1932

Abstract

Structural biology is currently undergoing a transformation into dynamic structural biology, which reveals the dynamic structure of proteins during their functional activity to better elucidate how they function. Among the various approaches in dynamic structural biology, high-speed atomic force microscopy (HS-AFM) is unique in the ability to film individual molecules in dynamic action, although only topographical information is acquirable. This review provides a guide to the use of HS-AFM for biomolecular imaging and showcases several examples, as well as providing information on up-to-date progress in HS-AFM technology. Finally, we discuss the future prospects of HS-AFM in the context of dynamic structural biology in the upcoming era.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-030722-113353
2024-07-16
2024-12-11
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-030722-113353.html?itemId=/content/journals/10.1146/annurev-biophys-030722-113353&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abrahams JP, Leslie AG, Lutter R, Walker JE. 1994.. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. . Nature 370::62128
    [Crossref] [Google Scholar]
  2. 2.
    Amann SJ, Keihsler D, Bodrug T, Brown NG, Haselbach D. 2023.. Frozen in time: analyzing molecular dynamics with time-resolved cryo-EM. . Structure 31::419
    [Crossref] [Google Scholar]
  3. 3.
    Amyot R, Flechsig H. 2020.. BioAFMviewer: an interactive interface for simulated AFM scanning of biomolecular structures and dynamics. . PLOS Comput. Biol. 16::e1008444
    [Crossref] [Google Scholar]
  4. 4.
    Ando T. 2012.. High-speed atomic force microscopy coming of age. . Nanotechnology 23::062001
    [Crossref] [Google Scholar]
  5. 5.
    Ando T. 2019.. High-speed atomic force microscopy. . Curr. Opin. Chem. Biol. 51::10512
    [Crossref] [Google Scholar]
  6. 6.
    Ando T. 2022.. Functional implications of dynamic structures of intrinsically disordered proteins revealed by high-speed AFM imaging. . Biomolecules 12::1876
    [Crossref] [Google Scholar]
  7. 7.
    Ando T. 2022.. High-Speed Atomic Force Microscopy in Biology. Berlin:: Springer
    [Google Scholar]
  8. 8.
    Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A. 2001.. A high-speed atomic force microscope for studying biological macromolecules. . PNAS 98::1246872
    [Crossref] [Google Scholar]
  9. 9.
    Ando T, Uchihashi T, Fukuma T. 2008.. High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. . Prog. Surf. Sci. 83::337437
    [Crossref] [Google Scholar]
  10. 10.
    Ando T, Uchihashi T, Kodera N. 2013.. High-speed AFM and applications to biomolecular systems. . Annu. Rev. Biophys. 42::393414
    [Crossref] [Google Scholar]
  11. 11.
    Ando T, Uchihashi T, Scheuring S. 2014.. Filming biomolecular processes by high-speed atomic force microscopy. . Chem. Rev. 114::312088
    [Crossref] [Google Scholar]
  12. 12.
    Azad K, Guilligay D, Boscheron C, Maity S, De Franceschi N, et al. 2023.. Structural basis of CHMP2A-CHMP3 ESCRT-III polymer assembly and membrane cleavage. . Nat. Struct. Mol. Biol. 30::8190
    [Crossref] [Google Scholar]
  13. 13.
    Baba M, Iwamoto K, Iino R, Ueno H, Hara M, et al. 2016.. Rotation of artificial rotor axles in rotary molecular motors. . PNAS 113::1121419
    [Crossref] [Google Scholar]
  14. 14.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, et al. 2021.. Accurate prediction of protein structures and interactions using a three-track neural network. . Science 373::87176
    [Crossref] [Google Scholar]
  15. 15.
    Banterle N, Nievergelt AP, de Buhr S, Hatzopoulos GN, Brillard C, et al. 2021.. Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture. . Nat. Commun. 12::6180
    [Crossref] [Google Scholar]
  16. 16.
    Bauer BW, Davidson IF, Canena D, Wutz G, Tang W, et al. 2021.. Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism. . Cell 184::544864
    [Crossref] [Google Scholar]
  17. 17.
    Betzig E. 2015.. Nobel Lecture: Single molecules, cells, and super-resolution optics. . Rev. Mod. Phys. 87::115368
    [Crossref] [Google Scholar]
  18. 18.
    Bryant P. 2023.. Deep learning for protein complex structure prediction. . Curr. Opin. Struct. Biol. 79::102529
    [Crossref] [Google Scholar]
  19. 19.
    Bryant P, Pozzati G, Elofsson A. 2022.. Improved prediction of protein-protein interactions using AlphaFold2. . Nat. Commun. 13::1265
    [Crossref] [Google Scholar]
  20. 20.
    Bryant P, Pozzati G, Zhu W, Shenoy A, Kundrotas P, Elofsson A. 2022.. Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search. . Nat. Commun. 13::6028
    [Crossref] [Google Scholar]
  21. 21.
    Burley SK, Bhikadiya C, Bi C, Bittrich S, Chao H, et al. 2023.. RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. . Nucleic Acids Res. 51::D488508
    [Crossref] [Google Scholar]
  22. 22.
    Bustamante CJ, Chemla YR, Liu S, Wang MD. 2021.. Optical tweezers in single-molecule biophysics. . Nat. Rev. Methods Primers 1::25
    [Crossref] [Google Scholar]
  23. 23.
    Buzón P, Maity S, Christodoulis P, Wiertsema MJ, Dunkelbarger S, et al. 2021.. Virus self-assembly proceeds through contact-rich energy minima. . Sci. Adv. 7::eabg0811
    [Crossref] [Google Scholar]
  24. 24.
    Casuso I, Khao J, Chami M, Paul-Gilloteaux P, Husain M, et al. 2012.. Characterization of the motion of membrane proteins using high-speed atomic force microscopy. . Nat. Nanotechnol. 7::52529
    [Crossref] [Google Scholar]
  25. 25.
    Chiaruttini N, Redondo-Morata L, Colom A, Humbert F, Lenz M, et al. 2015.. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. . Cell 163::86679
    [Crossref] [Google Scholar]
  26. 26.
    Chiwata R, Kohori A, Kawakami R, Shiroguchi K, Furuike S, et al. 2014.. None of the rotor residues of F1-ATPase are essential for torque generation. . Biophys. J. 106::216674
    [Crossref] [Google Scholar]
  27. 27.
    Chua EYD, Mendez JH, Rapp M, Ilca SL, Tan YZ, et al. 2022.. Better, faster, cheaper: recent advances in cryo-electron microscopy. . Annu. Rev. Biochem. 91::132
    [Crossref] [Google Scholar]
  28. 28.
    Colom A, Redondo-Morata L, Chiaruttini N, Roux A, Scheuring S. 2017.. Dynamic remodeling of the dynamin helix during membrane constriction. . PNAS 114::544954
    [Crossref] [Google Scholar]
  29. 29.
    Dandey VP, Budell WC, Wei H, Bobe D, Maruthi K, et al. 2020.. Time-resolved cryo-EM using Spotiton. . Nat. Methods 17::897900
    [Crossref] [Google Scholar]
  30. 30.
    Darst SA, Ahlers M, Meller PH, Kubalek EW, Blankenburg R, et al. 1991.. Two-dimensional crystals of streptavidin on biotinylated lipid layers and their interactions with biotinylated macromolecules. . Biophys. J. 59::38796
    [Crossref] [Google Scholar]
  31. 31.
    Davies T, Kodera N, Kaminski Schierle GS, Rees E, Erdelyi M, et al. 2015.. CYK4 promotes antiparallel microtubule bundling by optimizing MKLP1 neck conformation. . PLOS Biol. 13::e1002121
    [Crossref] [Google Scholar]
  32. 32.
    Deniz AA, Mukhopadhyay S, Lemke EA. 2008.. Single-molecule biophysics: at the interface of biology, physics and chemistry. . J. R. Soc. Interface 5::1545
    [Crossref] [Google Scholar]
  33. 33.
    Dukic M, Todorov V, Andany S, Nievergelt AP, Yang C, et al. 2017.. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy. . Rev. Sci. Instrum. 88::123712
    [Crossref] [Google Scholar]
  34. 34.
    Eeftens JM, Katan AJ, Kschonsak M, Hassler M, de Wilde L, et al. 2016.. Condensin Smc2-Smc4 dimers are flexible and dynamic. . Cell Rep. 14::181318
    [Crossref] [Google Scholar]
  35. 35.
    Eggeling C, Willig KI, Sahl SJ, Hell SW. 2015.. Lens-based fluorescence nanoscopy. . Q. Rev. Biophys. 48::178243
    [Crossref] [Google Scholar]
  36. 36.
    Fantner GE, Schitter G, Kindt JH, Ivanov T, Ivanova K, et al. 2006.. Components for high speed atomic force microscopy. . Ultramicroscopy 106::88187
    [Crossref] [Google Scholar]
  37. 37.
    Feng L, Watanabe H, Molino P, Wallace GG, Phung SL, et al. 2019.. Dynamics of inter-molecular interactions between single Aβ42 oligomeric and aggregate species by high-speed atomic force microscopy. . J. Mol. Biol. 431::268799
    [Crossref] [Google Scholar]
  38. 38.
    Feng Y, Hashiya F, Hidaka K, Sugiyama H, Endo M. 2020.. Direct observation of dynamic interactions between orientation-controlled nucleosomes in a DNA origami frame. . Chem. Eur. J. 26::1528289
    [Crossref] [Google Scholar]
  39. 39.
    Flechsig H, Ando T. 2023.. Protein dynamics by the combination of high-speed AFM and computational modeling. . Curr. Opin. Strcut. Biol. 80::102591
    [Crossref] [Google Scholar]
  40. 40.
    Franco A, Gracia P, Colom A, Camino JD, Fernández-Higuero , et al. 2021.. All-or-none amyloid disassembly via chaperone-triggered fibril unzipping favors clearance of α-synuclein toxic species. . PNAS 118::e2105548118
    [Crossref] [Google Scholar]
  41. 41.
    Fujioka Y, Alam JM, Noshiro D, Mouri K, Ando T, et al. 2020.. Phase separation organizes the site of autophagosome formation. . Nature 678::3015
    [Crossref] [Google Scholar]
  42. 42.
    Fujita J, Sugiyama S, Terakado H, Miyazaki M, Ozawa M, et al. 2021.. Dynamic assembly/disassembly of Staphylococcus aureus FtsZ visualized by high-speed atomic force microscopy. . Int. J. Mol. Sci. 22::1697
    [Crossref] [Google Scholar]
  43. 43.
    Fukuda S, Ando T. 2021.. Faster high-speed atomic force microscopy for imaging of biomolecular processes. . Rev. Sci. Instrum. 92::033705
    [Crossref] [Google Scholar]
  44. 44.
    Ganser C, Uchihashi T. 2019.. Microtubule self-healing and defect creation investigated by in-line force measurements during high-speed atomic force microscopy imaging. . Nanoscale 11::12535
    [Crossref] [Google Scholar]
  45. 45.
    Gao M, Nakajima An D, Parks JM, Skolnick J. 2022.. AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. . Nat. Commun. 13::1744
    [Crossref] [Google Scholar]
  46. 46.
    Ha T, Kozlov AG, Lohman TM, 2012.. Single-molecule views of protein movement on single-stranded DNA. . Annu. Rev. Biophys. 41::295319
    [Crossref] [Google Scholar]
  47. 47.
    Haruyama T, Sugano Y, Kodera N, Uchihashi T, Ando T, et al. 2019.. Single-unit imaging of membrane protein-embedded nanodiscs from two oriented sides by high-speed atomic force microscopy. . Structure 27::15260
    [Crossref] [Google Scholar]
  48. 48.
    Haruyama T, Uchihashi T, Yamada Y, Kodera N, Ando T, Konno H. 2018.. Negatively charged lipids are essential for functional and structural switch of human 2-Cys peroxiredoxin II. . J. Mol. Biol. 430::60210
    [Crossref] [Google Scholar]
  49. 49.
    Hirano R, Arimura Y, Kujirai T, Shibata M, Okuda A, et al. 2021.. Histone variant H2A.B-H2B dimers are spontaneously exchanged with canonical H2A-H2B in the nucleosome. . Commun. Biol. 4::191
    [Crossref] [Google Scholar]
  50. 50.
    Hirayama C, Machida K, Noi K, Murakawa T, Okumura M, et al. 2021.. Distinct roles and actions of protein disulfide isomerase family enzymes in catalysis of nascent-chain disulfide bond formation. . iScience 24::102296
    [Crossref] [Google Scholar]
  51. 51.
    Horwich AL, Fenton WA. 2020.. Chaperonin-assisted protein folding: a chronologue. . Q. Rev. Biophys. 53::e4
    [Crossref] [Google Scholar]
  52. 52.
    Huang B, Bates M, Zhuang X. 2009.. Super-resolution fluorescence microscopy. . Annu. Rev. Biochem. 78::9931016
    [Crossref] [Google Scholar]
  53. 53.
    Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, et al. 2011.. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. . Science 333::127982
    [Crossref] [Google Scholar]
  54. 54.
    Igarashi K, Uchihashi T, Uchiyama T, Sugimoto H, Wada M, et al. 2014.. Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin. . Nat. Commun. 5::3975
    [Crossref] [Google Scholar]
  55. 55.
    Inoue Y, Hanazono Y, Noi K, Kawamoto A, Kimatsuka M, et al. 2021.. Split conformation of Chaetomium thermophilum Hsp104 disaggregase. . Structure 29::72130
    [Crossref] [Google Scholar]
  56. 56.
    Jin X, Tanaka H, Jin M, Fujita K, Homma H, et al. 2023.. PQBP5/NOL10 maintains and anchors the nucleolus under physiological and osmotic stress conditions. . Nat. Commun. 14::9
    [Crossref] [Google Scholar]
  57. 57.
    Jonkheijm P, Weinrich D, Schröder H, Niemeyer CM, Waldmann H. 2008.. Chemical strategies for generating protein biochips. . Angew. Chem. 50::961847
    [Crossref] [Google Scholar]
  58. 58.
    Jukic N, Perrino AP, Humbert F, Roux A, Scheuring S. 2022.. Snf7 spirals sense and alter membrane curvature. . Nat. Commun. 13::2174
    [Crossref] [Google Scholar]
  59. 59.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  60. 60.
    Kageyama H, Nishiwaki T, Nakajima M, Iwasaki H, Oyama T, Kondo T. 2006.. Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro. . Mol. Cell 23::16171
    [Crossref] [Google Scholar]
  61. 61.
    Kim J, Kim G, Cremer PS. 2001.. Investigations of water structure at the solid/liquid interface in the presence of supported lipid bilayers by vibrational sum frequency spectroscopy. . Langmuir 17::725560
    [Crossref] [Google Scholar]
  62. 62.
    Kitazawa M, Shiotani K, Toda A. 2003.. Batch fabrication of sharpened silicon nitride tips. . Jpn. J. Appl. Phys. 42::484447
    [Crossref] [Google Scholar]
  63. 63.
    Kobayashi Y, Misumi O, Odahara M, Ishibashi K, Hirono M, et al. 2017.. Holliday junction resolvases mediate chloroplast nucleoid segregation. . Science 356::63134
    [Crossref] [Google Scholar]
  64. 64.
    Kodera N, Ando T. 2022.. Guide to studying intrinsically disordered proteins by high-speed atomic force microscopy. . Methods 207::4456
    [Crossref] [Google Scholar]
  65. 65.
    Kodera N, Ando T. 2022.. Visualization of intrinsically disordered proteins by high-speed atomic force microscopy. . Curr. Opin. Struct. Biol. 72::26066
    [Crossref] [Google Scholar]
  66. 66.
    Kodera N, Noshiro D, Dora SK, Mori M, Habchi J, et al. 2021.. Structural and dynamics analysis of intrinsically disordered proteins by high-speed atomic force microscopy. . Nat. Nanotechnol. 16::18189
    [Crossref] [Google Scholar]
  67. 67.
    Kodera N, Sakashita M, Ando T. 2006.. Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. . Rev. Sci. Instrum. 77::083704
    [Crossref] [Google Scholar]
  68. 68.
    Kodera N, Yamamoto D, Ishikawa R, Ando T. 2010.. Video imaging of walking myosin V by high-speed atomic force microscopy. . Nature 468::7276
    [Crossref] [Google Scholar]
  69. 69.
    Kodera N, Yamashita H, Ando T. 2005.. Active damping of the scanner for high-speed atomic force microscopy. . Rev. Sci. Instrum. 76::053708
    [Crossref] [Google Scholar]
  70. 70.
    Konno H, Watanabe-Nakayama T, Uchihashi T, Okuda M, Zhu L, et al. 2020.. Dynamics of oligomer and amyloid fibril formation by yeast prion Sup35 observed by high-speed atomic force microscopy. . PNAS 117::783136
    [Crossref] [Google Scholar]
  71. 71.
    Lee AJ, Endo M, Hobbs JK, Wälti C. 2018.. Direct single-molecule observation of mode and geometry of RecA-mediated homology search. . ACS Nano 12::27278
    [Crossref] [Google Scholar]
  72. 72.
    Leung C, Hodel AW, Brennan AJ, Lukoyanova N, Tran S, et al. 2016.. Real-time visualization of perforin nanopore assembly. . Nat. Nanotechnol. 12::46773
    [Crossref] [Google Scholar]
  73. 73.
    Liao M, Cao E, Julius D, Cheng Y. 2013.. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. . Nature 504::10712
    [Crossref] [Google Scholar]
  74. 74.
    Lim K, Nishide G, Yoshida T, Watanabe-Nakayama T, Kobayashi A, et al. 2021.. Millisecond dynamic of SARS-CoV-2 spike and its interaction with ACE receptor and small extracellular vesicles. . J. Extracell. Vesicle 10::e12170
    [Crossref] [Google Scholar]
  75. 75.
    Lin Y-C, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. 2019.. Force-induced conformational changes in PIEZO1. . Nature 573::23034
    [Crossref] [Google Scholar]
  76. 76.
    Marchesi A, Gao X, Adaixo R, Rheinberger J, Stahlberg H, et al. 2018.. An iris diaphragm mechanism to gate a cyclic nucleotide-gated ion channel. . Nat. Commun. 9::3978
    [Crossref] [Google Scholar]
  77. 77.
    Matusovsky OS, Kodera N, MacEachen C, Ando T, Cheng Y-S, Rassier DE. 2021.. Millisecond conformational dynamics of skeletal myosin II power stroke studied by high-speed atomic force microscopy. . ACS Nano 15::222939
    [Crossref] [Google Scholar]
  78. 78.
    Matusovsky OS, Mansson A, Persson M, Cheng Y-S, Rassier DE. 2019.. High-speed AFM reveals subsecond dynamics of cardiac thin filaments upon Ca2+ activation and heavy meromyosin binding. . PNAS 116::1638493
    [Crossref] [Google Scholar]
  79. 79.
    Mierzwa BE, Chiaruttini N, Redondo-Morata L, Moser Von Filseck J, König J, et al. 2017.. Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. . Nat. Cell Biol. 19::78798
    [Crossref] [Google Scholar]
  80. 80.
    Mikheikin A, Olsen A, Leslie K, Russell-Pavier F, Yacoot A, et al. 2017.. DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle. . Nat. Commun. 8::1665
    [Crossref] [Google Scholar]
  81. 81.
    Milhiet PE, Yamamoto D, Berthoumieu O, Dosset P, Le Grimellec C, et al. 2010.. Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy. . PLOS ONE 5::e13240
    [Crossref] [Google Scholar]
  82. 82.
    Miller H, Zhou Z, Shepherd J, Wollman AJM, Leake MC. 2018.. Single-molecule techniques in biophysics: a review of the progress in methods and applications. . Rep. Prog. Phys. 81::024601
    [Crossref] [Google Scholar]
  83. 83.
    Miyagi A, Chipot C, Rangl M, Scheuring S. 2016.. High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale. . Nat. Nanotechnol. 11::78390
    [Crossref] [Google Scholar]
  84. 84.
    Miyagi A, Ramm B, Schwille P, Scheuring S. 2018.. High-speed atomic force microscopy reveals the inner workings of the MinDE protein oscillator. . Nano Lett. 18::28896
    [Crossref] [Google Scholar]
  85. 85.
    Miyagi A, Scheuring S. 2016.. Automated force controller for amplitude modulation atomic force microscopy. . Rev. Sci. Instrum. 87::053705
    [Crossref] [Google Scholar]
  86. 86.
    Mori T, Hirose A, Hagiwara T, Ohtsuka M, Kakuta Y, et al. 2012.. Single-molecular enzymatic elongation of hyaluronan polymers visualized by high-speed atomic force microscopy. . J. Am. Chem. Soc. 134::2025457
    [Crossref] [Google Scholar]
  87. 87.
    Mori T, Sugiyama S, Byme M, Johnson CH, Uchihashi T, Ando T. 2018.. Revealing circadian mechanisms of integration and resilience by visualizing clock proteins working in real time. . Nat. Commun. 9::3245
    [Crossref] [Google Scholar]
  88. 88.
    Munguira I, Casuso I, Takahashi H, Rico F, Miyagi A, et al. 2016.. Glasslike membrane protein diffusion in a crowded membrane. . ACS Nano 10::258490
    [Crossref] [Google Scholar]
  89. 89.
    Murata K, Wolf M. 2018.. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. . Biochim. Biophys. Acta Gen. Subj. 1862::32434
    [Crossref] [Google Scholar]
  90. 90.
    Nakamura A, Tasaki T, Okuni Y, Song C, Murata K, et al. 2018.. Rate constants, processivity, and productive binding ratio of chitinase A revealed by single-molecule analysis. . Phys. Chem. Chem. Phys. 20::301018
    [Crossref] [Google Scholar]
  91. 91.
    Nakamura A, Watanabe H, Ishida T, Uchihashi T, Wada M, et al. 2014.. Trade-off between processivity and hydrolytic velocity of cellobiohydrolases at the surface of crystalline cellulose. . J. Am. Chem. Soc. 136::458492
    [Crossref] [Google Scholar]
  92. 92.
    Nango E, Royant A, Kubo M, Nakane T, Wickstrand C, et al. 2016.. A three-dimensional movie of structural changes in bacteriorhodopsin. . Science 354::155257
    [Crossref] [Google Scholar]
  93. 93.
    Ngo KX, Kodera N, Katayama E, Ando T, Uyeda TQP. 2015.. Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed AFM. . eLife 4::e04806
    [Crossref] [Google Scholar]
  94. 94.
    Nievergelt AP, Banterle N, Andany SH, Gönczy P, Fantner GE. 2018.. High-speed photothermal off-resonance atomic force microscopy reveals assembly routes of centriolar scaffold protein SAS-6. . Nat. Nanotechnol. 13::696701
    [Crossref] [Google Scholar]
  95. 95.
    Nishiguchi S, Furuta T, Uchihashi T. 2022.. Multiple dimeric structures and strand-swap dimerization of E-cadherin in solution visualized by high-speed atomic force microscopy. . PNAS 119::e2208067119
    [Crossref] [Google Scholar]
  96. 96.
    Noi K, Yamamoto D, Nishikori S, Arita-Morioka K, Ando T, Ogura T. 2013.. High-speed atomic force microscopic observation of ATP-dependent rotation of the AAA+ chaperone p97. . Structure 21::19922002
    [Crossref] [Google Scholar]
  97. 97.
    Noshiro D, Ando T. 2018.. Substrate protein dependence of GroEL-GroES interaction cycle revealed by high-speed AFM imaging. . Philos. Trans. R. Soc. B 373::20170180
    [Crossref] [Google Scholar]
  98. 98.
    Oda K, Nomura T, Nakane T, Yamashita K, Inoue K, et al. 2021.. Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin. . eLife 10::e62389
    [Crossref] [Google Scholar]
  99. 99.
    Okumura M, Noi K, Kanemura S, Kinoshita M, Saio T, et al. 2019.. Dynamic assembly of protein disulfide isomerase in catalysis of oxidative folding. . Nat. Chem. Biol. 15::499509
    [Crossref] [Google Scholar]
  100. 100.
    Owa M, Uchihashi T, Yanagisawa H, Yamano T, Iguchi H, et al. 2019.. Inner lumen proteins stabilize doublet microtubules in cilia and flagella. . Nat. Commun. 10::1143
    [Crossref] [Google Scholar]
  101. 101.
    Pan Y, Shlyakhtenko LS, Lyubchenko YL. 2019.. Insight into the dynamics of APOBEC3G protein in complexes with DNA assessed by high-speed AFM. . Nanoscale Adv. 1::401624
    [Crossref] [Google Scholar]
  102. 102.
    Parsons ES, Stanley GJ, Pyne ALB, Hodel AW, Nievergelt AP, et al. 2019.. Single-molecule kinetics of pore assembly by the membrane attack complex. . Nat. Commun. 10::2066
    [Crossref] [Google Scholar]
  103. 103.
    Preiner J, Horner A, Karner A, Ollinger N, Siligan C, et al. 2015.. High-speed AFM images of thermal motion provide stiffness map of interfacial membrane protein moieties. . Nano Lett. 15::75963
    [Crossref] [Google Scholar]
  104. 104.
    Preiner J, Kodera N, Tang J, Ebner A, Brameshuber M, et al. 2014.. IgGs are made for walking on bacterial and viral surfaces. . Nat. Commun. 5::4394
    [Crossref] [Google Scholar]
  105. 105.
    Puppulin L, Ishikawa J, Sumino A, Marchesi A, Flechsig H, et al. 2023.. Dynamics of target DNA binding and cleavage by Staphylococcus aureus Cas9 as revealed by high-speed atomic force microscopy. . ACS Nano 17::462941
    [Crossref] [Google Scholar]
  106. 106.
    Qu M, Watanabe-Nakayama T, Sun S, Umeda K, Guo X, et al. 2020.. High-speed atomic force microscopy reveals factors affecting the processivity of chitinases during interfacial enzymatic hydrolysis of crystalline chitin. . ACS Catal. 10::1360615
    [Crossref] [Google Scholar]
  107. 107.
    Raghavan G, Hidaka K, Sugiyama H, Endo M. 2019.. Direct observation and analysis of the dynamics of the photoresponsive transcription factor GAL4. . Angew. Chem. Int. Ed. 58::762630
    [Crossref] [Google Scholar]
  108. 108.
    Rangl M, Schmandt N, Perozo E, Scheuring S. 2019.. Real time dynamics of gating-related conformational changes in CorA. . eLife 8::e47322
    [Crossref] [Google Scholar]
  109. 109.
    Reviakine I, Brisson A. 2001.. Streptavidin 2D crystals on supported phospholipid bilayers: toward constructing anchored phospholipid bilayers. . Langmuir 17::829399
    [Crossref] [Google Scholar]
  110. 110.
    Ruan Y, Miyagi A, Wang X, Chami M, Boudker O, Scheuring S. 2017.. Direct visualization of glutamate transporter elevator mechanism by high-speed AFM. . PNAS 114::158488
    [Crossref] [Google Scholar]
  111. 111.
    Ryu J-K, Bouchoux C, Liu HW, Kim E, Minamino M, et al. 2021.. Bridging-induced phase separation induced by cohesion SMC protein complexes. . Sci. Adv. 7::eabe5905
    [Crossref] [Google Scholar]
  112. 112.
    Sackmann E. 1996.. Supported membranes: scientific and practical applications. . Science 271::4348
    [Crossref] [Google Scholar]
  113. 113.
    Sahoo BR, Genjo T, Nakayama TW, Stoddard AK, Ando T, et al. 2019.. A cationic polymethacrylate-copolymer acts as an agonist for β-amyloid and an antagonist for amylin fibrillation. . Chem. Sci. 10::397686
    [Crossref] [Google Scholar]
  114. 114.
    Schotte F, Lim M, Jackson TA, Smirnov AV, Soman J, et al. 2003.. Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. . Science 300::194447
    [Crossref] [Google Scholar]
  115. 115.
    Shibata M, Nishimasu H, Kodera N, Hirano S, Ando T, et al. 2017.. Realspace and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy. . Nat. Commun. 8::1430
    [Crossref] [Google Scholar]
  116. 116.
    Shibata M, Uchihashi T, Yamashita H, Kandori H, Ando T. 2011.. Structural changes in bacteriorhodopsin in response to alternate illumination observed by high-speed atomic force microscopy. . Angew. Chem. Int. Ed. 50::441013
    [Crossref] [Google Scholar]
  117. 117.
    Shibata M, Yamashita H, Uchihashi T, Kandori H, Ando T. 2010.. High-speed atomic force microscopy shows dynamic molecular processes in photo-activated bacteriorhodopsin. . Nat. Nanotechnol. 5::20812
    [Crossref] [Google Scholar]
  118. 118.
    Shimizu M, Okamoto C, Umeda K, Watanabe S, Ando T, Kodera N. 2022.. An ultrafast piezoelectric Z-scanner with a resonance frequency above 1.1 MHz for high-speed atomic force microscopy. . Rev. Sci. Instrum. 93::013701
    [Crossref] [Google Scholar]
  119. 119.
    Šrajer V, Schmidt M. 2017.. Watching proteins function with time-resolved x-ray crystallography. . J. Phys. D 50::373001
    [Crossref] [Google Scholar]
  120. 120.
    Takakura Y, Tsunashima M, Suzuki J, Usami S, Kakuta Y, et al. 2009.. Tamavidins—novel avidin-like biotin-binding proteins from the Tamogitake mushroom. . FEBS J. 276::138397
    [Crossref] [Google Scholar]
  121. 121.
    Takeda T, Kozai T, Yang H, Ishikuro D, Seyama K, et al. 2018.. Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis. . eLife 7::e30246
    [Crossref] [Google Scholar]
  122. 122.
    Tashiro R, Taguchi H, Hidaka K, Endo M, Sugiyama H. 2019.. Effects of physical damage in the intermediate phase on the progression of amyloid β fibrillization. . Chem. Asian J. 14::414045
    [Crossref] [Google Scholar]
  123. 123.
    Tatebe H, Lim CT, Konno H, Shiozaki K, Shinohara A, et al. 2020.. Rad50 zinc hook functions as a constitutive dimerization module interchangeable with SMC hinge. . Nat. Commun. 11::370
    [Crossref] [Google Scholar]
  124. 124.
    Torino S, Dhurandhar M, Stroobants A, Claessens R, Efremov RG. 2023.. Time-resolved cryo-EM using a combination of droplet microfluidics with on-demand jetting. . Nat. Methods 20::14008
    [Crossref] [Google Scholar]
  125. 125.
    Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, et al. 2021.. Highly accurate protein structure prediction for the human proteome. . Nature 596::59096
    [Crossref] [Google Scholar]
  126. 126.
    Uchihashi T, Iino R, Ando T, Noji H. 2011.. High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. . Science 333::75558
    [Crossref] [Google Scholar]
  127. 127.
    Uchihashi T, Kodera N, Ando T. 2012.. Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. . Nat. Protoc. 7::1193206
    [Crossref] [Google Scholar]
  128. 128.
    Uchihashi T, Scheuring S. 2018.. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes. . Biophys. Biochem. Acta Gen. Subj. 1862::22940
    [Crossref] [Google Scholar]
  129. 129.
    Uchihashi T, Watanabe Y, Nakazaki Y, Yamasaki T, Watanabe H, et al. 2018.. Dynamic structural states of ClpB involved in its disaggregation function. . Nat. Commun. 9::2147
    [Crossref] [Google Scholar]
  130. 130.
    Umeda K, Okamoto C, Shimizu M, Watanabe S, Ando T, Kodera N. 2021.. Architecture of zero-latency ultrafast amplitude detector for high-speed atomic force microscopy. . Appl. Phys. Lett. 119::181602
    [Crossref] [Google Scholar]
  131. 131.
    Ushimaru K, Mizuno S, Honya A, Abe H, Tsuge T. 2017.. Real-time observation of enzymatic polyhydroxyalkanoate polymerization using high-speed scanning atomic force microscopy. . ACS Omega 2::18185
    [Crossref] [Google Scholar]
  132. 132.
    Vadgama P. 2005.. Surface biocompatibility. . Annu. Rep. Prog. Chem. C 101::1452
    [Crossref] [Google Scholar]
  133. 133.
    Viani MB, Schäffer TE, Chand A, Rief M, Gaub HE, Hansma PK. 1999.. Small cantilevers for force spectroscopy of single molecules. . J. Appl. Phys. 86::225862
    [Crossref] [Google Scholar]
  134. 134.
    Viani MB, Schäffer TE, Paloczi GT, Pietrasanta LI, Smith BL, et al. 1999.. Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. . Rev. Sci. Instrum. 70::43003
    [Crossref] [Google Scholar]
  135. 135.
    Visootsat A, Nakamura A, Vignon P, Watanabe H, Uchihashi T, Iino R. 2020.. Single-molecule imaging analysis reveals the mechanism of a high-catalytic-activity mutant of chitinase A from Serratia marcescens. . J. Biol. Chem. 295::191525
    [Crossref] [Google Scholar]
  136. 136.
    Wang H, Bash R, Yodh JG, Hager GL, Lohr D, Lindsay SM. 2002.. Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin. . Biophys. J. 83::361925
    [Crossref] [Google Scholar]
  137. 137.
    Watanabe H, Uchihashi T, Kobashi T, Shibata M, Nishiyama J, et al. 2013.. Wide-area scanner for high-speed atomic force microscopy. . Rev. Sci. Instrum. 84::053702
    [Crossref] [Google Scholar]
  138. 138.
    Watanabe-Nakayama T, Itami M, Kodera N, Ando T, Konno H. 2016.. High-speed atomic force microscopy reveals strongly polarized movement of clostridial collagenase along collagen fibrils. . Sci. Rep. 6::28975
    [Crossref] [Google Scholar]
  139. 139.
    Watanabe-Nakayama T, Ono K, Itami M, Takahashi R, Teplow DB, Yamada M. 2016.. High-speed atomic force microscopy reveals structural dynamics of amyloid β1–42 aggregates. . PNAS 113::583540
    [Crossref] [Google Scholar]
  140. 140.
    Xu Z, Horwich AL, Sigler PB. 1997.. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. . Nature 388::74150
    [Crossref] [Google Scholar]
  141. 141.
    Yamamoto D, Ando T. 2016.. Chaperonin GroEL-GroES functions as both alternating and nonalternating engines. . J. Mol. Biol. 428::3090101
    [Crossref] [Google Scholar]
  142. 142.
    Yamamoto D, Nagura N, Omote S, Taniguchi M, Ando T. 2009.. Streptavidin 2D crystal substrates for visualizing biomolecular processes by atomic force microscopy. . Biophys. J. 97::235867
    [Crossref] [Google Scholar]
  143. 143.
    Yamamoto D, Uchihashi T, Kodera N, Yamashita H, Nishikori S, et al. 2010.. High-speed atomic force microscopy techniques for observing dynamic biomolecular processes. . Methods Enzymol. 475::54164
    [Crossref] [Google Scholar]
  144. 144.
    Yamashita H, Inoue K, Shibata M, Uchihashi T, Sasaki J, et al. 2013.. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy. . J. Struct. Biol. 184::211
    [Crossref] [Google Scholar]
  145. 145.
    Yamashita H, Taoka A, Uchihashi T, Asano T, Ando T, Fukumori Y. 2012.. Single molecule imaging on living bacterial cell surface by high-speed AFM. . J. Mol. Biol. 422::3009
    [Crossref] [Google Scholar]
  146. 146.
    Yifrach O, Horovitz A. 1995.. Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. . Biochemistry 34::53038
    [Crossref] [Google Scholar]
  147. 147.
    Yilmaz N, Kobayashi T. 2016.. Assemblies of pore-forming toxins visualized by atomic force microscopy. . Biochim. Biophys. Acta 1858::50011
    [Crossref] [Google Scholar]
  148. 148.
    Yilmaz N, Yamada T, Greimel P, Uchihashi T, Ando T, Kobayashi T. 2013.. Real-time visualization of assembling of a sphingomyelin-specific toxin on planar lipid membranes. . Biophys. J. 105::1397405
    [Crossref] [Google Scholar]
  149. 149.
    Yip KM, Fischer N, Paknia E, Chari A, Stark H. 2020.. Atomic-resolution protein structure determination by cryo-EM. . Nature 587::15761
    [Crossref] [Google Scholar]
  150. 150.
    Zhang SF, Rolfe P, Wright G, Lian W, Milling AJ, et al. 1998.. Physical and biological properties of compound membranes incorporating a copolymer with a phosphorylcholine head group. . Biomaterials 19::691700
    [Crossref] [Google Scholar]
  151. 151.
    Zhu R, Canena D, Sikora M, Klausberger M, Seferovic H, et al. 2022.. Force-tuned avidity of spike variant-ACE2 interactions viewed on the single molecule level. . Nat. Commun. 13::7926
    [Crossref] [Google Scholar]
  152. 152.
    Zuttion F, Colom A, Matile S, Farago D, Pompeo F, et al. 2020.. High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action. . Nat. Commun. 11::6312
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-030722-113353
Loading
/content/journals/10.1146/annurev-biophys-030722-113353
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error