1932

Abstract

Biomolecular condensates are highly versatile membraneless organelles involved in a plethora of cellular processes. Recent years have witnessed growing evidence of the interaction of these droplets with membrane-bound cellular structures. Condensates’ adhesion to membranes can cause their mutual molding and regulation, and their interaction is of fundamental relevance to intracellular organization and communication, organelle remodeling, embryogenesis, and phagocytosis. In this article, we review advances in the understanding of membrane–condensate interactions, with a focus on in vitro models. These minimal systems allow the precise characterization and tuning of the material properties of both membranes and condensates and provide a workbench for visualizing the resulting morphologies and quantifying the interactions. These interactions can give rise to diverse biologically relevant phenomena, such as molecular-level restructuring of the membrane, nano- to microscale ruffling of the condensate–membrane interface, and coupling of the protein and lipid phases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-030722-121518
2024-07-16
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-030722-121518.html?itemId=/content/journals/10.1146/annurev-biophys-030722-121518&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ali Doosti B, Pezeshkian W, Bruhn DS, Ipsen JH, Khandelia H, et al. 2017.. Membrane tubulation in lipid vesicles triggered by the local application of calcium ions. . Langmuir 33::1101017
    [Crossref] [Google Scholar]
  2. 2.
    Alshareedah I, Moosa MM, Pham M, Potoyan DA, Banerjee PR. 2021.. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. . Nat. Commun. 12::6620
    [Crossref] [Google Scholar]
  3. 3.
    Alshareedah I, Moosa MM, Raju M, Potoyan DA, Banerjee PR. 2020.. Phase transition of RNA−protein complexes into ordered hollow condensates. . PNAS 117::1565058
    [Crossref] [Google Scholar]
  4. 4.
    Andes-Koback M, Keating CD. 2011.. Complete budding and asymmetric division of primitive model cells to produce daughter vesicles with different interior and membrane compositions. . J. Am. Chem. Soc. 133::954555
    [Crossref] [Google Scholar]
  5. 5.
    Anila MM, Ghosh R, Różycki B. 2023.. Membrane curvature sensing by model biomolecular condensates. . Soft Matter 19::372332
    [Crossref] [Google Scholar]
  6. 6.
    Aumiller WM Jr., Pir Cakmak F, Davis BW, Keating CD. 2016.. RNA-based coacervates as a model for membraneless organelles: formation, properties, and interfacial liposome assembly. . Langmuir 32::1004253
    [Crossref] [Google Scholar]
  7. 7.
    Babl L, Merino-Salomón A, Kanwa N, Schwille P. 2022.. Membrane mediated phase separation of the bacterial nucleoid occlusion protein Noc. . Sci. Rep. 12::17949
    [Crossref] [Google Scholar]
  8. 8.
    Bacia K, Scherfeld D, Kahya N, Schwille P. 2004.. Fluorescence correlation spectroscopy relates rafts in model and native membranes. . Biophys. J. 87::103443
    [Crossref] [Google Scholar]
  9. 9.
    Bagatolli LA, Ipsen JH, Simonsen AC, Mouritsen OG. 2010.. An outlook on organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes. . Prog. Lipid Res. 49::37889
    [Crossref] [Google Scholar]
  10. 10.
    Bagatolli LA, Mangiarotti A, Stock RP. 2021.. Cellular metabolism and colloids: realistically linking physiology and biological physical chemistry. . Prog. Biophys. Mol. Biol. 162::7988
    [Crossref] [Google Scholar]
  11. 11.
    Bagatolli LA, Stock RP. 2021.. Lipids, membranes, colloids and cells: a long view. . Biochim. Biophys. Acta Biomembr. 1863::183684
    [Crossref] [Google Scholar]
  12. 12.
    Banani SF, Lee HO, Hyman AA, Rosen MK. 2017.. Biomolecular condensates: organizers of cellular biochemistry. . Nat. Rev. Mol. Cell Biol. 18::28598
    [Crossref] [Google Scholar]
  13. 13.
    Banerjee PR, Milin AN, Moosa MM, Onuchic PL, Deniz AA. 2017.. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. . Angew. Chem. Int. Ed. 56::1135459
    [Crossref] [Google Scholar]
  14. 14.
    Banjade S, Rosen MK. 2014.. Phase transitions of multivalent proteins can promote clustering of membrane receptors. . eLife 3::e04123
    [Crossref] [Google Scholar]
  15. 15.
    Bar-Ziv R, Moses E. 1994.. Instability and “pearling” states produced in tubular membranes by competition of curvature and tension. . Phys. Rev. Lett. 73::139295
    [Crossref] [Google Scholar]
  16. 16.
    Bassereau P, Jin R, Baumgart T, Deserno M, Dimova R, et al. 2018.. The 2018 biomembrane curvature and remodeling roadmap. . J. Phys. D 51::343001 16. Gives an overview of various means of generating and quantifying membrane curvature.
    [Crossref] [Google Scholar]
  17. 17.
    Bergeron-Sandoval L-P, Kumar S, Heris HK, Chang CLA, Cornell CE, et al. 2021.. Endocytic proteins with prion-like domains form viscoelastic condensates that enable membrane remodeling. . PNAS 118::e2113789118
    [Crossref] [Google Scholar]
  18. 18.
    Beutel O, Maraspini R, Pombo-García K, Martin-Lemaitre C, Honigmann A. 2019.. Phase separation of zonula occludens proteins drives formation of tight junctions. . Cell 179::92336.e11
    [Crossref] [Google Scholar]
  19. 19.
    Blosser MC, Horst BG, Keller SL. 2016.. cDICE method produces giant lipid vesicles under physiological conditions of charged lipids and ionic solutions. . Soft Matter 12::736471
    [Crossref] [Google Scholar]
  20. 20.
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, et al. 2009.. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. . Science 324::172932 20. One of the first (seminal) papers promoting the idea of and providing evidence for biomolecular condensates as membraneless organelles.
    [Crossref] [Google Scholar]
  21. 21.
    Brangwynne CP, Tompa P, Pappu RV. 2015.. Polymer physics of intracellular phase transitions. . Nat. Phys. 11::899904
    [Crossref] [Google Scholar]
  22. 22.
    Busch DJ, Houser JR, Hayden CC, Sherman MB, Lafer EM, Stachowiak JC. 2015.. Intrinsically disordered proteins drive membrane curvature. . Nat. Commun. 6::7875
    [Crossref] [Google Scholar]
  23. 23.
    Cans AS, Andes-Koback M, Keating CD. 2008.. Positioning lipid membrane domains in giant vesicles by micro-organization of aqueous cytoplasm mimic. . J. Am. Chem. Soc. 130::74006
    [Crossref] [Google Scholar]
  24. 24.
    Chen N, Zhao Z, Wang Y, Dimova R. 2020.. Resolving the mechanisms of soy glycinin self-coacervation and hollow-condensate formation. . ACS Macro Lett. 9::184452
    [Crossref] [Google Scholar]
  25. 25.
    Choi J-M, Holehouse AS, Pappu RV. 2020.. Physical principles underlying the complex biology of intracellular phase transitions. . Annu. Rev. Biophys. 49::10733
    [Crossref] [Google Scholar]
  26. 26.
    Chung JK, Huang WYC, Carbone CB, Nocka LM, Parikh AN, et al. 2021.. Coupled membrane lipid miscibility and phosphotyrosine-driven protein condensation phase transitions. . Biophys. J. 120::125765
    [Crossref] [Google Scholar]
  27. 27.
    Crowe CD, Keating CD. 2018.. Liquid–liquid phase separation in artificial cells. . Interface Focus 8::20180032
    [Crossref] [Google Scholar]
  28. 28.
    Das S, Tian A, Baumgart T. 2008.. Mechanical stability of micropipet-aspirated giant vesicles with fluid phase coexistence. . J. Phys. Chem. B 112::1162530
    [Crossref] [Google Scholar]
  29. 29.
    Day KJ, Kago G, Wang L, Richter JB, Hayden CC, et al. 2021.. Liquid-like protein interactions catalyse assembly of endocytic vesicles. . Nat. Cell Biol. 23::36676
    [Crossref] [Google Scholar]
  30. 30.
    Deshpande S, Brandenburg F, Lau A, Last MGF, Spoelstra WK, et al. 2019.. Spatiotemporal control of coacervate formation within liposomes. . Nat. Commun. 10::1800
    [Crossref] [Google Scholar]
  31. 31.
    Dietrich C, Bagatolli LA, Volovyk ZN, Thompson NL, Levi M, et al. 2001.. Lipid rafts reconstituted in model membranes. . Biophys. J. 80::141728
    [Crossref] [Google Scholar]
  32. 32.
    Dimova R. 2014.. Recent developments in the field of bending rigidity measurements on membranes. . Adv. Colloid Interface Sci. 208::22534
    [Crossref] [Google Scholar]
  33. 33.
    Dimova R, Lipowsky R. 2012.. Lipid membranes in contact with aqueous phases of polymer solutions. . Soft Matter 8::6409
    [Crossref] [Google Scholar]
  34. 34.
    Edidin M. 2001.. Shrinking patches and slippery rafts: scales of domains in the plasma membrane. . Trends Cell Biol. 11::49296
    [Crossref] [Google Scholar]
  35. 35.
    Edidin M. 2003.. The state of lipid rafts: from model membranes to cells. . Annu. Rev. Biophys. Biomol. Struct. 32::25783
    [Crossref] [Google Scholar]
  36. 36.
    Erkamp NA, Sneideris T, Ausserwöger H, Qian D, Qamar S, et al. 2023.. Spatially non-uniform condensates emerge from dynamically arrested phase separation. . Nat. Commun. 14::684
    [Crossref] [Google Scholar]
  37. 37.
    Ghosh R, Satarifard V, Lipowsky R. 2023.. Different pathways for engulfment and endocytosis of liquid droplets by nanovesicles. . Nat. Commun. 14::615
    [Crossref] [Google Scholar]
  38. 38.
    Goñi FM. 2014.. The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. . Biochim. Biophys. Acta Biomembr. 1838::146776
    [Crossref] [Google Scholar]
  39. 39.
    Gouveia B, Kim Y, Shaevitz JW, Petry S, Stone HA, Brangwynne CP. 2022.. Capillary forces generated by biomolecular condensates. . Nature 609::25564
    [Crossref] [Google Scholar]
  40. 40.
    Heinrich M, Tian A, Esposito C, Baumgart T. 2010.. Dynamic sorting of lipids and proteins in membrane tubes with a moving phase boundary. . PNAS 107::720813
    [Crossref] [Google Scholar]
  41. 41.
    Helfrich MR, Mangeney-Slavin LK, Long MS, Djoko Y, Keating CD. 2002.. Aqueous phase separation in giant vesicles. . J. Am. Chem. Soc. 124::1337475
    [Crossref] [Google Scholar]
  42. 42.
    Hjort Ipsen J, Karlström G, Mourtisen OG, Wennerström H, Zuckermann MJ. 1987.. Phase equilibria in the phosphatidylcholine-cholesterol system. . Biochim. Biophys. Acta Biomembr. 905::16272
    [Crossref] [Google Scholar]
  43. 43.
    Huang WYC, Yan Q, Lin W-C, Chung JK, Hansen SD, et al. 2016.. Phosphotyrosine-mediated LAT assembly on membranes drives kinetic bifurcation in recruitment dynamics of the Ras activator SOS. . PNAS 113::821823
    [Crossref] [Google Scholar]
  44. 44.
    Kilgore HR, Young RA. 2022.. Learning the chemical grammar of biomolecular condensates. . Nat. Chem. Biol. 18::1298306
    [Crossref] [Google Scholar]
  45. 45.
    Kusumaatmaja H, Li Y, Dimova R, Lipowsky R. 2009.. Intrinsic contact angle of aqueous phases at membranes and vesicles. . Phys. Rev. Lett. 103::238103
    [Crossref] [Google Scholar]
  46. 46.
    Laghmach R, Alshareedah I, Pham M, Raju M, Banerjee PR, Potoyan DA. 2022.. RNA chain length and stoichiometry govern surface tension and stability of protein-RNA condensates. . iScience 25::104105
    [Crossref] [Google Scholar]
  47. 47.
    Last MGF, Deshpande S, Dekker C. 2020.. pH-controlled coacervate–membrane interactions within liposomes. . ACS Nano 14::448798
    [Crossref] [Google Scholar]
  48. 48.
    Lee H-R, Lee Y, Oh SS, Choi SQ. 2020.. Ultra-stable freestanding lipid membrane array: direct visualization of dynamic membrane remodeling with cholesterol transport and enzymatic reactions. . Small 16::2002541
    [Crossref] [Google Scholar]
  49. 49.
    Lee I-H, Imanaka MY, Modahl EH, Torres-Ocampo AP. 2019.. Lipid raft phase modulation by membrane-anchored proteins with inherent phase separation properties. . ACS Omega 4::655159
    [Crossref] [Google Scholar]
  50. 50.
    Lee JE, Cathey PI, Wu H, Parker R, Voeltz GK. 2020.. Endoplasmic reticulum contact sites regulate the dynamics of membraneless organelles. . Science 367::eaay7108
    [Crossref] [Google Scholar]
  51. 51.
    Lee Y, Park S, Yuan F, Hayden CC, Wang L, . 2023.. Transmembrane coupling of liquid-like protein condensates. . Nat. Commun. 14:8015
    [Google Scholar]
  52. 52.
    Levental I, Levental KR, Heberle FA. 2020.. Lipid rafts: controversies resolved, mysteries remain. . Trends Cell Biol. 30::34153 52. Reviews concepts and controversies of the raft hypothesis and suggests approaches for understanding the physiological relevance of rafts.
    [Crossref] [Google Scholar]
  53. 53.
    Li Y, Kusumaatmaja H, Lipowsky R, Dimova R. 2012.. Wetting-induced budding of vesicles in contact with several aqueous phases. . J. Phys. Chem. B 116::181923
    [Crossref] [Google Scholar]
  54. 54.
    Li Y, Lipowsky R, Dimova R. 2008.. Transition from complete to partial wetting within membrane compartments. . J. Am. Chem. Soc. 130::1225253 54. The first work to report wetting transitions for condensates interacting with membranes.
    [Crossref] [Google Scholar]
  55. 55.
    Li Y, Lipowsky R, Dimova R. 2011.. Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature. . PNAS 108::473136
    [Crossref] [Google Scholar]
  56. 56.
    Lipowsky R. 2018.. Response of membranes and vesicles to capillary forces arising from aqueous two-phase systems and water-in-water droplets. . J. Phys. Chem. B 122::357286
    [Crossref] [Google Scholar]
  57. 57.
    Lipowsky R. 2019.. Understanding giant vesicles—a theoretical perspective. . In The Giant Vesicle Book, ed. R Dimova, C Marques , pp. 73168. Boca Raton, FL:: Taylor & Francis 57. Provides an extensive theoretical description of vesicle morphology and is part of a compendium of textbook-like material offering fundamentals for understanding membrane structure, properties, and behavior, including protocols and method descriptions.
    [Google Scholar]
  58. 58.
    Lipowsky R. 2023.. Remodeling of biomembranes and vesicles by adhesion of condensate droplets. . Membranes 13::223 58. Offers a detailed theoretical framework of membrane remodeling by condensates.
    [Crossref] [Google Scholar]
  59. 59.
    Liu Y, Agudo-Canalejo J, Grafmüller A, Dimova R, Lipowsky R. 2016.. Patterns of flexible nanotubes formed by liquid-ordered and liquid-disordered membranes. . ACS Nano 10::46374
    [Crossref] [Google Scholar]
  60. 60.
    Liu Y, Lipowsky R, Dimova R. 2012.. Concentration dependence of the interfacial tension for aqueous two-phase polymer solutions of dextran and polyethylene glycol. . Langmuir 28::383139
    [Crossref] [Google Scholar]
  61. 61.
    Long MS, Cans AS, Keating CD. 2008.. Budding and asymmetric protein microcompartmentation in giant vesicles containing two aqueous phases. . J. Am. Chem. Soc. 130::75662
    [Crossref] [Google Scholar]
  62. 62.
    Long MS, Jones CD, Helfrich MR, Mangeney-Slavin LK, Keating CD. 2005.. Dynamic microcompartmentation in synthetic cells. . PNAS 102::592025
    [Crossref] [Google Scholar]
  63. 63.
    Love C, Steinkühler J, Gonzales DT, Yandrapalli N, Robinson T, et al. 2020.. Reversible pH-responsive coacervate formation in lipid vesicles activates dormant enzymatic reactions. . Angew. Chem. Int. Ed. 59::595057
    [Crossref] [Google Scholar]
  64. 64.
    Lu T, Hu X, van Haren MHI, Spruijt E, Huck WTS. 2023.. Structure-property relationships governing membrane-penetrating behaviour of complex coacervates. . Small 19::2303138
    [Crossref] [Google Scholar]
  65. 65.
    Lu T, Liese S, Schoenmakers L, Weber CA, Suzuki H, et al. 2022.. Endocytosis of coacervates into liposomes. . J. Am. Chem. Soc. 144::1345155
    [Crossref] [Google Scholar]
  66. 66.
    Malacrida L, Ranjit S, Jameson DM, Gratton E. 2021.. The phasor plot: a universal circle to advance fluorescence lifetime analysis and interpretation. . Annu. Rev. Biophys. 50::57593
    [Crossref] [Google Scholar]
  67. 67.
    Mangiarotti A, Bagatolli LA. 2021.. Impact of macromolecular crowding on the mesomorphic behavior of lipid self-assemblies. . Biochim. Biophys. Acta Biomembr. 1863::183728
    [Crossref] [Google Scholar]
  68. 68.
    Mangiarotti A, Caruso B, Wilke N. 2014.. Phase coexistence in films composed of DLPC and DPPC: a comparison between different model membrane systems. . Biochim. Biophys. Acta Biomembr. 1838::182331
    [Crossref] [Google Scholar]
  69. 69.
    Mangiarotti A, Chen N, Zhao Z, Lipowsky R, Dimova R. 2023.. Wetting and complex remodeling of membranes by biomolecular condensates. . Nat. Commun. 14::2809 69. Describes a broad spectrum of the remodeling processes driven by wetting of 3D protein condensates.
    [Crossref] [Google Scholar]
  70. 70.
    Mangiarotti A, Siri M, Tam NW, Zhao Z, Malacrida L, Dimova R. 2023.. Biomolecular condensates modulate membrane lipid packing and hydration. . Nat. Commun. 14::6081
    [Crossref] [Google Scholar]
  71. 71.
    Mangiarotti A, Wilke N. 2015.. Energetics of the phase transition in free-standing versus supported lipid membranes. . J. Phys. Chem. B 119::871824
    [Crossref] [Google Scholar]
  72. 72.
    Mangiarotti A, Wilke N. 2017.. Electrostatic interactions at the microscale modulate dynamics and distribution of lipids in bilayers. . Soft Matter 13::68694
    [Crossref] [Google Scholar]
  73. 73.
    Mitrea DM, Mittasch M, Gomes BF, Klein IA, Murcko MA. 2022.. Modulating biomolecular condensates: a novel approach to drug discovery. . Nat. Rev. Drug Discov. 21::84162
    [Crossref] [Google Scholar]
  74. 74.
    Mondal S, Baumgart T. 2023.. Membrane reshaping by protein condensates. . Biochim. Biophys. Acta Biomembr. 1865::184121
    [Crossref] [Google Scholar]
  75. 75.
    Mondal S, Cui Q. 2022.. Coacervation of poly-electrolytes in the presence of lipid bilayers: mutual alteration of structure and morphology. . Chem. Sci. 13::793346
    [Crossref] [Google Scholar]
  76. 76.
    Mondal S, Narayan K, Botterbusch S, Powers I, Zheng J, et al. 2022.. Multivalent interactions between molecular components involved in fast endophilin mediated endocytosis drive protein phase separation. . Nat. Commun. 13::5017
    [Crossref] [Google Scholar]
  77. 77.
    Nixon-Abell J, Ruggeri FS, Qamar S, Herling TW, Czekalska MA, et al. 2023.. ANXA11 biomolecular condensates facilitate protein-lipid phase coupling on lysosomal membranes. . bioRxiv 2023.03.22.533832. https://doi.org/10.1101/2023.03.22.533832
  78. 78.
    Pir Cakmak F, Grigas AT, Keating CD. 2019.. Lipid vesicle-coated complex coacervates. . Langmuir 35::783040
    [Crossref] [Google Scholar]
  79. 79.
    Pir Cakmak F, Marianelli AM, Keating CD. 2021.. Phospholipid membrane formation templated by coacervate droplets. . Langmuir 37::1036675
    [Crossref] [Google Scholar]
  80. 80.
    Pramanik S, Steinkühler J, Dimova R, Spatz J, Lipowsky R. 2022.. Binding of His-tagged fluorophores to lipid bilayers of giant vesicles. . Soft Matter 18::637283
    [Crossref] [Google Scholar]
  81. 81.
    Rayermann SP, Rayermann GE, Cornell CE, Merz AJ, Keller SL. 2017.. Hallmarks of reversible separation of living, unperturbed cell membranes into two liquid phases. . Biophys. J. 113::242532
    [Crossref] [Google Scholar]
  82. 82.
    Reigada R, Lindenberg K. 2011.. Raft formation in cell membranes: speculations about mechanisms and models. . Adv. Planar Lipid Bilayers Liposomes 14::97127
    [Crossref] [Google Scholar]
  83. 83.
    Rosetti CM, Mangiarotti A, Wilke N. 2017.. Sizes of lipid domains: What do we know from artificial lipid membranes? What are the possible shared features with membrane rafts in cells?. Biochim. Biophys. Acta Biomembr. 1859::789802
    [Crossref] [Google Scholar]
  84. 84.
    Rouches M, Veatch SL, Machta BB. 2021.. Surface densities prewet a near-critical membrane. . PNAS 118::e2103401118
    [Crossref] [Google Scholar]
  85. 85.
    Shillcock JC, Thomas DB, Beaumont JR, Bragg GM, Vousden ML, Brown AD. 2022.. Coupling bulk phase separation of disordered proteins to membrane domain formation in molecular simulations on a bespoke compute fabric. . Membranes 12::17
    [Crossref] [Google Scholar]
  86. 86.
    Shimshick EJ, McConnell HM. 1973.. Lateral phase separation in phospholipid membranes. . Biochemistry 12::235160
    [Crossref] [Google Scholar]
  87. 87.
    Shin Y, Brangwynne CP. 2017.. Liquid phase condensation in cell physiology and disease. . Science 357::eaaf4382
    [Crossref] [Google Scholar]
  88. 88.
    Simons K, Ikonen E. 1997.. Functional rafts in cell membranes. . Nature 387::56972
    [Crossref] [Google Scholar]
  89. 89.
    Simunovic M, Voth GA, Callan-Jones A, Bassereau P. 2015.. When physics takes over: BAR proteins and membrane curvature. . Trends Cell Biol. 25::78092
    [Crossref] [Google Scholar]
  90. 90.
    Sing CE. 2017.. Development of the modern theory of polymeric complex coacervation. . Adv. Colloid Interface Sci. 239::216
    [Crossref] [Google Scholar]
  91. 91.
    Singer SJ, Nicolson GL. 1972.. The fluid mosaic model of structure of cell membranes. . Science 175::72031
    [Crossref] [Google Scholar]
  92. 92.
    Snead WT, Gladfelter AS. 2019.. The control centers of biomolecular phase separation: how membrane surfaces, PTMs, and active processes regulate condensation. . Mol. Cell 76::295305
    [Crossref] [Google Scholar]
  93. 93.
    Snead WT, Jalihal AP, Gerbich TM, Seim I, Hu Z, Gladfelter AS. 2022.. Membrane surfaces regulate assembly of ribonucleoprotein condensates. . Nat. Cell Biol. 24::46170
    [Crossref] [Google Scholar]
  94. 94.
    Steinkühler J, Sezgin E, Urbančič I, Eggeling C, Dimova R. 2019.. Mechanical properties of plasma membrane vesicles correlate with lipid order, viscosity and cell density. . Commun. Biol. 2::337
    [Crossref] [Google Scholar]
  95. 95.
    Su W-C, Ho JCS, Gettel DL, Rowland AT, Keating CD, Parikh AN. 2024.. Kinetic control of shape deformations and membrane phase separation inside giant vesicles. . Nat. Chem. 16::5462
    [Crossref] [Google Scholar]
  96. 96.
    Su X, Ditlev JA, Hui E, Xing W, Banjade S, et al. 2016.. Phase separation of signaling molecules promotes T cell receptor signal transduction. . Science 352::59599
    [Crossref] [Google Scholar]
  97. 97.
    Tang T-YD, Che Hak CR, Thompson AJ, Kuimova MK, Williams DS, et al. 2014.. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. . Nat. Chem. 6::52733
    [Crossref] [Google Scholar]
  98. 98.
    Updike DL, Hachey SJ, Kreher J, Strome S. 2011.. P granules extend the nuclear pore complex environment in the C. elegans germ line. . J. Cell Biol. 192::93948
    [Crossref] [Google Scholar]
  99. 99.
    Veatch SL, Keller SL. 2005.. Seeing spots: complex phase behavior in simple membranes. . Biochim. Biophys. Acta Mol. Cell Res. 1746::17285
    [Crossref] [Google Scholar]
  100. 100.
    Vorontsova I, Vallmitjana A, Torrado B, Schilling TF, Hall JE, et al. 2022.. In vivo macromolecular crowding is differentially modulated by aquaporin 0 in zebrafish lens: insights from a nanoenvironment sensor and spectral imaging. . Sci. Adv. 8::eabj4833
    [Crossref] [Google Scholar]
  101. 101.
    Wang H, Kelley FM, Milovanovic D, Schuster BS, Shi Z. 2021.. Surface tension and viscosity of protein condensates quantified by micropipette aspiration. . Biophys. Rep. 1::100011 101. Provides an overview of data in the literature, including values of the interfacial tension and viscosity of various macromolecular condensates.
    [Google Scholar]
  102. 102.
    Wang H-Y, Chan SH, Dey S, Castello-Serrano I, Rosen MK, et al. 2023.. Coupling of protein condensates to ordered lipid domains determines functional membrane organization. . Sci. Adv. 9::eadf6205 102. Shows the thermodynamic coupling of protein and lipid phase separation in vitro and in cells.
    [Crossref] [Google Scholar]
  103. 103.
    Wang J, Choi J-M, Holehouse AS, Lee HO, Zhang X, et al. 2018.. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. . Cell 174::68899.e16
    [Crossref] [Google Scholar]
  104. 104.
    Yuan F, Alimohamadi H, Bakka B, Trementozzi AN, Day KJ, et al. 2021.. Membrane bending by protein phase separation. . PNAS 118::e2017435118 104. Provides the first systematic study of 2D protein phase separation and membrane remodeling.
    [Crossref] [Google Scholar]
  105. 105.
    Zhang C, Rabouille C. 2019.. Membrane-bound meet membraneless in health and disease. . Cells 8::1000
    [Crossref] [Google Scholar]
  106. 106.
    Zhang Y, Chen Y, Yang X, He X, Li M, et al. 2021.. Giant coacervate vesicles as an integrated approach to cytomimetic modeling. . J. Am. Chem. Soc. 143::286674
    [Crossref] [Google Scholar]
  107. 107.
    Zhao X, Bartolucci G, Honigmann A, Jülicher F, Weber CA. 2021.. Thermodynamics of wetting, prewetting and surface phase transitions with surface binding. . New J. Phys. 23::123003
    [Crossref] [Google Scholar]
  108. 108.
    Zhao Z, Roy D, Steinkühler J, Robinson T, Lipowsky R, Dimova R. 2021.. Super-resolution imaging of highly curved membrane structures in giant vesicles encapsulating molecular condensates. . Adv. Mater. 34::2106633
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-030722-121518
Loading
/content/journals/10.1146/annurev-biophys-030722-121518
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error