1932

Abstract

Over the past decades, our understanding of microbial metabolism has increased dramatically. Metabolomics, a family of techniques that are used to measure the quantities of small molecules in biological samples, has been central to these efforts. Advances in analytical chemistry have made it possible to measure the relative and absolute concentrations of more and more compounds with increasing levels of certainty. In this review, we highlight how metabolomics has contributed to understanding microbial metabolism and in what ways it can still be deployed to expand our systematic understanding of metabolism. To that end, we explain how metabolomics was used to () characterize network topologies of metabolism and its regulation networks, () elucidate the control of metabolic function, and () understand the molecular basis of higher-order phenomena. We also discuss areas of inquiry where technological advances should continue to increase the impact of metabolomics, as well as areas where our understanding is bottlenecked by other factors such as the availability of statistical and modeling frameworks that can extract biological meaning from metabolomics data.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-030722-021957
2024-07-16
2025-02-14
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-030722-021957.html?itemId=/content/journals/10.1146/annurev-biophys-030722-021957&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aharoni A, Goodacre R, Fernie AR. 2023.. Plant and microbial sciences as key drivers in the development of metabolomics research. . PNAS 120:(12):e2217383120
    [Crossref] [Google Scholar]
  2. 2.
    Alam MT, Olin-Sandoval V, Stincone A, Keller MA, Zelezniak A, et al. 2017.. The self-inhibitory nature of metabolic networks and its alleviation through compartmentalization. . Nat. Commun. 8::16018
    [Crossref] [Google Scholar]
  3. 3.
    Arnold PK, Jackson BT, Paras KI, Brunner JS, Hart ML, et al. 2022.. A non-canonical tricarboxylic acid cycle underlies cellular identity. . Nature 603:(7901):47781
    [Crossref] [Google Scholar]
  4. 4.
    Baker SA, Rutter J. 2023.. Metabolites as signalling molecules. . Nat. Rev. Mol. Cell Biol. 24:(5):35574
    [Crossref] [Google Scholar]
  5. 5.
    Baran R, Brodie EL, Mayberry-Lewis J, Hummel E, Da Rocha UN, et al. 2015.. Exometabolite niche partitioning among sympatric soil bacteria. . Nat. Commun. 6::8289
    [Crossref] [Google Scholar]
  6. 6.
    Barenholz U, Keren L, Segal E, Milo R. 2016.. A minimalistic resource allocation model to explain ubiquitous increase in protein expression with growth rate. . PLOS ONE 11:(4):e0153344
    [Crossref] [Google Scholar]
  7. 7.
    Bartmanski BJ, Rocha M, Zimmermann-Kogadeeva M. 2023.. Recent advances in data- and knowledge-driven approaches to explore primary microbial metabolism. . Curr. Opin. Chem. Biol. 75::102324
    [Crossref] [Google Scholar]
  8. 8.
    Basan M, Honda T, Christodoulou D, Hörl M, Chang Y-F, et al. 2020.. A universal trade-off between growth and lag in fluctuating environments. . Nature 584:(7821):47074
    [Crossref] [Google Scholar]
  9. 9.
    Basan M, Hui S, Okano H, Zhang Z, Shen Y, et al. 2015.. Overflow metabolism in Escherichia coli results from efficient proteome allocation. . Nature 528:(7580):99104
    [Crossref] [Google Scholar]
  10. 10.
    Bauermeister A, Mannochio-Russo H, Costa-Lotufo LV, Jarmusch AK, Dorrestein PC. 2022.. Mass spectrometry-based metabolomics in microbiome investigations. . Nat. Rev. Microbiol. 20:(3):14360
    [Crossref] [Google Scholar]
  11. 11.
    Berendsen RL, Pieterse CMJ, Bakker PAHM. 2012.. The rhizosphere microbiome and plant health. . Trends Plant Sci. 17:(8):47886
    [Crossref] [Google Scholar]
  12. 12.
    Berg JA, Zhou Y, Ouyang Y, Cluntun AA, Waller TC, et al. 2023.. Metaboverse enables automated discovery and visualization of diverse metabolic regulatory patterns. . Nat. Cell Biol. 25:(4):61625
    [Crossref] [Google Scholar]
  13. 13.
    Biggs MB, Medlock GL, Moutinho TJ, Lees HJ, Swann JR, et al. 2017.. Systems-level metabolism of the altered Schaedler flora, a complete gut microbiota. . ISME J. 11:(2):42638
    [Crossref] [Google Scholar]
  14. 14.
    Blasche S, Kim Y, Mars RAT, Machado D, Maansson M, et al. 2021.. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. . Nat. Microbiol. 6:(2):196208
    [Crossref] [Google Scholar]
  15. 15.
    Borkowski O, Goelzer A, Schaffer M, Calabre M, Mäder U, et al. 2016.. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis. . Mol. Syst. Biol. 12:(5):870
    [Crossref] [Google Scholar]
  16. 16.
    Brunk E, Chang RL, Xia J, Hefzi H, Yurkovich JT, et al. 2018.. Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale workflow. . PNAS 115:(43):11096101
    [Crossref] [Google Scholar]
  17. 17.
    Burda WN, Miller HK, Krute CN, Leighton SL, Carroll RK, Shaw LN. 2014.. Investigating the genetic regulation of the ECF sigma factor σS in Staphylococcus aureus. . BMC Microbiol. 14:(1):280
    [Crossref] [Google Scholar]
  18. 18.
    Cao Y, Oh J, Xue M, Huh WJ, Wang J, et al. 2022.. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. . Science 378:(6618):eabm3233
    [Crossref] [Google Scholar]
  19. 19.
    Cappelletti V, Hauser T, Piazza I, Pepelnjak M, Malinovska L, et al. 2021.. Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ. . Cell 184:(2):54559.e22
    [Crossref] [Google Scholar]
  20. 20.
    Castaño-Cerezo S, Bernal V, Post H, Fuhrer T, Cappadona S, et al. 2014.. Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli. . Mol. Syst. Biol. 10:(11):762
    [Crossref] [Google Scholar]
  21. 21.
    Caudy AA, Hanchard JA, Hsieh A, Shaan S, Rosebrock AP. 2019.. Functional genetic discovery of enzymes using full-scan mass spectrometry metabolomics. . Biochem. Cell Biol. 97:(1):7384
    [Crossref] [Google Scholar]
  22. 22.
    Chang A, Jeske L, Ulbrich S, Hofmann J, Koblitz J, et al. 2021.. BRENDA, the ELIXIR core data resource in 2021: new developments and updates. . Nucleic Acids Res. 49:(D1):D498508
    [Crossref] [Google Scholar]
  23. 23.
    Chang C-Y, Bajić D, Vila JCC, Estrela S, Sanchez A. 2023.. Emergent coexistence in multispecies microbial communities. . Science 381:(6655):34348
    [Crossref] [Google Scholar]
  24. 24.
    Chen Y, Nielsen J. 2016.. Flux control through protein phosphorylation in yeast. . FEMS Yeast Res. 16:(8):fow096
    [Crossref] [Google Scholar]
  25. 25.
    Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, et al. 2012.. Saccharomyces Genome Database: the genomics resource of budding yeast. . Nucleic Acids Res. 40:(Database Issue):D7005
    [Crossref] [Google Scholar]
  26. 26.
    Chevrette MG, Thomas CS, Hurley A, Rosario-Meléndez N, Sankaran K, et al. 2022.. Microbiome composition modulates secondary metabolism in a multispecies bacterial community. . PNAS 119:(42):e2212930119
    [Crossref] [Google Scholar]
  27. 27.
    Christensen DG, Baumgartner JT, Xie X, Jew KM, Basisty N, et al. 2019.. Mechanisms, detection, and relevance of protein acetylation in prokaryotes. . mBio 10:(2):e02708-18
    [Google Scholar]
  28. 28.
    Christensen DG, Meyer JG, Baumgartner JT, D'Souza AK, Nelson WC, et al. 2018.. Identification of novel protein lysine acetyltransferases in Escherichia coli. . mBio 9:(5):e01905-18
    [Crossref] [Google Scholar]
  29. 29.
    Christodoulou D, Kuehne A, Estermann A, Fuhrer T, Lang P, Sauer U. 2019.. Reserve flux capacity in the pentose phosphate pathway by NADPH binding is conserved across kingdoms. . iScience 19::113344
    [Crossref] [Google Scholar]
  30. 30.
    Christodoulou D, Link H, Fuhrer T, Kochanowski K, Gerosa L, Sauer U. 2018.. Reserve flux capacity in the pentose phosphate pathway enables Escherichia coli’s rapid response to oxidative stress. . Cell Syst. 6:(5):56978.e7
    [Crossref] [Google Scholar]
  31. 31.
    Chubukov V, Gerosa L, Kochanowski K, Sauer U. 2014.. Coordination of microbial metabolism. . Nat. Rev. Microbiol. 12:(5):32740
    [Crossref] [Google Scholar]
  32. 32.
    Conibear AC. 2020.. Deciphering protein post-translational modifications using chemical biology tools. . Nat. Rev. Chem. 4:(12):67495
    [Crossref] [Google Scholar]
  33. 33.
    Culp EJ, Goodman AL. 2023.. Cross-feeding in the gut microbiome: ecology and mechanisms. . Cell Host Microbe 31:(4):48599
    [Crossref] [Google Scholar]
  34. 34.
    Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. 2016.. Microbial interactions lead to rapid micro-scale successions on model marine particles. . Nat. Commun. 7::11965
    [Crossref] [Google Scholar]
  35. 35.
    Davidi D, Milo R. 2017.. Lessons on enzyme kinetics from quantitative proteomics. . Curr. Opin. Biotechnol. 46::8189
    [Crossref] [Google Scholar]
  36. 36.
    Diether M, Nikolaev Y, Allain FH, Sauer U. 2019.. Systematic mapping of protein-metabolite interactions in central metabolism of Escherichia coli. . Mol. Syst. Biol. 15:(8):e9008
    [Crossref] [Google Scholar]
  37. 37.
    Diether M, Sauer U. 2017.. Towards detecting regulatory protein-metabolite interactions. . Curr. Opin. Microbiol. 39::1623
    [Crossref] [Google Scholar]
  38. 38.
    Dixit A, Kalia J. 2023.. Protein-metabolite interactions: discovery and significance. . ChemBioChem 24:(13):e202200755
    [Crossref] [Google Scholar]
  39. 39.
    Donati S, Kuntz M, Pahl V, Farke N, Beuter D, et al. 2021.. Multi-omics analysis of CRISPRi-knockdowns identifies mechanisms that buffer decreases of enzymes in E. coli metabolism. . Cell Syst. 12:(1):5667.e6
    [Crossref] [Google Scholar]
  40. 40.
    Duan H, Zhang X, Figeys D. 2023.. An emerging field: post-translational modification in microbiome. . Proteomics 23:(3–4):e2100389
    [Crossref] [Google Scholar]
  41. 41.
    Dudek C-A, Jahn D. 2022.. PRODORIC: state-of-the-art database of prokaryotic gene regulation. . Nucleic Acids Res. 50:(D1):D295302
    [Crossref] [Google Scholar]
  42. 42.
    Ebbels TMD, van der Hooft JJJ, Chatelaine H, Broeckling C, Zamboni N, et al. 2023.. Recent advances in mass spectrometry-based computational metabolomics. . Curr. Opin. Chem. Biol. 74::102288
    [Crossref] [Google Scholar]
  43. 43.
    Ellermann M, Pacheco AR, Jimenez AG, Russell RM, Cuesta S, et al. 2020.. Endocannabinoids inhibit the induction of virulence in enteric pathogens. . Cell 183:(3):65065.e15
    [Crossref] [Google Scholar]
  44. 44.
    Elzinga J, van der Oost J, de Vos WM, Smidt H. 2019.. The use of defined microbial communities to model host-microbe interactions in the human gut. . Microbiol. Mol. Biol. Rev. 83:(2):e00054-18
    [Crossref] [Google Scholar]
  45. 45.
    Enke TN, Datta MS, Schwartzman J, Cermak N, Schmitz D, et al. 2019.. Modular assembly of polysaccharide-degrading marine microbial communities. . Curr. Biol. 29:(9):152835.e6
    [Crossref] [Google Scholar]
  46. 46.
    Erickson DW, Schink SJ, Patsalo V, Williamson JR, Gerland U, Hwa T. 2017.. A global resource allocation strategy governs growth transition kinetics of Escherichia coli. . Nature 551:(7678):11923
    [Crossref] [Google Scholar]
  47. 47.
    Estrela S, Vila JCC, Lu N, Bajić D, Rebolleda-Gómez M, et al. 2022.. Functional attractors in microbial community assembly. . Cell Syst. 13:(1):2942.e7
    [Crossref] [Google Scholar]
  48. 48.
    Fendt S, Buescher JM, Rudroff F, Picotti P, Zamboni N, Sauer U. 2010.. Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity. . Mol. Syst. Biol. 6:(1):356
    [Crossref] [Google Scholar]
  49. 49.
    Fendt S, Oliveira AP, Christen S, Picotti P, Dechant RC, Sauer U. 2010.. Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast. . Mol. Syst. Biol. 6:(1):432
    [Crossref] [Google Scholar]
  50. 50.
    Fischbach MA. 2018.. Microbiome: focus on causation and mechanism. . Cell 174:(4):78590
    [Crossref] [Google Scholar]
  51. 51.
    Foster CJ, Wang L, Dinh HV, Suthers PF, Maranas CD. 2021.. Building kinetic models for metabolic engineering. . Curr. Opin. Biotechnol. 67::3541
    [Crossref] [Google Scholar]
  52. 52.
    Fritts RK, McCully AL, McKinlay JB. 2021.. Extracellular metabolism sets the table for microbial cross-feeding. . Microbiol. Mol. Biol. Rev. 85:(1):e00135-20
    [Crossref] [Google Scholar]
  53. 53.
    Fuhrer T, Zampieri M, Sévin DC, Sauer U, Zamboni N. 2017.. Genomewide landscape of gene-metabolome associations in Escherichia coli. . Mol. Syst. Biol. 13:(1):907
    [Crossref] [Google Scholar]
  54. 54.
    Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, et al. 2013.. The Mycobacterium tuberculosis regulatory network and hypoxia. . Nature 499:(7457):17883
    [Crossref] [Google Scholar]
  55. 55.
    Galán-Vásquez E, Luna-Olivera BC, Ramírez-Ibáñez M, Martínez-Antonio A. 2020.. RegulomePA: a database of transcriptional regulatory interactions in Pseudomonas aeruginosa PAO1. . Database 2020::baaa106
    [Crossref] [Google Scholar]
  56. 56.
    Gallego O, Betts MJ, Gvozdenovic-Jeremic J, Maeda K, Matetzki C, et al. 2010.. A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. . Mol. Syst. Biol. 6:(1):430
    [Crossref] [Google Scholar]
  57. 57.
    Gao R, Bouillet S, Stock AM. 2019.. Structural basis of response regulator function. . Annu. Rev. Microbiol. 73::17597
    [Crossref] [Google Scholar]
  58. 58.
    Garza DR, van Verk MC, Huynen MA, Dutilh BE. 2018.. Towards predicting the environmental metabolome from metagenomics with a mechanistic model. . Nat. Microbiol. 3:(4):45660
    [Crossref] [Google Scholar]
  59. 59.
    Gerosa L, Haverkorn van Rijsewijk BRB, Christodoulou D, Kochanowski K, Schmidt TSB, et al. 2015.. Pseudo-transition analysis identifies the key regulators of dynamic metabolic adaptations from steady-state data. . Cell Syst. 1:(4):27082
    [Crossref] [Google Scholar]
  60. 60.
    Gerosa L, Kochanowski K, Heinemann M, Sauer U. 2013.. Dissecting specific and global transcriptional regulation of bacterial gene expression. . Mol. Syst. Biol. 9:(1):658
    [Crossref] [Google Scholar]
  61. 61.
    Ghatak S, King ZA, Sastry A, Palsson BO. 2019.. The y-ome defines the 35% of Escherichia coli genes that lack experimental evidence of function. . Nucleic Acids Res. 47:(5):244654
    [Crossref] [Google Scholar]
  62. 62.
    Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, et al. 2018.. Emergent simplicity in microbial community assembly. . Science 361:(6401):46974
    [Crossref] [Google Scholar]
  63. 63.
    González A, Hall MN. 2017.. Nutrient sensing and TOR signaling in yeast and mammals. . EMBO J. 36:(4):397408
    [Crossref] [Google Scholar]
  64. 64.
    Gowda K, Ping D, Mani M, Kuehn S. 2022.. Genomic structure predicts metabolite dynamics in microbial communities. . Cell 185:(3):53046.e25
    [Crossref] [Google Scholar]
  65. 65.
    Goyal S, Yuan J, Chen T, Rabinowitz JD, Wingreen NS. 2010.. Achieving optimal growth through product feedback inhibition in metabolism. . PLOS Comput. Biol. 6:(6):e1000802
    [Crossref] [Google Scholar]
  66. 66.
    Grigaitis P, Teusink B. 2022.. An excess of glycolytic enzymes under glucose-limited conditions may enable Saccharomyces cerevisiae to adapt to nutrient availability. . FEBS Lett. 596:(24):320310
    [Crossref] [Google Scholar]
  67. 67.
    Gruber CH, Diether M, Sauer U. 2021.. Conservation of metabolic regulation by phosphorylation and non-covalent small-molecule interactions. . Cell Syst. 12:(6):53846
    [Crossref] [Google Scholar]
  68. 68.
    Gu C, Kim GB, Kim WJ, Kim HU, Lee SY. 2019.. Current status and applications of genome-scale metabolic models. . Genome Biol. 20:(1):121
    [Crossref] [Google Scholar]
  69. 69.
    Hackett SR, Zanotelli VRT, Xu W, Goya J, Park JO, et al. 2016.. Systems-level analysis of mechanisms regulating yeast metabolic flux. . Science 354:(6311):aaf2786
    [Crossref] [Google Scholar]
  70. 70.
    Han S, Van Treuren W, Fischer CR, Merrill BD, DeFelice BC, et al. 2021.. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. . Nature 595:(7867):41520
    [Crossref] [Google Scholar]
  71. 71.
    Harmel R, Fiedler D. 2018.. Features and regulation of non-enzymatic post-translational modifications. . Nat. Chem. Biol. 14:(3):24452
    [Crossref] [Google Scholar]
  72. 72.
    Hashemi S, Laitinen R, Nikoloski Z. 2023.. Models and molecular mechanisms for trade-offs in the context of metabolism. . Mol. Ecol. In press
    [Google Scholar]
  73. 73.
    Haverkorn van Rijsewijk BRB, Nanchen A, Nallet S, Kleijn RJ, Sauer U. 2011.. Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. . Mol. Syst. Biol. 7:(1):477
    [Crossref] [Google Scholar]
  74. 74.
    Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. 2010.. High-throughput generation, optimization and analysis of genome-scale metabolic models. . Nat. Biotechnol. 28:(9):97782
    [Crossref] [Google Scholar]
  75. 75.
    Hentchel KL, Escalante-Semerena JC. 2015.. Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic stress. . Microbiol. Mol. Biol. Rev. 79:(3):32146
    [Crossref] [Google Scholar]
  76. 76.
    Hicks KG, Cluntun AA, Schubert HL, Hackett SR, Berg JA, et al. 2023.. Protein-metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase. . Science 379:(6636):9961003
    [Crossref] [Google Scholar]
  77. 77.
    Hu M, Dinh HV, Shen Y, Suthers PF, Foster CJ, et al. 2023.. Comparative study of two Saccharomyces cerevisiae strains with kinetic models at genome-scale. . Metab. Eng. 76::117
    [Crossref] [Google Scholar]
  78. 78.
    Inglis DO, Binkley J, Skrzypek MS, Arnaud MB, Cerqueira GC, et al. 2013.. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. . BMC Microbiol. 13::91
    [Crossref] [Google Scholar]
  79. 79.
    Jang C, Chen L, Rabinowitz JD. 2018.. Metabolomics and isotope tracing. . Cell 173:(4):82237
    [Crossref] [Google Scholar]
  80. 80.
    Jendoubi T. 2021.. Approaches to integrating metabolomics and multi-omics data: a primer. . Metabolites 11:(3):184
    [Crossref] [Google Scholar]
  81. 81.
    Keller NP. 2019.. Fungal secondary metabolism: regulation, function and drug discovery. . Nat. Rev. Microbiol. 17:(3):16780
    [Crossref] [Google Scholar]
  82. 82.
    Kleijn RJ, Liu F, van Winden WA, van Gulik WM, Ras C, Heijnen JJ. 2007.. Cytosolic NADPH metabolism in penicillin-G producing and non-producing chemostat cultures of Penicillium chrysogenum. . Metab. Eng. 9:(1):11223
    [Crossref] [Google Scholar]
  83. 83.
    Kochanowski K, Gerosa L, Brunner SF, Christodoulou D, Nikolaev YV, Sauer U. 2017.. Few regulatory metabolites coordinate expression of central metabolic genes in Escherichia coli. . Mol. Syst. Biol. 13:(1):903
    [Crossref] [Google Scholar]
  84. 84.
    Kochanowski K, Okano H, Patsalo V, Williamson J, Sauer U, Hwa T. 2021.. Global coordination of metabolic pathways in Escherichia coli by active and passive regulation. . Mol. Syst. Biol. 17:(4):e10064
    [Crossref] [Google Scholar]
  85. 85.
    Kochanowski K, Sauer U, Chubukov V. 2013.. Somewhat in control–the role of transcription in regulating microbial metabolic fluxes. . Curr. Opin. Biotechnol. 24:(6):98793
    [Crossref] [Google Scholar]
  86. 86.
    Kochanowski K, Sauer U, Noor E. 2015.. Posttranslational regulation of microbial metabolism. . Curr. Opin. Microbiol. 27::1017
    [Crossref] [Google Scholar]
  87. 87.
    Kochanowski K, Volkmer B, Gerosa L, Haverkorn van Rijsewijk BR, Schmidt A, Heinemann M. 2013.. Functioning of a metabolic flux sensor in Escherichia coli. . PNAS 110:(3):113035
    [Crossref] [Google Scholar]
  88. 88.
    Krautkramer KA, Fan J, Bäckhed F. 2021.. Gut microbial metabolites as multi-kingdom intermediates. . Nat. Rev. Microbiol. 19:(2):7794
    [Crossref] [Google Scholar]
  89. 89.
    Krell T, Lacal J, Busch A, Silva-Jimenez H, Guazzaroni ME, Ramos JL. 2010.. Bacterial sensor kinases: diversity in the recognition of environmental signals. . Annu. Rev. Microbiol. 64::53959
    [Crossref] [Google Scholar]
  90. 90.
    Kurbatov I, Dolgalev G, Arzumanian V, Kiseleva O, Poverennaya E. 2023.. The knowns and unknowns in protein-metabolite interactions. . Int. J. Mol. Sci. 24:(4):4155
    [Crossref] [Google Scholar]
  91. 91.
    Lammers M. 2021.. Post-translational lysine ac(et)ylation in bacteria: a biochemical, structural, and synthetic biological perspective. . Front. Microbiol. 12::757179
    [Crossref] [Google Scholar]
  92. 92.
    Ledezma-Tejeida D, Schastnaya E, Sauer U. 2021.. Metabolism as a signal generator in bacteria. . Curr. Opin. Syst. Biol. 28::100404
    [Crossref] [Google Scholar]
  93. 93.
    Lee SR, Seyedsayamdost MR. 2022.. Induction of diverse cryptic fungal metabolites by steroids and channel blockers. . Angew. Chem. Int. Ed. 61:(29):e202204519
    [Crossref] [Google Scholar]
  94. 94.
    Lempp M, Farke N, Kuntz M, Freibert SA, Lill R, Link H. 2019.. Systematic identification of metabolites controlling gene expression in E. coli. . Nat. Commun. 10::4463
    [Crossref] [Google Scholar]
  95. 95.
    Li S, Shui W. 2020.. Systematic mapping of protein-metabolite interactions with mass spectrometry-based techniques. . Curr. Opin. Biotechnol. 64::2431
    [Crossref] [Google Scholar]
  96. 96.
    Lindsley JE, Rutter J. 2006.. Whence cometh the allosterome?. PNAS 103:(28):1053335
    [Crossref] [Google Scholar]
  97. 97.
    Link H, Christodoulou D, Sauer U. 2014.. Advancing metabolic models with kinetic information. . Curr. Opin. Biotechnol. 29::814
    [Crossref] [Google Scholar]
  98. 98.
    Link H, Kochanowski K, Sauer U. 2013.. Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo. . Nat. Biotechnol. 31:(4):35761
    [Crossref] [Google Scholar]
  99. 99.
    Litsios A, Ortega ÁD, Wit EC, Heinemann M. 2018.. Metabolic-flux dependent regulation of microbial physiology. . Curr. Opin. Microbiol. 42::7178
    [Crossref] [Google Scholar]
  100. 100.
    Lopatkin AJ, Stokes JM, Zheng EJ, Yang JH, Takahashi MK, et al. 2019.. Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate. . Nat. Microbiol. 4:(12):210917
    [Crossref] [Google Scholar]
  101. 101.
    Luzarowski M, Vicente R, Kiselev A, Wagner M, Schlossarek D, et al. 2021.. Global mapping of protein-metabolite interactions in Saccharomyces cerevisiae reveals that Ser-Leu dipeptide regulates phosphoglycerate kinase activity. . Commun. Biol. 4:(1):181
    [Crossref] [Google Scholar]
  102. 102.
    Macek B, Forchhammer K, Hardouin J, Weber-Ban E, Grangeasse C, Mijakovic I. 2019.. Protein post-translational modifications in bacteria. . Nat. Rev. Microbiol. 17:(11):65164
    [Crossref] [Google Scholar]
  103. 103.
    Mackie A, Keseler IM, Nolan L, Karp PD, Paulsen IT. 2013.. Dead end metabolites—defining the known unknowns of the E. coli metabolic network. . PLOS ONE 8:(9):e75210
    [Crossref] [Google Scholar]
  104. 104.
    Mahieu NG, Patti GJ. 2017.. Systems-level annotation of a metabolomics data set reduces 25 000 features to fewer than 1000 unique metabolites. . Anal. Chem. 89:(19):10397406
    [Crossref] [Google Scholar]
  105. 105.
    Millard P, Smallbone K, Mendes P. 2017.. Metabolic regulation is sufficient for global and robust coordination of glucose uptake, catabolism, energy production and growth in Escherichia coli. . PLOS Comput. Biol. 13:(2):e1005396
    [Crossref] [Google Scholar]
  106. 106.
    Miller SP, Chen R, Karschnia EJ, Romfo C, Dean A, LaPorte DC. 2000.. Locations of the regulatory sites for isocitrate dehydrogenase kinase/phosphatase. . J. Biol. Chem. 275:(2):83339
    [Crossref] [Google Scholar]
  107. 107.
    Mori M, Schink S, Erickson DW, Gerland U, Hwa T. 2017.. Quantifying the benefit of a proteome reserve in fluctuating environments. . Nat. Commun. 8::1225
    [Crossref] [Google Scholar]
  108. 108.
    Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C. 2013.. Microbial syntrophy: interaction for the common good. . FEMS Microbiol. Rev. 37:(3):384406
    [Crossref] [Google Scholar]
  109. 109.
    Nagarajan SN, Lenoir C, Grangeasse C. 2022.. Recent advances in bacterial signaling by serine/threonine protein kinases. . Trends Microbiol. 30:(6):55366
    [Crossref] [Google Scholar]
  110. 110.
    Noor E, Cherkaoui S, Sauer U. 2019.. Biological insights through omics data integration. . Curr. Opin. Syst. Biol. 15::3947
    [Crossref] [Google Scholar]
  111. 111.
    Noor E, Eden E, Milo R, Alon U. 2010.. Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. . Mol. Cell 39:(5):80920
    [Crossref] [Google Scholar]
  112. 112.
    Norsigian CJ, Pusarla N, McConn JL, Yurkovich JT, Dräger A, et al. 2020.. BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. . Nucleic Acids Res. 48:(D1):D4026
    [Google Scholar]
  113. 113.
    O'Brien EJ, Monk JM, Palsson BO. 2015.. Using genome-scale models to predict biological capabilities. . Cell 161:(5):97187
    [Crossref] [Google Scholar]
  114. 114.
    O'Brien EJ, Utrilla J, Palsson BO. 2016.. Quantification and classification of E. coli proteome utilization and unused protein costs across environments. . PLOS Comput. Biol. 12:(6):e1004998
    [Crossref] [Google Scholar]
  115. 115.
    Ochoa D, Jarnuczak AF, Vieitez C, Gehre M, Soucheray M, et al. 2020.. The functional landscape of the human phosphoproteome. . Nat. Biotechnol. 38:(3):36573
    [Crossref] [Google Scholar]
  116. 116.
    Offley SR, Schmidt MC. 2019.. Protein phosphatases of Saccharomyces cerevisiae. . Curr. Genet. 65:(1):4155
    [Crossref] [Google Scholar]
  117. 117.
    Ohno S, Quek L-E, Krycer JR, Yugi K, Hirayama A, et al. 2020.. Kinetic trans-omic analysis reveals key regulatory mechanisms for insulin-regulated glucose metabolism in adipocytes. . iScience 23:(9):101479
    [Crossref] [Google Scholar]
  118. 118.
    Okano H, Hermsen R, Hwa T. 2021.. Hierarchical and simultaneous utilization of carbon substrates: mechanistic insights, physiological roles, and ecological consequences. . Curr. Opin. Microbiol. 63::17278
    [Crossref] [Google Scholar]
  119. 119.
    Okano H, Hermsen R, Kochanowski K, Hwa T. 2019.. Regulation underlying hierarchical and simultaneous utilization of carbon substrates by flux sensors in Escherichia coli. . Nat. Microbiol. 5:(1):20615
    [Crossref] [Google Scholar]
  120. 120.
    Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, Aebersold R, Sauer U. 2012.. Regulation of yeast central metabolism by enzyme phosphorylation. . Mol. Syst. Biol. 8:(1):623
    [Crossref] [Google Scholar]
  121. 121.
    Pang Z, Zhou G, Ewald J, Chang L, Hacariz O, et al. 2022.. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. . Nat. Protoc. 17:(8):173561
    [Crossref] [Google Scholar]
  122. 122.
    Parkinson EI, Tryon JH, Goering AW, Ju K-S, McClure RA, et al. 2018.. Discovery of the tyrobetaine natural products and their biosynthetic gene cluster via metabologenomics. . ACS Chem. Biol. 13:(4):102937
    [Crossref] [Google Scholar]
  123. 123.
    Patejko M, Jacyna J, Markuszewski MJ. 2017.. Sample preparation procedures utilized in microbial metabolomics: an overview. . J. Chromatogr. B 1043::15057
    [Crossref] [Google Scholar]
  124. 124.
    Perez de Souza L, Alseekh S, Scossa F, Fernie AR. 2021.. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. . Nat. Methods 18:(7):73346
    [Crossref] [Google Scholar]
  125. 125.
    Pérez Escriva P, Fuhrer T, Sauer U. 2022.. Distinct N and C cross-feeding networks in a synthetic mouse gut consortium. . mSystems 7:(2):e01484-21
    [Crossref] [Google Scholar]
  126. 126.
    Phelan VV, Liu W-T, Pogliano K, Dorrestein PC. 2012.. Microbial metabolic exchange—the chemotype-to-phenotype link. . Nat. Chem. Biol. 8:(1):2635
    [Crossref] [Google Scholar]
  127. 127.
    Piazza I, Kochanowski K, Cappelletti V, Fuhrer T, Noor E, et al. 2018.. A map of protein-metabolite interactions reveals principles of chemical communication. . Cell 172:(1–2):35872.e23
    [Crossref] [Google Scholar]
  128. 128.
    Ponomarova O, Patil KR. 2015.. Metabolic interactions in microbial communities: untangling the Gordian knot. . Curr. Opin. Microbiol. 27::3744
    [Crossref] [Google Scholar]
  129. 129.
    Pontrelli S, Szabo R, Pollak S, Schwartzman J, Ledezma-Tejeida D, et al. 2022.. Metabolic cross-feeding structures the assembly of polysaccharide degrading communities. . Sci. Adv. 8:(8):eabk3076
    [Crossref] [Google Scholar]
  130. 130.
    Prosser GA, Larrouy-Maumus G, de Carvalho LPS. 2014.. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. . EMBO Rep. 15:(6):65769
    [Crossref] [Google Scholar]
  131. 131.
    Radoš D, Donati S, Lempp M, Rapp J, Link H. 2022.. Homeostasis of the biosynthetic E. coli metabolome. . iScience 25:(7):104503
    [Crossref] [Google Scholar]
  132. 132.
    Raguz Nakic Z, Seisenbacher G, Posas F, Sauer U. 2016.. Untargeted metabolomics unravels functionalities of phosphorylation sites in Saccharomyces cerevisiae. . BMC Syst. Biol. 10:(1):104
    [Crossref] [Google Scholar]
  133. 133.
    Rajagopalan K, Dworkin J. 2020.. Escherichia coli YegI is a novel Ser/Thr kinase lacking conserved motifs that localizes to the inner membrane. . FEBS Lett. 594:(21):353041
    [Crossref] [Google Scholar]
  134. 134.
    Rajeev L, Garber ME, Mukhopadhyay A. 2020.. Tools to map target genes of bacterial two-component system response regulators. . Environ. Microbiol. Rep. 12:(3):26776
    [Crossref] [Google Scholar]
  135. 135.
    Reichling S, Doubleday PF, Germade T, Bergmann A, Loewith R, et al. 2023.. Dynamic metabolome profiling uncovers potential TOR signaling genes. . eLife 12::e84295
    [Crossref] [Google Scholar]
  136. 136.
    Reznik E, Christodoulou D, Goldford JE, Briars E, Sauer U, et al. 2017.. Genome-scale architecture of small molecule regulatory networks and the fundamental trade-off between regulation and enzymatic activity. . Cell Rep. 20:(11):266677
    [Crossref] [Google Scholar]
  137. 137.
    Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. 2019.. Identification of bioactive metabolites using activity metabolomics. . Nat. Rev. Mol. Cell Biol. 20:(6):35367
    [Crossref] [Google Scholar]
  138. 138.
    Sander T, Farke N, Diehl C, Kuntz M, Glatter T, Link H. 2019.. Allosteric feedback inhibition enables robust amino acid biosynthesis in E. coli by enforcing enzyme overabundance. . Cell Syst. 8:(1):6675.e8
    [Crossref] [Google Scholar]
  139. 139.
    Sauer U. 2006.. Metabolic networks in motion: 13C-based flux analysis. . Mol. Syst. Biol. 2:(1):62
    [Crossref] [Google Scholar]
  140. 140.
    Schäfer M, Pacheco AR, Künzler R, Bortfeld-Miller M, Field CM, et al. 2023.. Metabolic interaction models recapitulate leaf microbiota ecology. . Science 381:(6653):eadf5121
    [Crossref] [Google Scholar]
  141. 141.
    Schastnaya E, Doubleday PF, Maurer L, Sauer U. 2023.. Non-enzymatic acetylation inhibits glycolytic enzymes in Escherichia coli. . Cell Rep. 42:(1):111950
    [Crossref] [Google Scholar]
  142. 142.
    Schastnaya E, Raguz Nakic Z, Gruber CH, Doubleday PF, Krishnan A, et al. 2021.. Extensive regulation of enzyme activity by phosphorylation in Escherichia coli. . Nat. Commun. 12::5650
    [Crossref] [Google Scholar]
  143. 143.
    Schink SJ, Christodoulou D, Mukherjee A, Athaide E, Brunner V, et al. 2022.. Glycolysis/gluconeogenesis specialization in microbes is driven by biochemical constraints of flux sensing. . Mol. Syst. Biol. 18:(1):e10704
    [Crossref] [Google Scholar]
  144. 144.
    Schlossarek D, Luzarowski M, Sokołowska EM, Thirumalaikumar VP, Dengler L, et al. 2022.. Rewiring of the protein-protein-metabolite interactome during the diauxic shift in yeast. . Cell. Mol. Life Sci. 79:(11):550
    [Crossref] [Google Scholar]
  145. 145.
    Schulz JC, Zampieri M, Wanka S, von Mering C, Sauer U. 2014.. Large-scale functional analysis of the roles of phosphorylation in yeast metabolic pathways. . Sci. Signal. 7:(353):rs6
    [Crossref] [Google Scholar]
  146. 146.
    Scott M, Hwa T. 2023.. Shaping bacterial gene expression by physiological and proteome allocation constraints. . Nat. Rev. Microbiol. 21:(5):32742
    [Crossref] [Google Scholar]
  147. 147.
    Sen P, Lamichhane S, Mathema VB, McGlinchey A, Dickens AM, et al. 2021.. Deep learning meets metabolomics: a methodological perspective. . Brief. Bioinform. 22:(2):153142
    [Crossref] [Google Scholar]
  148. 148.
    Sévin DC, Fuhrer T, Zamboni N, Sauer U. 2017.. Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli. . Nat. Methods 14:(2):18794
    [Crossref] [Google Scholar]
  149. 149.
    Shan X, Goyal A, Gregor R, Cordero OX. 2023.. Annotation-free discovery of functional groups in microbial communities. . Nat. Ecol. Evol. 7:(5):71624
    [Crossref] [Google Scholar]
  150. 150.
    Sridharan S, Kurzawa N, Werner T, Günthner I, Helm D, et al. 2019.. Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP. . Nat. Commun. 10::1155
    [Crossref] [Google Scholar]
  151. 151.
    Stravs MA, Dührkop K, Böcker S, Zamboni N. 2022.. MSNovelist: de novo structure generation from mass spectra. . Nat. Methods 19:(7):86570
    [Crossref] [Google Scholar]
  152. 152.
    Sultan A, Jers C, Ganief TA, Shi L, Senissar M, et al. 2021.. Phosphoproteome study of Escherichia coli devoid of Ser/Thr kinase YeaG during the metabolic shift from glucose to malate. . Front. Microbiol. 12::657562
    [Crossref] [Google Scholar]
  153. 153.
    Sun Y, Zhang Y, Zhao T, Luan Y, Wang Y, et al. 2023.. Acetylation coordinates the crosstalk between carbon metabolism and ammonium assimilation in Salmonella enterica. . EMBO J. 42:(13):e112333
    [Crossref] [Google Scholar]
  154. 154.
    Tarazona S, Arzalluz-Luque A, Conesa A. 2021.. Undisclosed, unmet and neglected challenges in multi-omics studies. . Nat. Comput. Sci. 1:(6):395402
    [Crossref] [Google Scholar]
  155. 155.
    Thorsness PE, Koshland DE. 1987.. Inactivation of isocitrate dehydrogenase by phosphorylation is mediated by the negative charge of the phosphate. . J. Biol. Chem. 262:(22):1042225
    [Crossref] [Google Scholar]
  156. 156.
    Tierrafría VH, Rioualen C, Salgado H, Lara P, Gama-Castro S, et al. 2022.. RegulonDB 11.0: comprehensive high-throughput datasets on transcriptional regulation in Escherichia coli K-12. . Microb. Genom. 8:(5):000833
    [Google Scholar]
  157. 157.
    Viant MR, Kurland IJ, Jones MR, Dunn WB. 2017.. How close are we to complete annotation of metabolomes?. Curr. Opin. Chem. Biol. 36::6469
    [Crossref] [Google Scholar]
  158. 158.
    Vieitez C, Busby BP, Ochoa D, Mateus A, Memon D, et al. 2022.. High-throughput functional characterization of protein phosphorylation sites in yeast. . Nat. Biotechnol. 40:(3):38290
    [Crossref] [Google Scholar]
  159. 159.
    Vigouroux A, Meyer T, Naretto A, Legrand P, Aumont-Nicaise M, et al. 2021.. Characterization of the first tetrameric transcription factor of the GntR superfamily with allosteric regulation from the bacterial pathogen Agrobacterium fabrum. . Nucleic Acids Res. 49:(1):52946
    [Crossref] [Google Scholar]
  160. 160.
    Wang R, Yin Y, Zhu Z-J. 2019.. Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. . Anal. Bioanal. Chem. 411:(19):434957
    [Crossref] [Google Scholar]
  161. 161.
    Wang T, Wang X-W, Lee-Sarwar KA, Litonjua AA, Weiss ST, et al. 2023.. Predicting metabolomic profiles from microbial composition through neural ordinary differential equations. . Nat. Mach. Intell. 5:(3):28493
    [Crossref] [Google Scholar]
  162. 162.
    Wegner A, Meiser J, Weindl D, Hiller K. 2015.. How metabolites modulate metabolic flux. . Curr. Opin. Biotechnol. 34::1622
    [Crossref] [Google Scholar]
  163. 163.
    Weinert BT, Satpathy S, Hansen BK, Lyon D, Jensen LJ, Choudhary C. 2017.. Accurate quantification of site-specific acetylation stoichiometry reveals the impact of sirtuin deacetylase CobB on the E. coli acetylome. . Mol. Cell. Proteom. 16:(5):75969
    [Crossref] [Google Scholar]
  164. 164.
    Weiss AS, Burrichter AG, Durai Raj AC, Von Strempel A, Meng C, et al. 2022.. In vitro interaction network of a synthetic gut bacterial community. . ISME J. 16:(4):1095109
    [Crossref] [Google Scholar]
  165. 165.
    Wolfe AJ. 2005.. The acetate switch. . Microbiol. Mol. Biol. Rev. 69:(1):1250
    [Crossref] [Google Scholar]
  166. 166.
    Xu F, Wu Y, Zhang C, Davis KM, Moon K, et al. 2019.. A genetics-free method for high-throughput discovery of cryptic microbial metabolites. . Nat. Chem. Biol. 15:(2):16168
    [Crossref] [Google Scholar]
  167. 167.
    Xu Y-F, Amador-Noguez D, Reaves ML, Feng X-J, Rabinowitz JD. 2012.. Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase. . Nat. Chem. Biol. 8:(6):56268
    [Crossref] [Google Scholar]
  168. 168.
    Yu R, Campbell K, Pereira R, Björkeroth J, Qi Q, et al. 2020.. Nitrogen limitation reveals large reserves in metabolic and translational capacities of yeast. . Nat. Commun. 11::1881
    [Crossref] [Google Scholar]
  169. 169.
    Yugi K, Kubota H, Toyoshima Y, Noguchi R, Kawata K, et al. 2014.. Reconstruction of insulin signal flow from phosphoproteome and metabolome data. . Cell Rep. 8:(4):117183
    [Crossref] [Google Scholar]
  170. 170.
    Yugi K, Kuroda S. 2018.. Metabolism as a signal generator across trans-omic networks at distinct time scales. . Curr. Opin. Syst. Biol. 8::5966
    [Crossref] [Google Scholar]
  171. 171.
    Zampieri M, Zimmermann M, Claassen M, Sauer U. 2017.. Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations. . Cell Rep. 19:(6):121428
    [Crossref] [Google Scholar]
  172. 172.
    Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, et al. 2018.. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. . Nat. Microbiol. 3:(4):47080
    [Crossref] [Google Scholar]
  173. 173.
    Zhang L, Winkler S, Schlottmann FP, Kohlbacher O, Elias JE, et al. 2019.. Multiple layers of phospho-regulation coordinate metabolism and the cell cycle in budding yeast. . Front. Cell Dev. Biol. 7::338
    [Crossref] [Google Scholar]
  174. 174.
    Zhou D, Zhu W, Sun T, Wang Y, Chi Y, et al. 2021.. iMAP: a web server for metabolomics data integrative analysis. . Front. Chem. 9::659656
    [Crossref] [Google Scholar]
  175. 175.
    Zhou X, Naguro I, Ichijo H, Watanabe K. 2016.. Mitogen-activated protein kinases as key players in osmotic stress signaling. . Biochim. Biophys. Acta 1860:(9):203752
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-030722-021957
Loading
/content/journals/10.1146/annurev-biophys-030722-021957
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error