1932

Abstract

A protein's sequence determines its conformational energy landscape. This, in turn, determines the protein's function. Understanding the evolution of new protein functions therefore requires understanding how mutations alter the protein energy landscape. Ancestral sequence reconstruction (ASR) has proven a valuable tool for tackling this problem. In ASR, one phylogenetically infers the sequences of ancient proteins, allowing characterization of their properties. When coupled to biophysical, biochemical, and functional characterization, ASR can reveal how historical mutations altered the energy landscape of ancient proteins, allowing the evolution of enzyme activity, altered conformations, binding specificity, oligomerization, and many other protein features. In this article, we review how ASR studies have been used to dissect the evolution of energy landscapes. We also discuss ASR studies that reveal how energy landscapes have shaped protein evolution. Finally, we propose that thinking about evolution from the perspective of an energy landscape can improve how we approach and interpret ASR studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-030722-125440
2024-07-16
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-030722-125440.html?itemId=/content/journals/10.1146/annurev-biophys-030722-125440&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Akanuma S, Nakajima Y, Yokobori S, Kimura M, Nemoto N, et al. 2013.. Experimental evidence for the thermophilicity of ancestral life. . PNAS 110:(27):1106772
    [Crossref] [Google Scholar]
  2. 2.
    Alexander PA, He Y, Chen Y, Orban J, Bryan PN. 2009.. A minimal sequence code for switching protein structure and function. . PNAS 106:(50):2114954
    [Crossref] [Google Scholar]
  3. 3.
    Arenas M. 2022.. Methodologies for microbial ancestral sequence reconstruction. . In Environmental Microbial Evolution: Methods and Protocols, ed. H Luo , pp. 283303. Berlin:: Springer
    [Google Scholar]
  4. 4.
    Arenas M, Bastolla U. 2020.. ProtASR2: ancestral reconstruction of protein sequences accounting for folding stability. . Methods Ecol. Evol. 11:(2):24857
    [Crossref] [Google Scholar]
  5. 5.
    Bahar I, Lezon TR, Yang L-W, Eyal E. 2010.. Global dynamics of proteins: bridging between structure and function. . Annu. Rev. Biophys. 39::2342
    [Crossref] [Google Scholar]
  6. 6.
    Bailleul G, Yang G, Nicoll CR, Mattevi A, Fraaije MW, Mascotti ML. 2023.. Evolution of enzyme functionality in the flavin-containing monooxygenases. . Nat Commun. 14::1042
    [Crossref] [Google Scholar]
  7. 7.
    Baldwin MW, Toda Y, Nakagita T, O'Connell MJ, Klasing KC, et al. 2014.. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor. . Science 345:(6199):92933
    [Crossref] [Google Scholar]
  8. 8.
    Boucher JI, Jacobowitz JR, Beckett BC, Classen S, Theobald DL. 2014.. An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases. . eLife 3::e02304
    [Crossref] [Google Scholar]
  9. 9.
    Bridgham JT, Ortlund EA, Thornton JW. 2009.. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. . Nature 461:(7263):51519
    [Crossref] [Google Scholar]
  10. 10.
    Busch F, Rajendran C, Heyn K, Schlee S, Merkl R, Sterner R. 2016.. Ancestral tryptophan synthase reveals functional sophistication of primordial enzyme complexes. . Cell Chem. Biol. 23:(6):70915
    [Crossref] [Google Scholar]
  11. 11.
    Butzin NC, Lapierre P, Green AG, Swithers KS, Gogarten JP, Noll KM. 2013.. Reconstructed ancestral myo-inositol-3-phosphate synthases indicate that ancestors of the Thermococcales and Thermotoga species were more thermophilic than their descendants. . PLOS ONE 8:(12):e84300
    [Crossref] [Google Scholar]
  12. 12.
    Castiglione GM, Chang BS. 2018.. Functional trade-offs and environmental variation shaped ancient trajectories in the evolution of dim-light vision. . eLife 7::e35957
    [Crossref] [Google Scholar]
  13. 13.
    Chi PB, Liberles DA. 2016.. Selection on protein structure, interaction, and sequence. . Protein Sci. 25:(7):116878
    [Crossref] [Google Scholar]
  14. 14.
    Chiang C-H, Wymore T, Rodríguez Benítez A, Hussain A, Smith JL, et al. 2023.. Deciphering the evolution of flavin-dependent monooxygenase stereoselectivity using ancestral sequence reconstruction. . PNAS 120:(15):e2218248120
    [Crossref] [Google Scholar]
  15. 15.
    Clifton BE, Kaczmarski JA, Carr PD, Gerth ML, Tokuriki N, Jackson CJ. 2018.. Evolution of cyclohexadienyl dehydratase from an ancestral solute-binding protein. . Nat. Chem. Biol. 14:(6):54247
    [Crossref] [Google Scholar]
  16. 16.
    Corbella M, Pinto GP, Kamerlin SCL. 2023.. Loop dynamics and the evolution of enzyme activity. . Nat. Rev. Chem. 7:(8):53647
    [Crossref] [Google Scholar]
  17. 17.
    Cortez LM, Morrison AJ, Garen CR, Patterson S, Uyesugi T, et al. 2022.. Probing the origin of prion protein misfolding via reconstruction of ancestral proteins. . Protein Sci. 31:(12):e4477
    [Crossref] [Google Scholar]
  18. 18.
    Damry AM, Jackson CJ. 2021.. The evolution and engineering of enzyme activity through tuning conformational landscapes. . Protein Eng. Des. Sel. 34::gzab009
    [Crossref] [Google Scholar]
  19. 19.
    Del Amparo R, Arenas M. 2022.. Consequences of substitution model selection on protein ancestral sequence reconstruction. . Mol. Biol. Evol. 39:(7):msac144
    [Crossref] [Google Scholar]
  20. 20.
    Dishman AF, Tyler RC, Fox JC, Kleist AB, Prehoda KE, et al. 2021.. Evolution of fold switching in a metamorphic protein. . Science 371:(6524):8690
    [Crossref] [Google Scholar]
  21. 21.
    Duan S, Govorkova EA, Bahl J, Zaraket H, Baranovich T, et al. 2014.. Epistatic interactions between neuraminidase mutations facilitated the emergence of the oseltamivir-resistant H1N1 influenza viruses. . Nat. Commun. 5::5029
    [Crossref] [Google Scholar]
  22. 22.
    East NJ, Clifton BE, Jackson CJ, Kaczmarski JA. 2022.. The role of oligomerization in the optimization of cyclohexadienyl dehydratase conformational dynamics and catalytic activity. . Protein Sci. 31:(12):e4510
    [Crossref] [Google Scholar]
  23. 23.
    Emond S, Petek M, Kay EJ, Heames B, Devenish SRA, et al. 2020.. Accessing unexplored regions of sequence space in directed enzyme evolution via insertion/deletion mutagenesis. . Nat. Commun. 11::3469
    [Crossref] [Google Scholar]
  24. 24.
    Field SF, Matz MV. 2010.. Retracing evolution of red fluorescence in GFP-like proteins from Faviina corals. . Mol. Biol. Evol. 27:(2):22533
    [Crossref] [Google Scholar]
  25. 25.
    Finnigan GC, Hanson-Smith V, Stevens TH, Thornton JW. 2012.. Evolution of increased complexity in a molecular machine. . Nature 481:(7381):36064
    [Crossref] [Google Scholar]
  26. 26.
    Fowler DM, Fields S. 2014.. Deep mutational scanning: a new style of protein science. . Nat. Methods 11:(8):8017
    [Crossref] [Google Scholar]
  27. 27.
    Furukawa R, Toma W, Yamazaki K, Akanuma S. 2020.. Ancestral sequence reconstruction produces thermally stable enzymes with mesophilic enzyme-like catalytic properties. . Sci. Rep. 10::15493
    [Crossref] [Google Scholar]
  28. 28.
    Garcia AK, Kaçar B. 2019.. How to resurrect ancestral proteins as proxies for ancient biogeochemistry. . Free Radic. Biol. Med. 140::26069
    [Crossref] [Google Scholar]
  29. 29.
    Garcia AK, McShea H, Kolaczkowski B, Kaçar B. 2020.. Reconstructing the evolutionary history of nitrogenases: evidence for ancestral molybdenum-cofactor utilization. . Geobiology 18:(3):394411
    [Crossref] [Google Scholar]
  30. 30.
    Garcia AK, Schopf JW, Yokobori S, Akanuma S, Yamagishi A. 2017.. Reconstructed ancestral enzymes suggest long-term cooling of Earth's photic zone since the Archean. . PNAS 114:(18):461924
    [Crossref] [Google Scholar]
  31. 31.
    Gardner JM, Biler M, Risso VA, Sanchez-Ruiz JM, Kamerlin SCL. 2020.. Manipulating conformational dynamics to repurpose ancient proteins for modern catalytic functions. . ACS Catal. 10:(9):486370
    [Crossref] [Google Scholar]
  32. 32.
    Gaucher EA, Govindarajan S, Ganesh OK. 2008.. Palaeotemperature trend for Precambrian life inferred from resurrected proteins. . Nature 451:(7179):7047
    [Crossref] [Google Scholar]
  33. 33.
    Gaucher EA, Thomson JM, Burgan MF, Benner SA. 2003.. Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. . Nature 425:(6955):28588
    [Crossref] [Google Scholar]
  34. 34.
    Gomez-Fernandez BJ, Risso VA, Rueda A, Sanchez-Ruiz JM, Alcalde M. 2020.. Ancestral resurrection and directed evolution of fungal Mesozoic laccases. . Appl. Environ. Microbiol. 86:(14):e00778-20
    [Crossref] [Google Scholar]
  35. 35.
    Gong LI, Suchard MA, Bloom JD. 2013.. Stability-mediated epistasis constrains the evolution of an influenza protein. . eLife 2::e00631
    [Crossref] [Google Scholar]
  36. 36.
    Groussin M, Hobbs JK, Szöllősi GJ, Gribaldo S, Arcus VL, Gouy M. 2015.. Toward more accurate ancestral protein genotype-phenotype reconstructions with the use of species tree-aware gene trees. . Mol. Biol. Evol. 32:(1):1322
    [Crossref] [Google Scholar]
  37. 37.
    Hadzipasic A, Wilson C, Nguyen V, Kern N, Kim C, et al. 2020.. Ancient origins of allosteric activation in a Ser-Thr kinase. . Science 367:(6480):91217
    [Crossref] [Google Scholar]
  38. 38.
    Harman JL, Loes AN, Warren GD, Heaphy MC, Lampi KJ, Harms MJ. 2020.. Evolution of multifunctionality through a pleiotropic substitution in the innate immune protein S100A9. . eLife 9::e54100
    [Crossref] [Google Scholar]
  39. 39.
    Harman JL, Reardon PN, Costello SM, Warren GD, Phillips SR, et al. 2022.. Evolution avoids a pathological stabilizing interaction in the immune protein S100A9. . PNAS 119:(41):e2208029119
    [Crossref] [Google Scholar]
  40. 40.
    Harms MJ, Thornton JW. 2010.. Analyzing protein structure and function using ancestral gene reconstruction. . Curr. Opin. Struct. Biol. 20:(3):36066
    [Crossref] [Google Scholar]
  41. 41.
    Harms MJ, Thornton JW. 2014.. Historical contingency and its biophysical basis in glucocorticoid receptor evolution. . Nature 512:(7513):2037
    [Crossref] [Google Scholar]
  42. 42.
    Hart KM, Harms MJ, Schmidt BH, Elya C, Thornton JW, Marqusee S. 2014.. Thermodynamic system drift in protein evolution. . PLOS Biol. 12:(11):e1001994
    [Crossref] [Google Scholar]
  43. 43.
    He Y, Chen Y, Alexander PA, Bryan PN, Orban J. 2012.. Mutational tipping points for switching protein folds and functions. . Structure 20:(2):28391
    [Crossref] [Google Scholar]
  44. 44.
    Hilton SK, Bloom JD. 2018.. Modeling site-specific amino-acid preferences deepens phylogenetic estimates of viral sequence divergence. . Virus Evol. 4:(2):vey033
    [Crossref] [Google Scholar]
  45. 45.
    Ho LST, Susko E. 2022.. Ancestral state reconstruction with large numbers of sequences and edge-length estimation. . J. Math. Biol. 84:(4):21
    [Crossref] [Google Scholar]
  46. 46.
    Hobbs HT, Shah NH, Shoemaker SR, Amacher JF, Marqusee S, Kuriyan J. 2022.. Saturation mutagenesis of a predicted ancestral Syk-family kinase. . Protein Sci. 31:(10):e4411
    [Crossref] [Google Scholar]
  47. 47.
    Hochberg GKA, Thornton JW. 2017.. Reconstructing ancient proteins to understand the causes of structure and function. . Annu. Rev. Biophys. 46::24769
    [Crossref] [Google Scholar]
  48. 48.
    Holinski A, Heyn K, Merkl R, Sterner R. 2017.. Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex. . Proteins Struct. Funct. Bioinform. 85:(2):31221
    [Crossref] [Google Scholar]
  49. 49.
    Holland BR, Ketelaar-Jones S, O'Mara AR, Woodhams MD, Jordan GJ. 2020.. Accuracy of ancestral state reconstruction for non-neutral traits. . Sci. Rep. 10::7644
    [Crossref] [Google Scholar]
  50. 50.
    Horovitz A, Fersht AR. 1990.. Strategy for analysing the co-operativity of intramolecular interactions in peptides and proteins. . J. Mol. Biol. 214:(3):61317
    [Crossref] [Google Scholar]
  51. 51.
    Horovitz A, Serrano L, Avron B, Bycroft M, Fersht AR. 1990.. Strength and co-operativity of contributions of surface salt bridges to protein stability. . J. Mol. Biol. 216:(4):103144
    [Crossref] [Google Scholar]
  52. 52.
    Howard CJ, Hanson-Smith V, Kennedy KJ, Miller CJ, Lou HJ, et al. 2014.. Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity. . eLife 3::e04126
    [Crossref] [Google Scholar]
  53. 53.
    Iwabata H, Watanabe K, Ohkuri T, Yokobori S, Yamagishi A. 2005.. Thermostability of ancestral mutants of Caldococcus noboribetus isocitrate dehydrogenase. . FEMS Microbiol. Lett. 243:(2):39398
    [Crossref] [Google Scholar]
  54. 54.
    Jalal ASB, Tran NT, Stevenson CE, Chan EW, Lo R, et al. 2020.. Diversification of DNA-binding specificity by permissive and specificity-switching mutations in the ParB/Noc protein family. . Cell Rep. 32:(3):107928
    [Crossref] [Google Scholar]
  55. 55.
    Joho Y, Vongsouthi V, Spence MA, Ton J, Gomez C, et al. 2023.. Ancestral sequence reconstruction identifies structural changes underlying the evolution of Ideonella sakaiensis PETase and variants with improved stability and activity. . Biochemistry 62:(2):43750
    [Crossref] [Google Scholar]
  56. 56.
    Kaczmarski JA, Mahawaththa MC, Feintuch A, Clifton BE, Adams LA, et al. 2020.. Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme. . Nat. Commun. 11::5945
    [Crossref] [Google Scholar]
  57. 57.
    Kaltenbach M, Burke JR, Dindo M, Pabis A, Munsberg FS, et al. 2018.. Evolution of chalcone isomerase from a noncatalytic ancestor. . Nat. Chem. Biol. 14:(6):54855
    [Crossref] [Google Scholar]
  58. 58.
    Kim H, Zou T, Modi C, Dörner K, Grunkemeyer TJ, et al. 2015.. A hinge migration mechanism unlocks the evolution of green-to-red photoconversion in GFP-like proteins. . Structure 23:(1):3443
    [Crossref] [Google Scholar]
  59. 59.
    Kumar A, Natarajan C, Moriyama H, Witt CC, Weber RE, et al. 2017.. Stability-mediated epistasis restricts accessible mutational pathways in the functional evolution of avian hemoglobin. . Mol. Biol. Evol. 34:(5):124051
    [Crossref] [Google Scholar]
  60. 60.
    Le SQ, Gascuel O. 2008.. An improved general amino acid replacement matrix. . Mol. Biol. Evol. 25:(7):130720
    [Crossref] [Google Scholar]
  61. 61.
    Le SQ, Gascuel O. 2010.. Accounting for solvent accessibility and secondary structure in protein phylogenetics is clearly beneficial. . Syst. Biol. 59:(3):27787
    [Crossref] [Google Scholar]
  62. 62.
    Lee J, Blaber M. 2011.. Experimental support for the evolution of symmetric protein architecture from a simple peptide motif. . PNAS 108:(1):12630
    [Crossref] [Google Scholar]
  63. 63.
    Liberles DA. 2007.. Ancestral Sequence Reconstruction. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  64. 64.
    Lim SA, Bolin ER, Marqusee S. 2018.. Tracing a protein's folding pathway over evolutionary time using ancestral sequence reconstruction and hydrogen exchange. . eLife 7::e38369
    [Crossref] [Google Scholar]
  65. 65.
    Malcolm BA, Wilson KP, Matthews BW, Kirsch JF, Wilson AC. 1990.. Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing. . Nature 345:(6270):8689
    [Crossref] [Google Scholar]
  66. 66.
    Mallik S, Tawfik DS, Levy ED. 2022.. How gene duplication diversifies the landscape of protein oligomeric state and function. . Curr. Opin. Genet. Dev. 76::101966
    [Crossref] [Google Scholar]
  67. 67.
    Marks DS, Hopf TA, Sander C. 2012.. Protein structure prediction from sequence variation. . Nat. Biotechnol. 30:(11):107280
    [Crossref] [Google Scholar]
  68. 68.
    McKeown AN, Bridgham JT, Anderson DW, Murphy MN, Ortlund EA, Thornton JW. 2014.. Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module. . Cell 159:(1):5868
    [Crossref] [Google Scholar]
  69. 69.
    Merkl R, Sterner R. 2016.. Reconstruction of ancestral enzymes. . Perspect. Sci. 9::1723
    [Crossref] [Google Scholar]
  70. 70.
    Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. 2020.. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. . Mol. Biol. Evol. 37:(5):153034
    [Crossref] [Google Scholar]
  71. 71.
    Miyazaki J, Nakaya S, Suzuki T, Tamakoshi M, Oshima T, Yamagishi A. 2001.. Ancestral residues stabilizing 3-isopropylmalate dehydrogenase of an extreme thermophile: experimental evidence supporting the thermophilic common ancestor hypothesis. . J. Biochem. 129:(5):77782
    [Crossref] [Google Scholar]
  72. 72.
    Morrison AJ, Wonderlick DR, Harms MJ. 2021.. Ensemble epistasis: thermodynamic origins of nonadditivity between mutations. . Genetics 219:(1):iyab105
    [Crossref] [Google Scholar]
  73. 73.
    Moshe A, Pupko T. 2019.. Ancestral sequence reconstruction: accounting for structural information by averaging over replacement matrices. . Bioinformatics 35:(15):256268
    [Crossref] [Google Scholar]
  74. 74.
    Motlagh HN, Wrabl JO, Li J, Hilser VJ. 2014.. The ensemble nature of allostery. . Nature 508:(7496):33139
    [Crossref] [Google Scholar]
  75. 75.
    Musil M, Khan RT, Beier A, Stourac J, Konegger H, et al. 2021.. FireProtASR: a web server for fully automated ancestral sequence reconstruction. . Brief. Bioinform. 22:(4):bbaa337
    [Crossref] [Google Scholar]
  76. 76.
    Natarajan C, Signore AV, Bautista NM, Hoffmann FG, Tame JRH, et al. 2023.. Evolution and molecular basis of a novel allosteric property of crocodilian hemoglobin. . Curr. Biol. 33:(1):98108.e4
    [Crossref] [Google Scholar]
  77. 77.
    Nguyen V, Wilson C, Hoemberger M, Stiller JB, Agafonov RV, et al. 2017.. Evolutionary drivers of thermoadaptation in enzyme catalysis. . Science 355:(6322):28994
    [Crossref] [Google Scholar]
  78. 78.
    Nixon CF, Lim SA, Sailer ZR, Zheludev IN, Gee CL, et al. 2021.. Exploring the evolutionary history of kinetic stability in the α-lytic protease family. . Biochemistry 60:(3):17081
    [Crossref] [Google Scholar]
  79. 79.
    Okafor CD, Pathak MC, Fagan CE, Bauer NC, Cole MF, et al. 2018.. Structural and dynamics comparison of thermostability in ancient, modern, and consensus elongation factor Tus. . Structure 26:(1):11829.e3
    [Crossref] [Google Scholar]
  80. 80.
    Onuchic JN, Luthey-Schulten Z, Wolynes PG. 1997.. Theory of protein folding: the energy landscape perspective. . Annu. Rev. Phys. Chem. 48::545600
    [Crossref] [Google Scholar]
  81. 81.
    Orlandi KN, Phillips SR, Sailer ZR, Harman JL, Harms MJ. 2023.. Topiary: pruning the manual labor from ancestral sequence reconstruction. . Protein Sci. 32:(2):e4551
    [Crossref] [Google Scholar]
  82. 82.
    Otten R, Pádua RAP, Bunzel HA, Nguyen V, Pitsawong W, et al. 2020.. How directed evolution reshapes energy landscapes in enzymes to boost catalysis. . Science 370:(6523):144246
    [Crossref] [Google Scholar]
  83. 83.
    Pagel M, Meade A, Barker D. 2004.. Bayesian estimation of ancestral character states on phylogenies. . Syst. Biol. 53:(5):67384
    [Crossref] [Google Scholar]
  84. 84.
    Park Y, Patton JEJ, Hochberg GKA, Thornton JW. 2020.. Comment on “Ancient origins of allosteric activation in a Ser-Thr kinase. .” Science 370:(6519):eabc8301
    [Crossref] [Google Scholar]
  85. 85.
    Pauling L, Zuckerkandl E. 1963.. Chemical paleogenetics: molecular “restoration studies” of extinct forms of life. . Acta Chem. Scand. 17::S916
    [Crossref] [Google Scholar]
  86. 86.
    Pillai AS, Chandler SA, Liu Y, Signore AV, Cortez-Romero CR, et al. 2020.. Origin of complexity in haemoglobin evolution. . Nature 581:(7809):48085
    [Crossref] [Google Scholar]
  87. 87.
    Pollock DD, Thiltgen G, Goldstein RA. 2012.. Amino acid coevolution induces an evolutionary Stokes shift. . PNAS 109:(21):E135259
    [Crossref] [Google Scholar]
  88. 88.
    Rauwerdink A, Lunzer M, Devamani T, Jones B, Mooney J, et al. 2016.. Evolution of a catalytic mechanism. . Mol. Biol. Evol. 33:(4):97179
    [Crossref] [Google Scholar]
  89. 89.
    Risso VA, Gavira JA, Mejia-Carmona DF, Gaucher EA, Sanchez-Ruiz JM. 2013.. Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian β-lactamases. . J. Am. Chem. Soc. 135:(8):2899902
    [Crossref] [Google Scholar]
  90. 90.
    Risso VA, Manssour-Triedo F, Delgado-Delgado A, Arco R, Barroso-delJesus A, et al. 2015.. Mutational studies on resurrected ancestral proteins reveal conservation of site-specific amino acid preferences throughout evolutionary history. . Mol. Biol. Evol. 32:(2):44055
    [Crossref] [Google Scholar]
  91. 91.
    Risso VA, Sanchez-Ruiz JM, Ozkan SB. 2018.. Biotechnological and protein-engineering implications of ancestral protein resurrection. . Curr. Opin. Struct. Biol. 51::10615
    [Crossref] [Google Scholar]
  92. 92.
    Rivoire O, Reynolds KA, Ranganathan R. 2016.. Evolution-based functional decomposition of proteins. . PLOS Comput. Biol. 12:(6):e1004817
    [Crossref] [Google Scholar]
  93. 93.
    Sang D, Pinglay S, Wiewiora RP, Selvan ME, Lou HJ, et al. 2019.. Ancestral reconstruction reveals mechanisms of ERK regulatory evolution. . eLife 8::e38805
    [Crossref] [Google Scholar]
  94. 94.
    Schenkmayerova A, Pinto GP, Toul M, Marek M, Hernychova L, et al. 2021.. Engineering the protein dynamics of an ancestral luciferase. . Nat. Commun. 12::3616
    [Crossref] [Google Scholar]
  95. 95.
    Schulz L, Guo Z, Zarzycki J, Steinchen W, Schuller JM, et al. 2022.. Evolution of increased complexity and specificity at the dawn of form I Rubiscos. . Science 378:(6616):15560
    [Crossref] [Google Scholar]
  96. 96.
    Schupfner M, Straub K, Busch F, Merkl R, Sterner R. 2020.. Analysis of allosteric communication in a multienzyme complex by ancestral sequence reconstruction. . PNAS 117:(1):34654
    [Crossref] [Google Scholar]
  97. 97.
    Scotese CR, Song H, Mills BJW, van der Meer DG. 2021.. Phanerozoic paleotemperatures: the earth's changing climate during the last 540 million years. . Earth Sci. Rev. 215::103503
    [Crossref] [Google Scholar]
  98. 98.
    Selberg AGA, Gaucher EA, Liberles DA. 2021.. Ancestral sequence reconstruction: from chemical paleogenetics to maximum likelihood algorithms and beyond. . J. Mol. Evol. 89:(3):15764
    [Crossref] [Google Scholar]
  99. 99.
    Siddiq MA, Hochberg GK, Thornton JW. 2017.. Evolution of protein specificity: insights from ancestral protein reconstruction. . Curr. Opin. Struct. Biol. 47::11322
    [Crossref] [Google Scholar]
  100. 100.
    Sikosek T, Krobath H, Chan HS. 2016.. Theoretical insights into the biophysics of protein bi-stability and evolutionary switches. . PLOS Comput. Biol. 12:(6):e1004960
    [Crossref] [Google Scholar]
  101. 101.
    Smock RG, Yadid I, Dym O, Clarke J, Tawfik DS. 2016.. De novo evolutionary emergence of a symmetrical protein is shaped by folding constraints. . Cell 164:(3):47686
    [Crossref] [Google Scholar]
  102. 102.
    Spence MA, Kaczmarski JA, Saunders JW, Jackson CJ. 2021.. Ancestral sequence reconstruction for protein engineers. . Curr. Opin. Struct. Biol. 69::13141
    [Crossref] [Google Scholar]
  103. 103.
    Starr TN, Flynn JM, Mishra P, Bolon DNA, Thornton JW. 2018.. Pervasive contingency and entrenchment in a billion years of Hsp90 evolution. . PNAS 115:(17):445358
    [Crossref] [Google Scholar]
  104. 104.
    Starr TN, Picton LK, Thornton JW. 2017.. Alternative evolutionary histories in the sequence space of an ancient protein. . Nature 549:(7672):40913
    [Crossref] [Google Scholar]
  105. 105.
    Sternke M, Tripp KW, Barrick D. 2020.. The use of consensus sequence information to engineer stability and activity in proteins. . Methods Enzymol. 643::14979
    [Crossref] [Google Scholar]
  106. 106.
    Straub K, Merkl R. 2019.. Ancestral sequence reconstruction as a tool for the elucidation of a stepwise evolutionary adaptation. . In Computational Methods in Protein Evolution, ed. T Sikosek , pp. 17182. Berlin:: Springer
    [Google Scholar]
  107. 107.
    Studer RA, Christin P-A, Williams MA, Orengo CA. 2014.. Stability-activity tradeoffs constrain the adaptive evolution of RubisCO. . PNAS 111:(6):222328
    [Crossref] [Google Scholar]
  108. 108.
    Susko E, Roger AJ. 2013.. Problems with estimation of ancestral frequencies under stationary models. . Syst. Biol. 62:(2):33038
    [Crossref] [Google Scholar]
  109. 109.
    Taverna DM, Goldstein RA. 2002.. Why are proteins marginally stable?. Proteins Struct. Funct. Bioinform. 46:(1):1059
    [Crossref] [Google Scholar]
  110. 110.
    Thomas A, Cutlan R, Finnigan W, van der Giezen M, Harmer N. 2019.. Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction. . Commun. Biol. 2::429
    [Crossref] [Google Scholar]
  111. 111.
    Thornton JW. 2004.. Resurrecting ancient genes: experimental analysis of extinct molecules. . Nat. Rev. Genet. 5:(5):36675
    [Crossref] [Google Scholar]
  112. 112.
    Tokuriki N, Tawfik DS. 2009.. Protein dynamism and evolvability. . Science 324:(5924):2037
    [Crossref] [Google Scholar]
  113. 113.
    Trudeau DL, Kaltenbach M, Tawfik DS. 2016.. On the potential origins of the high stability of reconstructed ancestral proteins. . Mol. Biol. Evol. 33:(10):263341
    [Crossref] [Google Scholar]
  114. 114.
    Trudeau DL, Tawfik DS. 2019.. Protein engineers turned evolutionists—the quest for the optimal starting point. . Curr. Opin. Biotechnol. 60::4652
    [Crossref] [Google Scholar]
  115. 115.
    Tufts DM, Natarajan C, Revsbech IG, Projecto-Garcia J, Hoffmann FG, et al. 2015.. Epistasis constrains mutational pathways of hemoglobin adaptation in high-altitude pikas. . Mol. Biol. Evol. 32:(2):28798
    [Crossref] [Google Scholar]
  116. 116.
    Van Nynatten A, Castiglione GM, de A. Gutierrez E, Lovejoy NR, Chang BSW. 2021.. Recreated ancestral opsin associated with marine to freshwater croaker invasion reveals kinetic and spectral adaptation. . Mol. Biol. Evol. 38:(5):207687
    [Crossref] [Google Scholar]
  117. 117.
    Weber G. 1975.. Energetics of ligand binding to proteins. . Adv. Protein Chem. 29::183
    [Crossref] [Google Scholar]
  118. 118.
    Wei G, Xi W, Nussinov R, Ma B. 2016.. Protein ensembles: How does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell. . Chem. Rev. 116:(11):651651
    [Crossref] [Google Scholar]
  119. 119.
    Weinreich DM, Lan Y, Wylie CS, Heckendorn RB. 2013.. Should evolutionary geneticists worry about higher-order epistasis?. Curr. Opin. Genet. Dev. 23:(6):7007
    [Crossref] [Google Scholar]
  120. 120.
    Wheeler LC, Anderson JA, Morrison AJ, Wong CE, Harms MJ. 2018.. Conservation of specificity in two low-specificity proteins. . Biochemistry 57:(5):68495
    [Crossref] [Google Scholar]
  121. 121.
    Wheeler LC, Lim SA, Marqusee S, Harms MJ. 2016.. The thermostability and specificity of ancient proteins. . Curr. Opin. Struct. Biol. 38::3743
    [Crossref] [Google Scholar]
  122. 122.
    Whitney DS, Volkman BF, Prehoda KE. 2016.. Evolution of a protein interaction domain family by tuning conformational flexibility. . J. Am. Chem. Soc. 138:(46):1515056
    [Crossref] [Google Scholar]
  123. 123.
    Williams PD, Pollock DD, Blackburne BP, Goldstein RA. 2006.. Assessing the accuracy of ancestral protein reconstruction methods. . PLOS Comput. Biol. 2:(6):e69
    [Crossref] [Google Scholar]
  124. 124.
    Wilson C, Agafonov RV, Hoemberger M, Kutter S, Zorba A, et al. 2015.. Using ancient protein kinases to unravel a modern cancer drug's mechanism. . Science 347:(6224):88286
    [Crossref] [Google Scholar]
  125. 125.
    Woese CR. 1987.. Bacterial evolution. . Microbiol. Rev. 51:(2):22171
    [Crossref] [Google Scholar]
  126. 126.
    Yang G, Anderson DW, Baier F, Dohmen E, Hong N, et al. 2019.. Higher-order epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme. . Nat. Chem. Biol. 15:(11):112028
    [Crossref] [Google Scholar]
  127. 127.
    Yang Z. 1996.. Among-site rate variation and its impact on phylogenetic analyses. . Trends Ecol. Evol. 11:(9):36772
    [Crossref] [Google Scholar]
  128. 128.
    Yang Z. 2007.. PAML 4: phylogenetic analysis by maximum likelihood. . Mol. Biol. Evol. 24:(8):158691
    [Crossref] [Google Scholar]
  129. 129.
    Yang Z, Kumar S, Nei M. 1995.. A new method of inference of ancestral nucleotide and amino acid sequences. . Genetics 141:(4):164150
    [Crossref] [Google Scholar]
  130. 130.
    Yokoyama S, Radlwimmer FB. 2001.. The molecular genetics and evolution of red and green color vision in vertebrates. . Genetics 158:(4):1697710
    [Crossref] [Google Scholar]
  131. 131.
    Yokoyama S, Tada T, Zhang H, Britt L. 2008.. Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. . PNAS 105:(36):1348085
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-030722-125440
Loading
/content/journals/10.1146/annurev-biophys-030722-125440
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error