1932

Abstract

Protein–protein association and aggregation are fundamental processes that play critical roles in various biological phenomena, from cellular signaling to disease progression. Understanding the underlying biophysical principles governing these processes is crucial for elucidating their mechanisms and developing strategies for therapeutic intervention. In this review, we provide an overview of recent experimental studies focused on protein–protein association and aggregation. We explore the key biophysical factors that influence these processes, including protein structure, conformational dynamics, and intermolecular interactions. We discuss the effects of environmental conditions such as temperature, pH and related buffer-specific effects, and ionic strength and related ion-specific effects on protein aggregation. The effects of polymer crowders and sugars are also addressed. We list the techniques used to study aggregation. We analyze emerging trends and challenges in the field, including the development of computational models and the integration of multidisciplinary approaches for a comprehensive understanding of protein–protein association and aggregation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-030722-111729
2024-07-16
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-030722-111729.html?itemId=/content/journals/10.1146/annurev-biophys-030722-111729&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abramo MC, Caccamo C, Costa D, Pellicane G, Ruberto R, Wanderlingh U. 2012.. Effective interactions in lysozyme aqueous solutions: a small-angle neutron scattering and computer simulation study. . J. Chem. Phys. 136:(3):035103
    [Crossref] [Google Scholar]
  2. 2.
    Acharya H, Vembanur S, Jamadagni SN, Garde S. 2010.. Mapping hydrophobicity at the nanoscale: applications to heterogeneous surfaces and proteins. . Faraday Discuss. 146::35365
    [Crossref] [Google Scholar]
  3. 3.
    Ahmad S, Mizuguchi K. 2011.. Partner-aware prediction of interacting residues in protein-protein complexes from sequence data. . PLOS ONE 6::e29104
    [Crossref] [Google Scholar]
  4. 4.
    Alarcon LM, Rodriguez Fris JA, Morini MA, Sierra MB, Accordino SA, et al. 2015.. Hydration and nanoconfined water: insights from computer simulations. . Subcell. Biochem. 71::16187
    [Crossref] [Google Scholar]
  5. 5.
    Alberti S, Gladfelter A, Mittag T. 2019.. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. . Cell 176:(3):41934
    [Crossref] [Google Scholar]
  6. 6.
    Amin S, Barnett GV, Pathak JA, Roberts CJ, Sarangapani PS. 2014.. Protein aggregation, particle formation, characterization and rheology. . Curr. Opin. Colloid Interface Sci. 19:(5):43849
    [Crossref] [Google Scholar]
  7. 7.
    Asakura S, Oosawa F. 1954.. On interaction between two bodies immersed in a solution of macromolecules. . J. Chem. Phys. 22::125557
    [Crossref] [Google Scholar]
  8. 8.
    Babinchak WM, Surewicz WK. 2020.. Liquid–liquid phase separation and its mechanistic role in pathological protein aggregation. . J. Mol. Biol. 432:(7):191025
    [Crossref] [Google Scholar]
  9. 9.
    Baldwin AJ, Knowles TPJ, Tartaglia GG, Fitzpatrick AW, Devlin GL, et al. 2011.. Metastability of native proteins and the phenomenon of amyloid formation. . J. Am. Chem. Soc. 133:(36):1416063
    [Crossref] [Google Scholar]
  10. 10.
    Baldwin RL. 1996.. How Hofmeister ion interactions affect protein stability. . Biophys. J. 71:(4):205663
    [Crossref] [Google Scholar]
  11. 11.
    Bianchi E, Largo J, Tartaglia P, Zaccarelli E, Sciortino F. 2006.. Phase diagram of patchy colloids: towards empty liquids. . Phys. Rev. Lett. 97:(16):168301
    [Crossref] [Google Scholar]
  12. 12.
    Bogan AA, Thorn KS. 1998.. Anatomy of hot spots in protein interfaces. . J. Mol. Biol. 280:(1):19
    [Crossref] [Google Scholar]
  13. 13.
    Brini E, Fennell CJ, Fernandez-Serra M, Hribar-Lee B, Lukšič M, Dill KA. 2017.. How water's properties are encoded in its molecular structure and energies. . Chem. Rev. 117::12385414
    [Crossref] [Google Scholar]
  14. 14.
    Brudar S, Hribar-Lee B. 2019.. The role of buffers in wild-type HEWL amyloid fibril formation mechanism. . Biomolecules 9:(2):65
    [Crossref] [Google Scholar]
  15. 15.
    Brudar S, Hribar-Lee B. 2021.. Effect of buffer on protein stability in aqueous solutions: a simple protein aggregation model. . J. Phys. Chem. B 125:(10):250412
    [Crossref] [Google Scholar]
  16. 16.
    Brudar S, Hribar-Lee B. 2023.. The effect of arginine on the phase stability of aqueous hen egg-white lysozyme solutions. . Int. J. Mol. Sci. 24::1197
    [Crossref] [Google Scholar]
  17. 17.
    Brudar S, Hribar-Lee B. 2023.. The mechanism of self-association of human γ-D crystallin from molecular dynamics simulations. . J. Mol. Liquids 386::122461
    [Crossref] [Google Scholar]
  18. 18.
    Bruinsma R, Pincus P. 1996.. Protein aggregation in membranes. . Curr. Opin. Solid State Mater. Sci. 1:(3):4016
    [Crossref] [Google Scholar]
  19. 19.
    Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, et al. 2002.. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. . Nature 416::50711
    [Crossref] [Google Scholar]
  20. 20.
    Bucciarelli S, Myung JS, Farago B, Das S, Vliegenthart GA, et al. 2016.. Dramatic influence of patchy attractions on short-time protein diffusion under crowded conditions. . Sci. Adv. 2:(12):e1601432
    [Crossref] [Google Scholar]
  21. 21.
    Bunc M, Hadži S, Graf C, Bončina M, Lah J. 2022.. Aggregation time machine: a platform for the prediction and optimization of long-term antibody stability using short-term kinetic analysis. . J. Med. Chem. 65:(3):262332
    [Crossref] [Google Scholar]
  22. 22.
    Carballo-Pacheco M, Strodel B. 2016.. Advances in the simulation of protein aggregation at the atomistic scale. . J. Phys. Chem. B 120:(12):299199
    [Crossref] [Google Scholar]
  23. 23.
    Carlsson F, Malmsten M, Linse P. 2001.. Monte Carlo simulations of lysozyme self-association in aqueous solution. . J. Phys. Chem. B 105:(48):1218995
    [Crossref] [Google Scholar]
  24. 24.
    Cellmer T, Bratko D, Prausnitz JM, Blanch HW. 2007.. Protein aggregation in silico. . Trends Biotechnol. 25:(6):25461
    [Crossref] [Google Scholar]
  25. 25.
    Chen L, Shukla N, Cho I, Cohn E, Taylor EA, Othon CM. 2015.. Sucralose destabilization of protein structure. . J. Phys. Chem. Lett. 6::144146
    [Crossref] [Google Scholar]
  26. 26.
    Chi EY, Krishnan S, Randolph TW, Carpenter JF. 2003.. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. . Pharm. Res. 20::132536
    [Crossref] [Google Scholar]
  27. 27.
    Chiantia S, Giannola LI, Cordone L. 2005.. Lipid phase transition in saccharide-coated cholate-containing liposomes: coupling to the surrounding matrix. . Langmuir 21::410816
    [Crossref] [Google Scholar]
  28. 28.
    Chiti F, Taddei N, Baroni F, Capanni C, Stefani M, et al. 2002.. Kinetic partitioning of protein folding and aggregation. . Nat. Struct. Biol. 9:(2):13743
    [Crossref] [Google Scholar]
  29. 29.
    Ciryam P, Kundra R, Morimoto RI, Dobson CM, Vendruscolo M. 2015.. Supersaturation is a major driving force for protein aggregation in neurodegenerative diseases. . Trends Pharmacol. Sci. 36:(2):7277
    [Crossref] [Google Scholar]
  30. 30.
    Collins KD. 1997.. Charge density-dependent strength of hydration and biological structure. . Biophys. J. 72:(1):6576
    [Crossref] [Google Scholar]
  31. 31.
    Collins KD. 2004.. Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. . Methods 34:(3):30011
    [Crossref] [Google Scholar]
  32. 32.
    Collins KD. 2012.. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion-protein interactions. . Biophys. Chem. 167::4359
    [Crossref] [Google Scholar]
  33. 33.
    Cordone L, Cottone G, Giuffrida S. 2007.. Role of residual water hydrogen bonding in sugar/water/biomolecule systems: a possible explanation for trehalose peculiarity. . J. Phys. Condens. Matter 19::20511026
    [Crossref] [Google Scholar]
  34. 34.
    Corradini D, Strekalova EG, Stanley HE, Gallo P. 2013.. Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose. . Sci. Rep. 3::121828
    [Crossref] [Google Scholar]
  35. 35.
    Cottone G. 2007.. A comparative study of carboxy myoglobin in saccharide-water systems by molecular dynamics simulation. . J. Phys. Chem. B 111::356369
    [Crossref] [Google Scholar]
  36. 36.
    Cromwell MEM, Hilario E, Jacobson F. 2005.. Protein aggregation and bioprocessing. . AAPS J. 8::E57279
    [Crossref] [Google Scholar]
  37. 37.
    Das P, King JA, Zhou R. 2011.. Aggregation of γ-crystallins associated with human cataracts via domain swapping at the C-terminal β-strands. . PNAS 108:(26):1051419
    [Crossref] [Google Scholar]
  38. 38.
    Derewenda ZS, Godzik A. 2017.. The “sticky patch” model of crystallization and modification of proteins for enhanced crystallizability. . Methods Mol. Biol. 1607::77115
    [Crossref] [Google Scholar]
  39. 39.
    Desta IT, Porter KA, Xia B, Kozakov D, Vajda S. 2020.. Performance and its limits in rigid body protein-protein docking. . Structure 28:(9):107181.e3
    [Crossref] [Google Scholar]
  40. 40.
    Dill K, Jernigan R, Bahar I. 2017.. Protein Actions: Principles and Modeling. New York:: Garland Sci.
    [Google Scholar]
  41. 41.
    D'souza AA, Shegokar R. 2016.. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. . Expert Opin. Drug Deliv. 13::125775
    [Crossref] [Google Scholar]
  42. 42.
    Džudžević Čančar H, Belak Vivod M, Vlachy V, Lukšič M. 2022.. Phase stability of aqueous mixtures of bovine serum albumin with low molecular mass salts in presence of polyethylene glycol. . J. Mol. Liq. 349::118477
    [Crossref] [Google Scholar]
  43. 43.
    Fedorov M, Goodman J, Nerukh D, Schumm S. 2011.. Self-assembly of trehalose molecules on a lysozyme surface: the broken glass hypothesis. . Phys. Chem. Chem. Phys. 13::229499
    [Crossref] [Google Scholar]
  44. 44.
    Fink AL. 1998.. Protein aggregation: folding aggregates, inclusion bodies and amyloid. . Fold. Des. 3:(1):R923
    [Crossref] [Google Scholar]
  45. 45.
    Gao T, Korb JP, Lukšič M, Mériguet G, Malikova N, Rollet AL. 2022.. Ion influence on surface water dynamics and proton exchange at protein surfaces—a unified model for transverse and longitudinal NMR relaxation dispersion. . J. Mol. Liq. 367::120451
    [Crossref] [Google Scholar]
  46. 46.
    Garajová K, Balogová A, Dušeková E, Sedláková D, Sedlák E, Varhač R. 2017.. Correlation of lysozyme activity and stability in the presence of Hofmeister series anions. . Biochim. Biophys. Acta Proteins Proteom. 1865:(3):28188
    [Crossref] [Google Scholar]
  47. 47.
    Gögelein C, Nägele G, Tuinier R, Gibaud T, Stradner A, Schurtenberger P. 2008.. A simple patchy colloid model for the phase behavior of lysozyme dispersions. . J. Chem. Phys. 129:(8):085102
    [Crossref] [Google Scholar]
  48. 48.
    Green JL, Angell CA. 1989.. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. . J. Phys. Chem. 93::288082
    [Crossref] [Google Scholar]
  49. 49.
    Hafner Petrovski Ž, Hribar-Lee B, Bosnić Z. 2023.. CAT-site: predicting protein binding sites using a convolutional neural network. . Pharmaceutics 15:(1):119
    [Crossref] [Google Scholar]
  50. 50.
    Hribar-Lee B. 2022.. The influence of excipients on the viscosity of monoclonal antibody solutions. . J. Mol. Liq. 366::120349
    [Crossref] [Google Scholar]
  51. 51.
    Imberti S, McLain SE, Rhys NH, Bruni F, Ricci MA. 2019.. Role of water in sucrose, lactose, and sucralose taste: the sweeter, the wetter?. ACS Omega 4::2239298
    [Crossref] [Google Scholar]
  52. 52.
    Jaklin M, Hritz J, Hribar-Lee B. 2022.. A new fibrillization mechanism of β-lactoglobulin in glycine solutions. . Int. J. Biol. Macromol. 216::41425
    [Crossref] [Google Scholar]
  53. 53.
    James S, McManus JJ. 2012.. Thermal and solution stability of lysozyme in the presence of sucrose, glucose, and trehalose. . J. Phys. Chem. B 116::1018288
    [Crossref] [Google Scholar]
  54. 54.
    Janc T, Korb JP, Lukšič M, Vlachy V, Bryant RG, et al. 2021.. Multiscale water dynamics on protein surfaces: protein-specific response to surface ions. . J. Phys. Chem. B 125:(31):867381
    [Crossref] [Google Scholar]
  55. 55.
    Janc T, Lukšič M, Vlachy V, Rigaud B, Rollet AL, et al. 2018.. Ion-specificity and surface water dynamics in protein solutions. . Phys. Chem. Chem. Phys. 20:(48):3034050
    [Crossref] [Google Scholar]
  56. 56.
    Janc T, Vlachy V, Lukšič M. 2018.. Calorimetric studies of interactions between low molecular weight salts and bovine serum albumin in water at pH values below and above the isoionic point. . J. Mol. Liq. 270::7480
    [Crossref] [Google Scholar]
  57. 57.
    Kapla J, Wohlert J, Stevensson B, Engström O, Widmalm G, Maliniak A. 2013.. Molecular dynamics simulations of membrane–sugar interactions. . J. Phys. Chem. B 117::666773
    [Crossref] [Google Scholar]
  58. 58.
    Kastelic M, Dill KA, Kalyuzhnyi YV, Vlachy V. 2018.. Controlling the viscosities of antibody solutions through control of their binding sites. . J. Mol. Liq. 270::23442
    [Crossref] [Google Scholar]
  59. 59.
    Kastelic M, Kalyuzhnyi YV, Hribar-Lee B, Dill KA, Vlachy V. 2015.. Protein aggregation in salt solutions. . PNAS 112:(21):676670
    [Crossref] [Google Scholar]
  60. 60.
    Kastelic M, Kalyuzhnyi YV, Vlachy V. 2016.. Fluid of fused spheres as a model for protein solution. . Condens. Matter Phys. 19:(2):23801
    [Crossref] [Google Scholar]
  61. 61.
    Kastelic M, Kalyuzhnyi YV, Vlachy V. 2016.. Modeling phase transitions in mixtures of β-γ lens crystallins. . Soft Matter 12::728998
    [Crossref] [Google Scholar]
  62. 62.
    Kastelic M, Vlachy V. 2018.. Theory for the liquid–liquid phase separation in aqueous antibody solutions. . J. Phys. Chem. B 122::54008
    [Crossref] [Google Scholar]
  63. 63.
    Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A. 2016.. Coarse-grained protein models and their applications. . Chem. Rev. 116::7898936
    [Crossref] [Google Scholar]
  64. 64.
    Kumar A, Cincotti A, Aparicio S. 2020.. Insights into the interaction between lipid bilayers and trehalose aqueous solutions. . J. Mol. Liq. 314::113639
    [Crossref] [Google Scholar]
  65. 65.
    Kunz W. 2009.. An attempt of a general overview. . In Specific Ion Effects, ed. W Kunz , pp. 354 Singapore:: World Sci.
    [Google Scholar]
  66. 66.
    Lai J-j, Yan H-y, Liu Y, Huang Y. 2015.. Effects of PEG molecular weight on its interaction with albumin. . Chin. J. Polym. Sci. 33::137379
    [Crossref] [Google Scholar]
  67. 67.
    Lee J, Lin EW, Lau UY, Hedrick JL, Bat E, Maynard HD. 2013.. Trehalose glycopolymers as excipients for protein stabilization. . Biomacromolecules 14:(8):256169
    [Crossref] [Google Scholar]
  68. 68.
    Lima ERA, Biscaia EC, Böstrom M, Tavares FW, Prausnitz JM. 2007.. Osmotic second virial coefficients and phase diagrams for aqueous proteins from a much-improved Poisson–Boltzmann equation. . J. Phys. Chem. C 111::1605559
    [Crossref] [Google Scholar]
  69. 69.
    Lins R, Pereira CS, Hunenberger P. 2004.. Trehalose protein interaction in aqueous solution. . Proteins 55::17786
    [Crossref] [Google Scholar]
  70. 70.
    Liu H, Kumar SK, Sciortino F. 2007.. Vapor-liquid coexistence of patchy models: relevance to protein phase behavior. . J. Chem. Phys. 127:(8):084902
    [Crossref] [Google Scholar]
  71. 71.
    Lo Nostro P, Ninham BW. 2012.. Hofmeister phenomena: an update on ion specificity in biology. . Chem. Rev. 112:(4):2286322
    [Crossref] [Google Scholar]
  72. 72.
    Lomakin A, Asherie N, Benedek GB. 1996.. Monte Carlo study of phase separation in aqueous protein solutions. . J. Chem. Phys. 104:(4):164656
    [Crossref] [Google Scholar]
  73. 73.
    Lomakin A, Asherie N, Benedek GB. 1999.. Aeolotopic interactions of globular proteins. . PNAS 96:(17):946568
    [Crossref] [Google Scholar]
  74. 74.
    Lund M, Jungwirth P. 2008.. Patchy proteins, anions and Hofmeister series. . J. Phys. Condens. Matter 20::494218
    [Crossref] [Google Scholar]
  75. 75.
    Lupi L, Comez L, Paolantoni M, Fioretto D, Ladanyi BM. 2012.. Dynamics of biological water: insights from molecular modeling of light scattering in aqueous trehalose solutions. . J. Phys. Chem. B 116::7499508
    [Crossref] [Google Scholar]
  76. 76.
    Ma Y, Acosta DM, Whitney JR, Podgornik R, Steinmetz NF, et al. 2015.. Determination of the second virial coefficient of bovine serum albumin under varying pH and ionic strength by composition-gradient multi-angle static light scattering. . J. Biol. Phys. 41::8597
    [Crossref] [Google Scholar]
  77. 77.
    Mandal S, Panja P, Debnath K, Jana NR, Jana NR. 2020.. Small-molecule-functionalized hyperbranched polyglycerol dendrimers for inhibiting protein aggregation. . Biomacromolecules 21:(8):327078
    [Crossref] [Google Scholar]
  78. 78.
    Meric G, Robinson AS, Roberts CJ. 2017.. Driving forces for nonnative protein aggregation and approaches to predict aggregation-prone regions. . Annu. Rev. Chem. Biomol. Eng. 8::13959
    [Crossref] [Google Scholar]
  79. 79.
    Morriss-Andrews A, Shea JE. 2014.. Simulations of protein aggregation: insights from atomistic and coarse-grained models. . J. Phys. Chem. Lett. 5:(11):1899908
    [Crossref] [Google Scholar]
  80. 80.
    Morriss-Andrews A, Shea JE. 2015.. Computational studies of protein aggregation: methods and applications. . Annu. Rev. Phys. Chem. 66::64366
    [Crossref] [Google Scholar]
  81. 81.
    Muschol M, Rosenberger F. 1997.. Liquid–liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization. . J. Chem. Phys. 107:(6):195362
    [Crossref] [Google Scholar]
  82. 82.
    Musiani F, Giorgetti A. 2017.. Protein aggregation and molecular crowding: perspectives from multiscale simulations. . Int. Rev. Cell. Mol. Biol. 329::4977
    [Crossref] [Google Scholar]
  83. 83.
    Nagy G, Oostenbrink C, Hritz J. 2017.. Exploring the binding pathways of the 14-3-3ζ protein: structural and free-energy profiles revealed by Hamiltonian replica exchange molecular dynamics with distancefield distance restraints. . PLOS ONE 12:(7):e0180633
    [Crossref] [Google Scholar]
  84. 84.
    Nikolić M, Brudar S, Coutsias E, Dill KA, Lukšič M, et al. 2022.. BioMThermDB 1.0: thermophysical database of proteins in solutions. . Int. J. Mol. Sci. 23:(23):15371
    [Crossref] [Google Scholar]
  85. 85.
    Okur HI, Hladilkova J, Rembert KB, Cho Y, Heyda J, et al. 2017.. Beyond the Hofmeister series: ion-specific effects on proteins and their biological functions. . J. Phys. Chem. B 121:(9):19972014
    [Crossref] [Google Scholar]
  86. 86.
    Pace CN, Fu H, Fryar KL, Landua J, Trevino SR, et al. 2011.. Contribution of hydrophobic interactions to protein stability. . J. Mol. Biol. 408:(3):51428
    [Crossref] [Google Scholar]
  87. 87.
    Pellicane G, Costa D, Caccamo C. 2003.. Phase coexistence in a DLVO model of globular protein solutions. . J. Phys. Condens. Matter 15:(3):37584
    [Crossref] [Google Scholar]
  88. 88.
    Pereira CS, Hünenberger PH. 2006.. Interaction of the sugars trehalose, maltose and glucose with a phospholipid bilayer: a comparative molecular dynamics study. . J. Phys. Chem. B 110::1557281
    [Crossref] [Google Scholar]
  89. 89.
    Pereira CS, Hünenberger PH. 2008.. Effect of trehalose on a phospholipid membrane under mechanical stress. . Biophys. J. 95::352534
    [Crossref] [Google Scholar]
  90. 90.
    Pradhan N, Debnath K, Mandal S, Jana NR, Jana NR. 2018.. Antiamyloidogenic chemical/biochemical-based designed nanoparticle as artificial chaperone for efficient inhibition of protein aggregation. . Biomacromolecules 19:(6):172131
    [Crossref] [Google Scholar]
  91. 91.
    Rahim A, Peters GHJ, Jalkanen KJ, Westh P. 2013.. Effects of mannose, fructose, and fucose on the structure, stability, and hydration of lysozyme in aqueous solution. . Curr. Phys. Chem. 3::11325
    [Crossref] [Google Scholar]
  92. 92.
    Rajan R, Ahmed S, Sharma N, Kumar N, Debas A, Matsumura K. 2021.. Review of the current state of protein aggregation inhibition from a materials chemistry perspective: special focus on polymeric materials. . Mater. Adv. 2:(4):113976
    [Crossref] [Google Scholar]
  93. 93.
    Ripple DC, Dimitrova MN. 2012.. Protein particles: what we know and what we do not know. . J. Pharm. Sci. 101:(10):356879
    [Crossref] [Google Scholar]
  94. 94.
    Roberts CJ. 2007.. Non-native protein aggregation kinetics. . Biotechnol. Bioeng. 98:(5):92738
    [Crossref] [Google Scholar]
  95. 95.
    Rosch TW, Errington JR. 2007.. Investigation of the phase behavior of an embedded charge protein model through molecular simulation. . J. Phys. Chem. B 111:(43):1259198
    [Crossref] [Google Scholar]
  96. 96.
    Rosenbaum D, Zamora PC, Zukoski CF. 1996.. Phase behavior of small attractive colloidal particles. . Phys. Rev. Lett. 76:(1):15053
    [Crossref] [Google Scholar]
  97. 97.
    Ross CA, Poirier MA. 2004.. Protein aggregation and neurodegenerative disease. . Nat. Med. 10::S1017
    [Crossref] [Google Scholar]
  98. 98.
    Salis A, Boström M, Medda L, Cugia F, Barse B, et al. 2011.. Measurements and theoretical interpretation of points of zero charge/potential of BSA protein. . Langmuir 27::11597604
    [Crossref] [Google Scholar]
  99. 99.
    Salis A, Monduzzi M. 2016.. Not only pH. Specific buffer effects in biological systems. . Curr. Opin. Colloid Interface Sci. 23::19
    [Crossref] [Google Scholar]
  100. 100.
    Salis A, Ninham BW. 2014.. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. . Chem. Soc. Rev. 43:(21):735877
    [Crossref] [Google Scholar]
  101. 101.
    Saunders MG, Voth GA. 2013.. Coarse-graining methods for computational biology. . Annu. Rev. Biophys. 42::7393
    [Crossref] [Google Scholar]
  102. 102.
    Schreiber G, Haran G, Zhou H. 2009.. Fundamental aspects of protein-protein association kinetics. . Chem. Rev. 109:(3):83960
    [Crossref] [Google Scholar]
  103. 103.
    Schwierz N, Horinek D, Sivan U, Netz RR. 2016.. Reversed Hofmeister series—the rule rather than the exception. . Curr. Opin. Colloid Interface Sci. 23::1018
    [Crossref] [Google Scholar]
  104. 104.
    Sear RP. 1999.. Phase behavior of a simple model of globular proteins. . J. Chem. Phys. 111:(10):48006
    [Crossref] [Google Scholar]
  105. 105.
    Shin Y, Brangwynne CP. 2017.. Liquid phase condensation in cell physiology and disease. . Science 357:(6357):eaaf4382
    [Crossref] [Google Scholar]
  106. 106.
    Shinde RA, Ghosh R, Prasanthan P, Kishore N. 2020.. Unraveling thermodynamic and conformational correlations in action of osmolytes on hen egg white lysozyme. . J. Mol. Liq. 317::1139964008
    [Crossref] [Google Scholar]
  107. 107.
    Shukla N, Pomarico E, Hecht CJ, Taylor EA, Chergui M, Othon CM. 2018.. Hydrophobic interactions of sucralose with protein structures. . Arch. Biochem. Biophys. 639::3843
    [Crossref] [Google Scholar]
  108. 108.
    Simončič M, Hritz J, Lukšič M. 2022.. Biomolecular complexation on the ``wrong side'': a case study of the influence of salts and sugars on the interactions between bovine serum albumin and sodium polystyrene sulfonate. . Biomacromolecules 23:(10):441226
    [Crossref] [Google Scholar]
  109. 109.
    Simončič M, Lukšič M. 2021.. Mechanistic differences in the effects of sucrose and sucralose on the phase stability of lysozyme solutions. . J. Mol. Liq. 326::115245
    [Crossref] [Google Scholar]
  110. 110.
    Simončič M, Lukšič M. 2022.. Modulating role of co-solutes in complexation between bovine serum albumin and sodium polystyrene sulfonate. . Polymers 14:(6):1245
    [Crossref] [Google Scholar]
  111. 111.
    Starciuc T, Malfait B, Danede F, Paccou L, Guinet Y, et al. 2020.. Trehalose or sucrose: Which of the two should be used for stabilizing proteins in the solid state? A dilemma investigated by in situ micro-Raman and dielectric relaxation spectroscopies during and after freeze-drying. . J. Pharm. Sci. 109::496504
    [Crossref] [Google Scholar]
  112. 112.
    Storey KB, Storey JM. 1990.. Frozen and alive. . Sci. Am. 263:(6):9297
    [Crossref] [Google Scholar]
  113. 113.
    Swaminathan R, Ravi VK, Kumar S, Kumar M, Chandra N. 2011.. Lysozyme: a model protein for amyloid research. . Adv. Protein Chem. Struct. Biol. 84::63111
    [Crossref] [Google Scholar]
  114. 114.
    Tavares TW, Prausnitz JM. 2004.. Analytic calculation of phase diagrams for solutions containing colloids or globular proteins. . Colloid Polym. Sci. 282::620632
    [Crossref] [Google Scholar]
  115. 115.
    Tavares TW, Prausnitz JM. 2004.. Ion-specific effects in the colloid–colloid or protein–protein potential of mean force: role of salt–macroion van der Waals interactions. . J. Phys. Chem. B 108::922835
    [Crossref] [Google Scholar]
  116. 116.
    ten Wolde PR, Frenkel D. 1997.. Enhancement of protein crystal nucleation by critical density fluctuations. . Science 277:(5334):197578
    [Crossref] [Google Scholar]
  117. 117.
    Thabault L, Liberelle M, Frédérick R. 2021.. Targeting protein self-association in drug design. . Drug Discov. Today 26:(5):114863
    [Crossref] [Google Scholar]
  118. 118.
    Timasheff SN. 2002.. Protein hydration, thermodynamic binding, and preferential hydration. . Biochemistry 41::1347382
    [Crossref] [Google Scholar]
  119. 119.
    Tsai CJ, Lin SL, Wolfson HJ, Nussinov R. 1997.. Studies of protein-protein interfaces: a statistical analysis of the hydrophobic effect. . Protein Sci. 6:(1):5364
    [Crossref] [Google Scholar]
  120. 120.
    Verwey EJW, Overbeek JTG 1948.. Theory of the Stability of Lyophobic Colloids. Amsterdam:: Elsevier
    [Google Scholar]
  121. 121.
    Villarreal MA, Díaz SB, Disalvo EA, Montich GG. 2004.. Molecular dynamics simulation study of the interaction of trehalose with lipid membranes. . Langmuir 20::784451
    [Crossref] [Google Scholar]
  122. 122.
    Wakefield AE, Kozakov D, Vajda S. 2022.. Mapping the binding sites of challenging drug targets. . Curr. Opin. Struct. Biol. 75::102396
    [Crossref] [Google Scholar]
  123. 123.
    Wang W. 1999.. Instability, stabilization, and formulation of liquid protein pharmaceuticals. . Int. J. Pharm. 185::12988
    [Crossref] [Google Scholar]
  124. 124.
    Wang W, Nema S, Teagarden D. 2010.. Protein aggregation—pathways and influencing factors. . Int. J. Pharm. 390:(2):8999
    [Crossref] [Google Scholar]
  125. 125.
    Wang Y, Latypov RF. 2019.. Quantitative evaluation of protein solubility in aqueous solutions by PEG-induced liquid–liquid phase separation. . Methods Mol. Biol. 2039::3949
    [Crossref] [Google Scholar]
  126. 126.
    Wang Y, Lomakin A, Kanai S, Alex R, Benedek GB. 2017.. Liquid-liquid phase separation in oligomeric peptide solutions. . Langmuir 33:(31):771521
    [Crossref] [Google Scholar]
  127. [Google Scholar]
  128. 128.
    Wertheim MS. 1986.. Fluids of dimerizing hard spheres, and fluid mixtures of hard spheres and dispheres. . J. Chem. Phys. 85:(5):292936
    [Crossref] [Google Scholar]
  129. 129.
    Wertheim MS. 1986.. Fluids with highly directional attractive forces. III. Multiple attraction sites. . J. Stat. Phys. 42::45976
    [Crossref] [Google Scholar]
  130. 130.
    Wu J, Zhao C, Lin W, Hu R, Wang Q, et al. 2014.. Binding characteristics between polyethylene glycol (PEG) and proteins in aqueous solution. . J. Mater. Chem. B 2::298392
    [Crossref] [Google Scholar]
  131. 131.
    Xu D, Tsai CJ, Nussinov R. 1997.. Hydrogen bonds and salt bridges across protein-protein interfaces. . Protein Eng. 10:(9):9991012
    [Crossref] [Google Scholar]
  132. 132.
    Yadav S, Shire S, Kalonia D. 2011.. Viscosity analysis of high concentration bovine serum albumin aqueous solutions. . Pharm. Res. 28::197383
    [Crossref] [Google Scholar]
  133. 133.
    Yasuda S, Kazama K, Akiyama T, Kinoshita M, Murata T. 2020.. Elucidation of cosolvent effects thermostabilizing water-soluble and membrane proteins. . J. Mol. Liq. 301::11240314
    [Crossref] [Google Scholar]
  134. 134.
    Zbacnik T, Holcomb R, Katayama D, Murphy B, Payne R, et al. 2017.. Role of buffers in protein formulations. . J. Pharm. Sci. 106:(3):71333
    [Crossref] [Google Scholar]
  135. 135.
    Zhang Y, Cremer PS. 2009.. The inverse and direct Hofmeister series for lysozyme. . PNAS 106:(36):1524953
    [Crossref] [Google Scholar]
  136. 136.
    Zhou HX, Pang X. 2018.. Electrostatic interactions in protein structure, folding, binding, and condensation. . Chem. Rev. 118:(4):1691741
    [Crossref] [Google Scholar]
  137. 137.
    Zölls S, Tantipolphan R, Wiggenhorn M, Winter G, Jiskoot W, et al. 2012.. Particles in therapeutic protein formulations, part 1: overview of analytical methods. . J. Pharm. Sci. 101:(3):91435
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-030722-111729
Loading
/content/journals/10.1146/annurev-biophys-030722-111729
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error