB. 2003.. In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. . J. Biol. Chem. 278:(21):1912733
    [Crossref] [Google Scholar]
  35. 34.
    Ferro-Luzzi Ames G. 1986.. Bacterial periplasmic transport systems: structure, mechanism, and evolution. . Annu. Rev. Biochem. 55::397425
    [Crossref] [Google Scholar]
  36. 35.
    Fiedler BL, Van Buskirk S, Carter KP, Qin Y, Carpenter MC, et al. 2017.. Droplet microfluidic flow cytometer for sorting on transient cellular responses of genetically-encoded sensors. . Anal. Chem. 89::71119
    [Crossref] [Google Scholar]
  37. 36.
    Geiger A, Russo L, Gensch T, Thestrup T, Becker S, et al. 2012.. Correlating calcium binding, Förster resonance energy transfer, and conformational change in the biosensor TN-XXL. . Biophys. J. 102::240110
    [Crossref] [Google Scholar]
  38. 37.
    Greenwald EC, Mehta S, Zhang J. 2018.. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. . Chem. Rev. 118::1170794
    [Crossref] [Google Scholar]
  39. 38.
    Grimm JB, Lavis LD. 2022.. Caveat fluorophore: an insiders’ guide to small-molecule fluorescent labels. . Nat. Methods 19::14958
    [Crossref] [Google Scholar]
  40. 39.
    Grødem S, Nymoen I, Vatne GH, Rogge FS, Björnsdottir V, et al. 2023.. An updated suite of viral vectors for in vivo calcium imaging using intracerebral and retro-orbital injections in male mice. . Nat. Commun. 14::608
    [Crossref] [Google Scholar]
  41. 40.
    Habif M, Corbat AA, Silberberg M, Grecco HE. 2021.. CASPAM: a triple-modality biosensor for multiplexed imaging of caspase network activity. . ACS Sens. 6::264253
    [Crossref] [Google Scholar]
  42. 41.
    Hellweg L, Edenhofer A, Barck L, Huppertz M-C, Frei MS, et al. 2023.. A general method for the development of multicolor biosensors with large dynamic ranges. . Nat. Chem. Biol. 19:(9):114757
    [Crossref] [Google Scholar]
  43. 42.
    Hellweg L, Pfeifer M, Chang L, Tarnawski M, Bergner A. 2023.. Engineering of a biosensor for intracellular aspartate. . bioRxiv 2023.05.04.537313. https://doi.org/10.1101/2023.05.04.537313
  44. 43.
    Hempel CM, Sivula M, Levenson JM, Rose DM, Li B, et al. 2011.. A system for performing high throughput assays of synaptic function. . PLOS ONE 6:(10):e25999
    [Crossref] [Google Scholar]
  45. 44.
    Hertel F, Li S, Chen M, Pott L, Mehta S, Zhang J. 2020.. Fluorescent biosensors for multiplexed imaging of phosphoinositide dynamics. . ACS Chem. Biol. 15::3338
    [Crossref] [Google Scholar]
  46. 45.
    Herud-Sikimić O, Stiel AC, Kolb M, Shanmugaratnam S, Berendzen KW, et al. 2021.. A biosensor for the direct visualization of auxin. . Nature 592::76872
    [Crossref] [Google Scholar]
  47. 46.
    Hirano M, Ando R, Shimozono S, Sugiyama M, Takeda N, et al. 2022.. A highly photostable and bright green fluorescent protein. . Nat. Biotechnol. 40::113242
    [Crossref] [Google Scholar]
  48. 47.
    Ibraheem A, Yap H, Ding Y, Campbell RE. 2011.. A bacteria colony-based screen for optimal linker combinations in genetically encoded biosensors. . BMC Biotechnol. 11::105
    [Crossref] [Google Scholar]
  49. 48.
    Imamura H, Huynh Nhat KP, Togawa H, Saito K, Iino R, et al. 2009.. Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. . PNAS 106:(37):1565156
    [Crossref] [Google Scholar]
  50. 49.
    Isoda R, Yoshinari A, Ishikawa Y, Sadoine M, Simon R, et al. 2021.. Sensors for the quantification, localization and analysis of the dynamics of plant hormones. . Plant J. 105::54257
    [Crossref] [Google Scholar]
  51. 49a.
    Ivorra-Molla E, Akhuli D, McAndrew MBL, Scott W, Kumar L, . 2023.. A monomeric StayGold fluorescent protein. . Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02018-w
    [Google Scholar]
  52. 50.
    Johnson JL, Yaron TM, Huntsman EM, Kerelsky A, Song J, et al. 2023.. An atlas of substrate specificities for the human serine/threonine kinome. . Nature 613::75966
    [Crossref] [Google Scholar]
  53. 51.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  54. 52.
    Kasatkina LA, Verkhusha VV. 2022.. Transgenic mice encoding modern imaging probes: properties and applications. . Cell Rep. 39:(8):110845
    [Crossref] [Google Scholar]
  55. 53.
    Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K. 2003.. A general method for the covalent labeling of fusion proteins with small molecules in vivo. . Nat. Biotechnol. 21::8689
    [Crossref] [Google Scholar]
  56. 54.
    Keyes J, Mehta S, Zhang J. 2021.. Strategies for multiplexed biosensor imaging to study intracellular signaling networks. . In Multiplexed Imaging: Methods and Protocols, ed. E Zamir , pp. 120. New York:: Humana Press
    [Google Scholar]
  57. 55.
    Kim J, Lee S, Jung K, Oh WC, Kim N, et al. 2019.. Intensiometric biosensors visualize the activity of multiple small GTPases in vivo. . Nat. Commun. 10::211
    [Crossref] [Google Scholar]
  58. 56.
    Kiyonaka S, Kajimoto T, Sakaguchi R, Shinmi D, Omatsu-Kanbe M, et al. 2013.. Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. . Nat. Methods 10:(12):123238
    [Crossref] [Google Scholar]
  59. 57.
    Klima JC, Doyle LA, Lee JD, Rappleye M, Gagnon LA, et al. 2021.. Incorporation of sensing modalities into de novo designed fluorescence-activating proteins. . Nat. Commun. 12::856
    [Crossref] [Google Scholar]
  60. 58.
    Koberstein JN, Stewart ML, Mighell TL, Smith CB, Cohen MS. 2021.. A sort-seq approach to the development of single fluorescent protein biosensors. . ACS Chem. Biol. 16::170920
    [Crossref] [Google Scholar]
  61. 59.
    Komatsu N, Terai K, Imanishi A, Kamioka Y, Sumiyama K, et al. 2018.. A platform of BRET-FRET hybrid biosensors for optogenetics, chemical screening, and in vivo imaging. . Sci. Rep. 8::8984
    [Crossref] [Google Scholar]
  62. 60.
    Kotera I, Iwasaki T, Imamura H, Noji H, Nagai T. 2010.. Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators. . ACS Chem. Biol. 5:(2):21522
    [Crossref] [Google Scholar]
  63. 61.
    Koveal D, Rosen PC, Myer DJ, Díaz-García CM, Wang Y, et al. 2022.. A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors. . Nat. Commun. 13::2919
    [Crossref] [Google Scholar]
  64. 62.
    Lager I, Looger LL, Hilpert M, Lalonde S, Frommer WB. 2006.. Conversion of a putative Agrobacterium sugar-binding protein into a FRET sensor with high selectivity for sucrose. . J. Biol. Chem. 281:(41):3087583
    [Crossref] [Google Scholar]
  65. 63.
    Lakshmanan A, Jin Z, Nety SP, Sawyer DP, Lee-Gosselin A, et al. 2020.. Acoustic biosensors for ultrasound imaging of enzyme activity. . Nat. Chem. Biol. 16::98896
    [Crossref] [Google Scholar]
  66. 64.
    Langan RA, Boyken SE, Ng AH, Samson JA, Dods G, et al. 2019.. De novo design of bioactive protein switches. . Nature 572::20510
    [Crossref] [Google Scholar]
  67. 65.
    Lecoq J, Orlova N, Grewe BF. 2019.. Wide. Fast . Deep: recent advances in multiphoton microscopy of in vivo neuronal activity. . J. Neurosci. 39:(46):904252
    [Crossref] [Google Scholar]
  68. 66.
    Lee J, Liu Z, Suzuki PH, Ahrens JF, Lai S, Lu X. 2020.. Versatile phenotype-activated cell sorting. . Sci. Adv. 6::eabb7438
    [Crossref] [Google Scholar]
  69. 67.
    Leopold AV, Shcherbakova DM, Verkhusha VV. 2019.. Fluorescent biosensors for neurotransmission and neuromodulation: engineering and applications. . Front. Cell Neurosci. 13::474
    [Crossref] [Google Scholar]
  70. 68.
    Li J, Shang Z, Chen J, Gu W, Yao L, et al. 2023.. Engineering of NEMO as calcium indicators with large dynamics and high sensitivity. . Nat. Methods 20::91824
    [Crossref] [Google Scholar]
  71. 69.
    Li L, Hsu HC, Verkhusha VV, Wang LV, Shcherbakova DM. 2021.. Multiscale photoacoustic tomography of a genetically encoded near-infrared FRET biosensor. . Adv. Sci. 8::2102474
    [Crossref] [Google Scholar]
  72. 70.
    Li L, Shemetov AA, Baloban M, Hu P, Zhu L, et al. 2018.. Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo. . Nat. Commun. 9::2734
    [Crossref] [Google Scholar]
  73. 71.
    Lin W, Mehta S, Zhang J. 2019.. Genetically encoded fluorescent biosensors illuminate kinase signaling in cancer. . J. Biol. Chem. 294:(40):1481422
    [Crossref] [Google Scholar]
  74. 72.
    Linghu C, Johnson SL, Valdes PA, Shemesh OA, Park WM, et al. 2020.. Spatial multiplexing of fluorescent reporters for imaging signaling network dynamics. . Cell 183:(6):168298.e24
    [Crossref] [Google Scholar]
  75. 73.
    Lissandron V, Terrin A, Collini M, D'Alfonso L, Chirico G, et al. 2005.. Improvement of a FRET-based indicator for cAMP by linker design and stabilization of donor-acceptor interaction. . J. Mol. Biol. 354::54655
    [Crossref] [Google Scholar]
  76. 74.
    Liu L, Limsakul P, Meng X, Huang Y, Harrison RES, et al. 2021.. Integration of FRET and sequencing to engineer kinase biosensors from mammalian cell libraries. . Nat. Commun. 12::5031
    [Crossref] [Google Scholar]
  77. 75.
    Liu S, Lin C, Xu Y, Luo H, Peng L, et al. 2021.. A far-red hybrid voltage indicator enabled by bioorthogonal engineering of rhodopsin on live neurons. . Nat. Chem. 13::47279
    [Crossref] [Google Scholar]
  78. 76.
    Liu Z, Lu X, Villette V, Gou Y, Colbert KL, et al. 2022.. Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy. . Cell 185:(18):340825.e29
    [Crossref] [Google Scholar]
  79. 77.
    Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, et al. 2008.. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. . ACS Chem. Biol. 3:(6):37382
    [Crossref] [Google Scholar]
  80. 78.
    Love AC, Prescher JA. 2020.. Seeing (and using) the light: recent developments in bioluminescence technology. . Cell Chem. Biol. 27::90420
    [Crossref] [Google Scholar]
  81. 79.
    Lu K, Vu CQ, Matsuda T, Nagai T. 2019.. Fluorescent protein-based indicators for functional super-resolution imaging of biomolecular activities in living cells. . Int. J. Mol. Sci. 20::5784
    [Crossref] [Google Scholar]
  82. 80.
    Ma H, Gibson EA, Dittmer PJ, Jimenez R, Palmer AE. 2012.. High-throughput examination of fluorescence resonance energy transfer-detected metal-ion response in mammalian cells. . J. Am. Chem. Soc. 134::248891
    [Crossref] [Google Scholar]
  83. 81.
    Mahajan NP, Harrison-Shostak DC, Michaux J, Herman B. 1999.. Novel mutant green fluorescent protein protease substrates reveal the activation of specific caspases during apoptosis. . Chem. Biol. 6:(6):4019
    [Crossref] [Google Scholar]
  84. 82.
    Massengill CI, Bayless-Edwards L, Ceballos CC, Cebul ER, Cahill J, et al. 2022.. Sensitive genetically encoded sensors for population and subcellular imaging of cAMP in vivo. . Nat. Methods 19::146171
    [Crossref] [Google Scholar]
  85. 83.
    Massengill CI, Day-Cooney J, Mao T, Zhong H. 2021.. Genetically encoded sensors towards imaging cAMP and PKA activity in vivo. . J. Neurosci. Methods 362::109298
    [Crossref] [Google Scholar]
  86. 84.
    Matsuda M, Terai K. 2020.. Experimental pathology by intravital microscopy and genetically encoded fluorescent biosensors. . Pathol. Int. 70::37990
    [Crossref] [Google Scholar]
  87. 85.
    Mehta S, Zhang J. 2017.. Illuminating the cell's biochemical activity architecture. . Biochemistry 56::521013
    [Crossref] [Google Scholar]
  88. 86.
    Mehta S, Zhang Y, Roth RH, Zhang J-F, Mo A, et al. 2018.. Single-fluorophore biosensors for sensitive and multiplexed detection of signalling activities. . Nat. Cell Biol. 20::121525
    [Crossref] [Google Scholar]
  89. 87.
    Mertens HDT, Piljić A, Schultz C, Svergun DI. 2012.. Conformational analysis of a genetically encoded FRET biosensor by SAXS. . Biophys. J. 102::286675
    [Crossref] [Google Scholar]
  90. 88.
    Mishina NM, Mishin AS, Belyaev Y, Bogdanova EA, Lukyanov S, et al. 2015.. Live-cell STED microscopy with genetically encoded biosensor. . Nano Lett. 15::292832
    [Crossref] [Google Scholar]
  91. 89.
    Mishra K, Fuenzalida-Werner JP, Ntziachristos V, Stiel AC. 2019.. Photocontrollable proteins for optoacoustic imaging. . Anal. Chem. 91::547077
    [Crossref] [Google Scholar]
  92. 90.
    Mishra K, Fuenzalida-Werner JP, Pennacchietti F, Janowski R, Chmyrov A, et al. 2022.. Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging. . Nat. Biotechnol. 40::598605
    [Crossref] [Google Scholar]
  93. 91.
    Mo GCH, Posner C, Rodriguez EA, Sun T, Zhang J. 2020.. A rationally enhanced red fluorescent protein expands the utility of FRET biosensors. . Nat. Commun. 11::1848
    [Crossref] [Google Scholar]
  94. 92.
    Mo GCH, Ross B, Hertel F, Manna P, Yang X, et al. 2017.. Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. . Nat. Methods 14:(4):42734
    [Crossref] [Google Scholar]
  95. 93.
    Mochizuki N, Yamashita S, Kurokawa K. 2001.. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. . Nature 411::106568
    [Crossref] [Google Scholar]
  96. 94.
    Murakoshi H, Shibata ACE, Nakahata Y, Nabekura J. 2015.. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer. . Sci. Rep. 5::15334
    [Crossref] [Google Scholar]
  97. 95.
    Nadler DC, Morgan SA, Flamholz A, Kortright KE, Savage DF. 2016.. Rapid construction of metabolite biosensors using domain-insertion profiling. . Nat. Commun. 7::12266
    [Crossref] [Google Scholar]
  98. 96.
    Nakahata Y, Nabekura J, Murakoshi H. 2016.. Dual observation of the ATP-evoked small GTPase activation and Ca2+ transient in astrocytes using a dark red fluorescent protein. . Sci. Rep. 6::39564
    [Crossref] [Google Scholar]
  99. 97.
    Nasu Y, Shen Y, Kramer L, Campbell RE. 2021.. Structure- and mechanism-guided design of single fluorescent protein-based biosensors. . Nat. Chem. Biol. 17::50918
    [Crossref] [Google Scholar]
  100. 98.
    Ntziachristos V. 2010.. Going deeper than microscopy: the optical imaging frontier in biology. . Nat. Methods 7:(8):60314
    [Crossref] [Google Scholar]
  101. 99.
    Oh Y, Park Y, Cho JH, Wu H, Paulk NK, et al. 2019.. An orange calcium-modulated bioluminescent indicator for non-invasive activity imaging. . Nat. Chem. Biol. 15::43336
    [Crossref] [Google Scholar]
  102. 100.
    Ohayon S, Caravaca-Aguirre A, Piestun R, DiCarlo JJ. 2018.. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. . Biomed. Opt. Exp. 9:(4):1492509
    [Crossref] [Google Scholar]
  103. 101.
    Oliinyk OS, Shemetov AA, Pletnev S, Shcherbakova DM, Verkhusha VV. 2019.. Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing. . Nat. Commun. 10::279
    [Crossref] [Google Scholar]
  104. 102.
    Pelosse M, Cottet-Rousselle C, Bidan CM, Dupont A, Gupta K, et al. 2019.. Synthetic energy sensor AMPfret deciphers adenylate-dependent AMPK activation mechanism. . Nat. Commun. 10::1038
    [Crossref] [Google Scholar]
  105. 103.
    Peterman N, Levine E. 2016.. Sort-seq under the hood: implications of design choices on large-scale characterization of sequence-function relations. . BMC Genom. 17::206
    [Crossref] [Google Scholar]
  106. 104.
    Piatkevich KD, Jung EE, Straub C, Linghu C, Park D, et al. 2018.. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters article. . Nat. Chem. Biol. 14::35260
    [Crossref] [Google Scholar]
  107. 105.
    Piljic A, de Diego I, Wilmanns M, Schultz C. 2011.. Rapid development of genetically encoded FRET reporters. . ACS Chem. Biol. 6::68591
    [Crossref] [Google Scholar]
  108. 106.
    Plamont M-A, Billon-Denis E, Maurin S, Gauron C, Pimenta FM, et al. 2016.. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo. . PNAS 113:(3):497502
    [Crossref] [Google Scholar]
  109. 107.
    Qian Y, Celiker OT, Wang Z, Guner-Ataman B, Boyden ES. 2023.. Temporally multiplexed imaging of dynamic signaling networks in living cells. . Cell 186:565672
    [Google Scholar]
  110. 108.
    Qian Y, Orozco Cosio DM, Piatkevich KD, Aufmkolk S, Su WC, et al. 2020.. Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging. . PLOS Biol. 18:(11):e3000965
    [Crossref] [Google Scholar]
  111. 109.
    Qian Y, Piatkevich KD, McLarney B, Abdelfattah AS, Mehta S, et al. 2019.. A genetically encoded near-infrared fluorescent calcium ion indicator. . Nat. Methods 16::17174
    [Crossref] [Google Scholar]
  112. 110.
    Quijano-Rubio A, Yeh HW, Park J, Lee H, Langan RA, et al. 2021.. De novo design of modular and tunable protein biosensors. . Nature 591::48287
    [Crossref] [Google Scholar]
  113. 111.
    Ravotto L, Duffet L, Zhou X, Weber B, Patriarchi T. 2020.. A bright and colorful future for G-protein coupled receptor sensors. . Front. Cell Neurosci. 14::67
    [Crossref] [Google Scholar]
  114. 112.
    Reinartz I, Sarter M, Otten J, Höfig H, Pohl M, et al. 2021.. Structural analysis of a genetically encoded FRET biosensor by SAXS and MD simulations. . Sensors 21::4144
    [Crossref] [Google Scholar]
  115. 113.
    Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, et al. 2017.. The growing and glowing toolbox of fluorescent and photoactive proteins. . Trends Biochem. Sci. 42:(2):11129
    [Crossref] [Google Scholar]
  116. 114.
    Roebroek T, Vandenberg W, Sipieter F, Hugelier S, Stove C, et al. 2021.. Simultaneous readout of multiple FRET pairs using photochromism. . Nat. Commun. 12::2005
    [Crossref] [Google Scholar]
  117. 115.
    Rosenow MA, Huffman HA, Phail ME, Wachter RM. 2004.. Biochemistry 43:(15):446472
    [Crossref] [Google Scholar]
  118. 116.
    Ross BL, Tenner B, Markwardt ML, Zviman A, Shi G, et al. 2018.. Single-color, ratiometric biosensors for detecting signaling activities in live cells. . eLife 7::e35458
    [Crossref] [Google Scholar]
  119. 117.
    Sabatini BL, Tian L. 2020.. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. . Neuron 108::1732
    [Crossref] [Google Scholar]
  120. 118.
    Sakamoto S, Kiyonaka S, Hamachi I. 2019.. Construction of ligand assay systems by protein-based semisynthetic biosensors. . Curr. Opin. Chem. Biol. 50::1018
    [Crossref] [Google Scholar]
  121. 119.
    Schmitt DL, Curtis SD, Lyons AC, Zhang J, Chen M, et al. 2022.. Spatial regulation of AMPK signaling revealed by a sensitive kinase activity reporter. . Nat. Commun. 13::3856
    [Crossref] [Google Scholar]
  122. 120.
    Schmitt DL, Mehta S, Zhang J. 2020.. Illuminating the kinome: visualizing real-time kinase activity in biological systems using genetically encoded fluorescent protein-based biosensors. . Curr. Opin. Chem. Biol. 54::6369
    [Crossref] [Google Scholar]
  123. 121.
    Shapiro MG, Goodwill PW, Neogy A, Yin M, Foster FS, et al. 2014.. Biogenic gas nanostructures as ultrasonic molecular reporters. . Nat. Nanotechnol. 9::31116
    [Crossref] [Google Scholar]
  124. 122.
    Shcherbakova DM, Cox Cammer N, Huisman TM, Verkhusha VV, Hodgson L. 2018.. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET article. . Nat. Chem. Biol. 14::591600
    [Crossref] [Google Scholar]
  125. 123.
    Shemetov AA, Monakhov MV, Zhang Q, Canton-Josh JE, Kumar M, et al. 2021.. A near-infrared genetically encoded calcium indicator for in vivo imaging. . Nat. Biotechnol. 39::36877
    [Crossref] [Google Scholar]
  126. 124.
    Srinivasan P, Griffin NM, Thakur DP, Joshi PM, Nguyen-Le A, et al. 2021.. An autonomous molecular bioluminescent reporter (AMBER) for voltage imaging in freely moving animals. . Adv. Biol. 5::2100842
    [Crossref] [Google Scholar]
  127. 125.
    Stein V, Alexandrov K. 2015.. Synthetic protein switches: design principles and applications. . Trends Biotechnol. 33:(2):10110
    [Crossref] [Google Scholar]
  128. 126.
    St-Pierre F, Chavarha M, Lin MZ. 2015.. Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators. . Curr. Opin. Chem. Biol. 27::3138
    [Crossref] [Google Scholar]
  129. 127.
    Su Y, Walker JR, Hall MP, Klein MA, Wu X, et al. 2023.. An optimized bioluminescent substrate for non-invasive imaging in the brain. . Nat. Chem. Biol. 19::73139
    [Crossref] [Google Scholar]
  130. 128.
    Suzuki K, Kimura T, Shinoda H, Bai G, Daniels MJ, et al. 2016.. Five colour variants of bright luminescent protein for real-time multicolour bioimaging. . Nat. Commun. 7::13718
    [Crossref] [Google Scholar]
  131. 129.
    Tamura T, Hamachi I. 2014.. Recent progress in design of protein-based fluorescent biosensors and their cellular applications. . ACS Chem. Biol. 9::270817
    [Crossref] [Google Scholar]
  132. 130.
    Tebo AG, Gautier A. 2019.. A split fluorescent reporter with rapid and reversible complementation. . Nat. Commun. 10::2822
    [Crossref] [Google Scholar]
  133. 131.
    Tebo AG, Moeyaert B, Thauvin M, Carlon-Andres I, Böken D, et al. 2021.. Orthogonal fluorescent chemogenetic reporters for multicolor imaging. . Nat. Chem. Biol. 17::3038
    [Crossref] [Google Scholar]
  134. 132.
    Tebo AG, Pimenta FM, Zoumpoulaki M, Kikuti C, Sirkia H, et al. 2018.. Circularly permuted fluorogenic proteins for the design of modular biosensors. . ACS Chem. Biol. 13::239297
    [Crossref] [Google Scholar]
  135. 133.
    Thestrup T, Litzlbauer J, Bartholomäus I, Mues M, Russo L, et al. 2014.. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. . Nat. Methods 11:(2):17582
    [Crossref] [Google Scholar]
  136. 134.
    Tian L, Hires SA, Mao T, Huber D, Chiappe ME, et al. 2009.. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. . Nat. Methods 6:(12):87581
    [Crossref] [Google Scholar]
  137. 135.
    Trigo-Mourino P, Thestrup T, Griesbeck O, Griesinger C, Becker S. 2019.. Dynamic tuning of FRET in a green fluorescent protein biosensor. . Sci. Adv. 5::eaaw498
    [Crossref] [Google Scholar]
  138. 136.
    Ueda T, Tamura T, Hamachi I. 2018.. In situ construction of protein-based semisynthetic biosensors. . ACS Sens. 3::52739
    [Crossref] [Google Scholar]
  139. 137.
    Vecchia MD, Conte-Daban A, Cappe B, Vandenberg W, Vandenabeele P, et al. 2022.. Spectrally tunable Förster resonance energy transfer-based biosensors using organic dye grafting. . ACS Sens. 7:(10):292027
    [Crossref] [Google Scholar]
  140. 138.
    Vu CQ, Fukushima S, Wazawa T, Nagai T. 2021.. A highly-sensitive genetically encoded temperature indicator exploiting a temperature-responsive elastin-like polypeptide. . Sci. Rep. 11::16519
    [Crossref] [Google Scholar]
  141. 139.
    Walia A, Waadt R, Jones AM. 2018.. Genetically encoded biosensors in plants: pathways to discovery. . Annu. Rev. Plant Biol. 69::497524
    [Crossref] [Google Scholar]
  142. 140.
    Wang L, Hiblot J, Popp C, Xue L, Johnsson K. 2020.. Environmentally sensitive color-shifting fluorophores for bioimaging. . Angew. Chem. Int. Ed. 132::2206468
    [Crossref] [Google Scholar]
  143. 141.
    Wang Q, Shui B, Kotlikoff MI, Sondermann H. 2008.. Structural basis for calcium sensing by GCaMP2. . Structure 16::181727
    [Crossref] [Google Scholar]
  144. 142.
    Wang Y, DeMarco EM, Witzel LS, Keighron JD. 2021.. A selected review of recent advances in the study of neuronal circuits using fiber photometry. . Pharmacol. Biochem. Behav. 201::173113
    [Crossref] [Google Scholar]
  145. 143.
    Weeks R, Zhou X, Yuan TL, Zhang J. 2022.. Fluorescent biosensor for measuring Ras activity in living cells. . J. Am. Chem. Soc. 144::1743240
    [Crossref] [Google Scholar]
  146. 144.
    Wu Y, Walker JR, Westberg M, Ning L, Monje M, et al. 2023.. Kinase-modulated bioluminescent indicators enable noninvasive imaging of drug activity in the brain. . ACS Cent. Sci. 9::71932
    [Crossref] [Google Scholar]
  147. 145.
    Xu Y, Deng M, Zhang S, Yang J, Peng L, et al. 2019.. Imaging neuronal activity with fast and sensitive red-shifted electrochromic FRET indicators. . ACS Chem. Neurosci. 10::476875
    [Crossref] [Google Scholar]
  148. 146.
    Xu Y, Peng L, Wang S, Wang A, Ma R, et al. 2018.. Hybrid indicators for fast and sensitive voltage imaging. . Angew. Chem. Int. Ed. 57::394953
    [Crossref] [Google Scholar]
  149. 147.
    Xue L, Karpenko IA, Hiblot J, Johnsson K. 2015.. Imaging and manipulating proteins in live cells through covalent labeling. . Nat. Chem. Biol. 11::91723
    [Crossref] [Google Scholar]
  150. 148.
    Xue L, Schnacke P, Frei MS, Koch B, Hiblot J, et al. 2023.. Probing coenzyme A homeostasis with semisynthetic biosensors. . Nat. Chem. Biol. 19::34655
    [Crossref] [Google Scholar]
  151. 149.
    Yan R, Wang B, Xu K. 2019.. Functional super-resolution microscopy of the cell. . Curr. Opin. Chem. Biol. 51::9297
    [Crossref] [Google Scholar]
  152. 150.
    Yoshinari A, Moe-Lange J, Kleist TJ, Cartwright HN, Quint DA, et al. 2021.. Using genetically encoded fluorescent biosensors for quantitative in vivo imaging. . Methods Mol. Biol. 2200::30322
    [Crossref] [Google Scholar]
  153. 151.
    Yoshioka-Kobayashi K, Matsumiya M, Niino Y, Isomura A, Kori H, et al. 2020.. Coupling delay controls synchronized oscillation in the segmentation clock. . Nature 580::11923
    [Crossref] [Google Scholar]
  154. 151a.
    Zhang H, Lesnov GD, Subach OM, Zhang W, Kuzmicheva TP, . 2024.. Bright and stable monomeric green fluorescent protein derived from StayGold. . Nat. Methods. https://doi.org/10.1038/s41592-024-02203-y
    [Google Scholar]
  155. 152.
    Zhang J-F, Liu B, Hong I, Mo A, Roth RH, et al. 2021.. An ultrasensitive biosensor for high-resolution kinase activity imaging in awake mice. . Nat. Chem. Biol. 17::3946
    [Crossref] [Google Scholar]
  156. 153.
    Zhang JZ, Nguyen WH, Greenwood N, Rose JC, Ong S-E, et al. 2024.. Computationally designed sensors detect endogenous Ras activity and signaling effectors at subcellular resolution. . Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02107-w
    [Google Scholar]
  157. 154.
    Zhang L, Takahashi Y, Schroeder JI. 2021.. Protein kinase sensors: an overview of new designs for visualizing kinase dynamics in single plant cells. . Plant Physiol. 187::52736
    [Crossref] [Google Scholar]
  158. 155.
    Zhang Q, Schepis A, Huang H, Yang J, Ma W, et al. 2019.. Designing a green fluorogenic protease reporter by flipping a beta strand of GFP for imaging apoptosis in animals. . J. Am. Chem. Soc. 141::452630
    [Crossref] [Google Scholar]
  159. 156.
    Zhang WH, Herde MK, Mitchell JA, Whitfield JH, Wulff AB, et al. 2018.. Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. . Nat. Chem. Biol. 14::86169
    [Crossref] [Google Scholar]
  160. 157.
    Zhang Y, Rózsa M, Liang Y, Bushey D, Wei Z, et al. 2023.. Fast and sensitive GCaMP calcium indicators for imaging neural populations. . Nature 615::88491
    [Crossref] [Google Scholar]
  161. 158.
    Zhao Y, Araki S, Wu J, Teramoto T, Chang Y-F, et al. 2011.. An expanded palette of genetically encoded Ca2+ indicators. . Science 333::188891
    [Crossref] [Google Scholar]
  162. 159.
    Zhao Y, Zhang W, Zhao Y, Campbell RE, Harrison DJ. 2019.. A single-phase flow microfluidic cell sorter for multiparameter screening to assist the directed evolution of Ca2+ sensors. . Lab Chip 19::388087
    [Crossref] [Google Scholar]
  163. 160.
    Zhou X, Clister TL, Lowry PR, Seldin MM, Wong GW, Zhang J. 2015.. Dynamic visualization of mTORC1 activity in living cells. . Cell Rep. 10::176777
    [Crossref] [Google Scholar]
  164. 161.
    Zhou X, Mehta S, Zhang J. 2020.. Genetically encodable fluorescent and bioluminescent biosensors light up signaling networks. . Trends Biochem. Sci. 45:(10):889905
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-030722-021359
Loading
/content/journals/10.1146/annurev-biophys-030722-021359
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error