1932

Abstract

The mechanical phenotype of a cell determines its ability to deform under force and is therefore relevant to cellular functions that require changes in cell shape, such as migration or circulation through the microvasculature. On the practical level, the mechanical phenotype can be used as a global readout of the cell's functional state, a marker for disease diagnostics, or an input for tissue modeling. We focus our review on the current knowledge of structural components that contribute to the determination of the cellular mechanical properties and highlight the physiological processes in which the mechanical phenotype of the cells is of critical relevance. The ongoing efforts to understand how to efficiently measure and control the mechanical properties of cells will define the progress in the field and drive mechanical phenotyping toward clinical applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-030822-030629
2024-07-16
2025-06-25
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-030822-030629.html?itemId=/content/journals/10.1146/annurev-biophys-030822-030629&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abuhattum S, Kotzbeck P, Schlüßler R, Harger A, Ariza de Schellenberger A, et al. 2022.. Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens. . Sci. Rep. 12::10325
    [Crossref] [Google Scholar]
  2. 2.
    Abuhattum S, Mokbel D, Müller P, Soteriou D, Guck J, Aland S. 2022.. An explicit model to extract viscoelastic properties of cells from AFM force-indentation curves. . iScience 25:(4):104016
    [Crossref] [Google Scholar]
  3. 3.
    Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, et al. 2003.. Microrheology of human lung epithelial cells measured by atomic force microscopy. . Biophys. J. 84:(3):207179
    [Crossref] [Google Scholar]
  4. 4.
    Alibert C, Goud B, Manneville J-B. 2017.. Are cancer cells really softer than normal cells?. Biol. Cell 109:(5):16789
    [Crossref] [Google Scholar]
  5. 5.
    Antonacci G, Beck T, Bilenca A, Czarske J, Elsayad K, et al. 2020.. Recent progress and current opinions in Brillouin microscopy for life science applications. . Biophys. Rev. 12:(3):61524
    [Crossref] [Google Scholar]
  6. 6.
    Armistead FJ, Gala De Pablo J, Gadêlha H, Peyman SA, Evans SD, et al. 2019.. Cells under stress: an inertial-shear microfluidic determination of cell behavior. . Biophys. J. 116:(6):112735
    [Crossref] [Google Scholar]
  7. 7.
    Barriga EH, Franze K, Charras G, Mayor R. 2018.. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. . Nature 554:(7693):52327
    [Crossref] [Google Scholar]
  8. 8.
    Bashant KR, Toepfner N, Day CJ, Mehta NN, Kaplan MJ, et al. 2020.. The mechanics of myeloid cells. . Biol. Cell 112:(4):10312
    [Crossref] [Google Scholar]
  9. 9.
    Bashant KR, Vassallo A, Herold C, Berner R, Menschner L, et al. 2019.. Real-time deformability cytometry reveals sequential contraction and expansion during neutrophil priming. . J. Leukoc. Biol. 105:(6):114353
    [Crossref] [Google Scholar]
  10. 10.
    Biswas A, Kashyap P, Datta S, Sengupta T, Sinha B. 2019.. Cholesterol depletion by MβCD enhances cell membrane tension and its variations-reducing integrity. . Biophys. J. 116:(8):145668
    [Crossref] [Google Scholar]
  11. 11.
    Bongiorno T, Kazlow J, Mezencev R, Griffiths S, Olivares-Navarrete R, et al. 2014.. Mechanical stiffness as an improved single-cell indicator of osteoblastic human mesenchymal stem cell differentiation. . J. Biomech. 47:(9):2197204
    [Crossref] [Google Scholar]
  12. 12.
    Brangwynne CP, MacKintosh FC, Kumar S, Geisse NA, Talbot J, et al. 2006.. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. . J. Cell Biol. 173:(5):73341
    [Crossref] [Google Scholar]
  13. 13.
    Broers JLV, Peeters EAG, Kuijpers HJH, Endert J, Bouten CVC, et al. 2004.. Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. . Hum. Mol. Genet. 13:(21):256780
    [Crossref] [Google Scholar]
  14. 14.
    Bufi N, Saitakis M, Dogniaux S, Buschinger O, Bohineust A, et al. 2015.. Human primary immune cells exhibit distinct mechanical properties that are modified by inflammation. . Biophys. J. 108:(9):218190
    [Crossref] [Google Scholar]
  15. 15.
    Bui VC, Nguyen TH. 2020.. Direct monitoring of drug-induced mechanical response of individual cells by atomic force microscopy. . J. Mol. Recognit. 33:(9):e2847
    [Crossref] [Google Scholar]
  16. 16.
    Bunn HF. 1997.. Pathogenesis and treatment of sickle cell disease. . N. Engl. J. Med. 337::76269
    [Crossref] [Google Scholar]
  17. 17.
    Byfield FJ, Aranda-Espinoza H, Romanenko VG, Rothblat GH, Levitan I. 2004.. Cholesterol depletion increases membrane stiffness of aortic endothelial cells. . Biophys. J. 87:(5):333643
    [Crossref] [Google Scholar]
  18. 18.
    Byun S, Son S, Amodei D, Cermak N, Shaw J, et al. 2013.. Characterizing deformability and surface friction of cancer cells. . PNAS 110:(19):758085
    [Crossref] [Google Scholar]
  19. 19.
    Caille N, Thoumine O, Tardy Y, Meister JJ. 2002.. Contribution of the nucleus to the mechanical properties of endothelial cells. . J. Biomech. 35:(2):17787
    [Crossref] [Google Scholar]
  20. 20.
    Caudron F, Barral Y. 2009.. Septins and the lateral compartmentalization of eukaryotic membranes. . Dev. Cell 16:(4):493506
    [Crossref] [Google Scholar]
  21. 21.
    Cavanaugh KE, Staddon MF, Munro E, Banerjee S, Gardel ML. 2020.. RhoA mediates epithelial cell shape changes via mechanosensitive endocytosis. . Dev. Cell 52:(2):15266.e5
    [Crossref] [Google Scholar]
  22. 22.
    Chalut KJ, Höpfler M, Lautenschläger F, Boyde L, Chan CJ, et al. 2012.. Chromatin decondensation and nuclear softening accompany Nanog downregulation in embryonic stem cells. . Biophys. J. 103:(10):206070
    [Crossref] [Google Scholar]
  23. 23.
    Chan CJ, Ekpenyong AE, Golfier S, Li W, Chalut KJ, et al. 2015.. Myosin II activity softens cells in suspension. . Biophys. J. 108:(8):185669
    [Crossref] [Google Scholar]
  24. 24.
    Chan CJ, Li W, Cojoc G, Guck J. 2017.. Volume transitions of isolated cell nuclei induced by rapid temperature increase. . Biophys. J. 112:(6):106376
    [Crossref] [Google Scholar]
  25. 25.
    Chang L, Goldman RD. 2004.. Intermediate filaments mediate cytoskeletal crosstalk. . Nat. Rev. Mol. Cell Biol. 5:(8):60113
    [Crossref] [Google Scholar]
  26. 26.
    Chang YC, Nalbant P, Birkenfeld J, Chang ZF, Bokoch GM. 2008.. GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. . Mol. Biol. Cell. 19:(5):214753
    [Crossref] [Google Scholar]
  27. 27.
    Charrier EE, Janmey PA. 2016.. Mechanical properties of intermediate filament proteins. . Methods Enzymol. 568::3557
    [Crossref] [Google Scholar]
  28. 28.
    Chaudhuri PK, Low BC, Lim CT. 2018.. Mechanobiology of tumor growth. . Chem. Rev. 118:(14):6499515
    [Crossref] [Google Scholar]
  29. 29.
    Chen J, Zhou W, Jia Q, Chen J, Zhang S, et al. 2016.. Efficient extravasation of tumor-repopulating cells depends on cell deformability. . Sci. Rep. 6::19304
    [Crossref] [Google Scholar]
  30. 30.
    Chen Q, Xiao P, Chen J-N, Cai J-Y, Cai X-F, et al. 2010.. AFM studies of cellular mechanics during osteogenic differentiation of human amniotic fluid-derived stem cells. . Anal. Sci. 26:(10):103337
    [Crossref] [Google Scholar]
  31. 31.
    Chen YQ, Lan HY, Wu YC, Yang WH, Chiou A, Yang MH. 2018.. Epithelial-mesenchymal transition softens head and neck cancer cells to facilitate migration in 3D environments. . J. Cell. Mol. Med. 22:(8):383746
    [Crossref] [Google Scholar]
  32. 32.
    Chowdhury F, Na S, Li D, Poh Y-C, Tanaka TS, et al. 2010.. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. . Nat. Mater. 9:(1):8288
    [Crossref] [Google Scholar]
  33. 33.
    Chugh P, Clark AG, Smith MB, Cassani DAD, Dierkes K, et al. 2017.. Actin cortex architecture regulates cell surface tension. . Nat. Cell Biol. 19:(6):68997
    [Crossref] [Google Scholar]
  34. 34.
    Chugh P, Paluch EK. 2018.. The actin cortex at a glance. . J. Cell Sci. 131:(14):jcs186254
    [Crossref] [Google Scholar]
  35. 35.
    Darling EM, Di Carlo D. 2015.. High-throughput assessment of cellular mechanical properties. . Annu. Rev. Biomed. Eng. 17::3562
    [Crossref] [Google Scholar]
  36. 36.
    Davidson PM, Denais C, Bakshi MC, Lammerding J. 2014.. Nuclear deformability constitutes a rate-limiting step during cell migration in 3-D environments. . Cell. Mol. Bioeng. 7:(3):293306
    [Crossref] [Google Scholar]
  37. 37.
    Delarue M, Brittingham GP, Pfeffer S, Surovtsev IV, Pinglay S, et al. 2018.. mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding. . Cell 174:(2):33849.e20
    [Crossref] [Google Scholar]
  38. 38.
    Denk S, Taylor RP, Wiegner R, Cook EM, Lindorfer MA, et al. 2017.. Complement C5a-induced changes in neutrophil morphology during inflammation. . Scand. J. Immunol. 86:(3):14355
    [Crossref] [Google Scholar]
  39. 39.
    Di Carlo D. 2012.. A mechanical biomarker of cell state in medicine. . J. Lab. Autom. 17:(1):3242
    [Crossref] [Google Scholar]
  40. 40.
    Diz-Muñoz A, Weiner OD, Fletcher DA. 2018.. In pursuit of the mechanics that shape cell surfaces. . Nat. Phys. 14:(7):64852
    [Crossref] [Google Scholar]
  41. 41.
    Dogterom M, Koenderink GH. 2019.. Actin-microtubule crosstalk in cell biology. . Nat. Rev. Mol. Cell Biol. 20:(1):3854
    [Crossref] [Google Scholar]
  42. 42.
    Dondorp AM, Kager PA, Vreeken J, White NJ. 2000.. Abnormal blood flow and red blood cell deformability in severe malaria. . Parasitol. Today 16:(6):22832
    [Crossref] [Google Scholar]
  43. 43.
    Dupire J, Puech PH, Helfer E, Viallat A. 2020.. Mechanical adaptation of monocytes in model lung capillary networks. . PNAS 117:(26):14798804
    [Crossref] [Google Scholar]
  44. 44.
    Echarri A, Del Pozo MA. 2015.. Caveolae—mechanosensitive membrane invaginations linked to actin filaments. . J. Cell Sci. 128:(15):274758
    [Google Scholar]
  45. 45.
    Efremov YM, Kotova SL, Akovantseva AA, Timashev PS. 2020.. Nanomechanical properties of enucleated cells: contribution of the nucleus to the passive cell mechanics. . J. Nanobiotechnol. 18::134
    [Crossref] [Google Scholar]
  46. 46.
    Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, et al. 2012.. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. . Front. Immunol. 3::297
    [Crossref] [Google Scholar]
  47. 47.
    Ekpenyong AE, Toepfner N, Fiddler C, Herbig M, Li W, et al. 2017.. Mechanical deformation induces depolarization of neutrophils. . Sci. Adv. 3:(6):e1602536
    [Crossref] [Google Scholar]
  48. 48.
    Ekpenyong AE, Whyte G, Chalut K, Pagliara S, Lautenschläger F, et al. 2012.. Viscoelastic properties of differentiating blood cells are fate- and function-dependent. . PLOS ONE 7:(9):e45237
    [Crossref] [Google Scholar]
  49. 49.
    Ellis RJ. 2001.. Macromolecular crowding: obvious but underappreciated. . Trends Biochem. Sci. 26:(10):597604
    [Crossref] [Google Scholar]
  50. 50.
    Erkers T, Kaipe H, Nava S, Molldén P, Gustafsson B, et al. 2015.. Treatment of severe chronic graft-versus-host disease with decidual stromal cells and tracing with 111indium radiolabeling. . Stem Cells Dev. 24:(2):25363
    [Crossref] [Google Scholar]
  51. 51.
    Eroles M, Rico F. 2023.. Advances in mechanical biomarkers. . J. Mol. Recognit. 36:(8):e3022
    [Crossref] [Google Scholar]
  52. 52.
    Escolano JC, Taubenberger AV, Abuhattum S, Schweitzer C, Farrukh A, et al. 2021.. Compliant substrates enhance macrophage cytokine release and NLRP3 inflammasome formation during their pro-inflammatory response. . Front. Cell Dev. Biol. 9::639815
    [Crossref] [Google Scholar]
  53. 53.
    Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ. 2001.. Scaling the microrheology of living cells. . Phys. Rev. Lett. 87:(14):148102
    [Crossref] [Google Scholar]
  54. 54.
    Fischer-Friedrich E, Toyoda Y, Cattin CJ, Müller DJ, Hyman AA, Jülicher F. 2016.. Rheology of the active cell cortex in mitosis. . Biophys. J. 111:(3):589600
    [Crossref] [Google Scholar]
  55. 55.
    Fletcher DA, Mullins RD. 2010.. Cell mechanics and the cytoskeleton. . Nature 463:(7280):48592
    [Crossref] [Google Scholar]
  56. 56.
    Fregin B, Czerwinski F, Biedenweg D, Girardo S, Gross S, et al. 2019.. High-throughput single-cell rheology in complex samples by dynamic real-time deformability cytometry. . Nat. Commun. 10::415
    [Crossref] [Google Scholar]
  57. 57.
    Friedl P, Wolf K, Lammerding J. 2011.. Nuclear mechanics during cell migration. . Curr. Opin. Cell Biol. 23:(1):5564
    [Crossref] [Google Scholar]
  58. 58.
    Gauthier NC, Masters TA, Sheetz MP. 2012.. Mechanical feedback between membrane tension and dynamics. . Trends Cell Biol. 22:(10):52735
    [Crossref] [Google Scholar]
  59. 59.
    Gensbittel V, Kräter M, Harlepp S, Busnelli I, Guck J, Goetz JG. 2021.. Mechanical adaptability of tumor cells in metastasis. . Dev. Cell 56:(2):16479
    [Crossref] [Google Scholar]
  60. 60.
    Gerum R, Mirzahossein E, Eroles M, Elsterer J, Mainka A, et al. 2022.. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry. . eLife 11::e78823
    [Crossref] [Google Scholar]
  61. 61.
    Gilden J, Krummel MF. 2010.. Control of cortical rigidity by the cytoskeleton: emerging roles for septins. . Cytoskeleton 67:(8):47786
    [Crossref] [Google Scholar]
  62. 62.
    Gilden JK, Peck S, Chen YCM, Krummel MF. 2012.. The septin cytoskeleton facilitates membrane retraction during motility and blebbing. . J. Cell Biol. 196:(1):10314
    [Crossref] [Google Scholar]
  63. 63.
    Golfier S, Rosendahl P, Mietke A, Herbig M, Guck J, Otto O. 2017.. High-throughput cell mechanical phenotyping for label-free titration assays of cytoskeletal modifications. . Cytoskeleton 74:(8):28396
    [Crossref] [Google Scholar]
  64. 64.
    González-Cruz RD, Fonseca VC, Darling EM. 2012.. Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. . PNAS 109:(24):E152329
    [Crossref] [Google Scholar]
  65. 65.
    Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, et al. 2012.. Hydrodynamic stretching of single cells for large population mechanical phenotyping. . PNAS 109:(20):763035
    [Crossref] [Google Scholar]
  66. 66.
    Groulx N, Boudreault F, Orlov SN, Grygorczyk R. 2006.. Membrane reserves and hypotonic cell swelling. . J. Membr. Biol. 214:(1–2):4356
    [Crossref] [Google Scholar]
  67. 67.
    Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL. 2005.. The nuclear lamina comes of age. . Nat. Rev. Mol. Cell Biol. 6:(1):2131
    [Crossref] [Google Scholar]
  68. 68.
    Guck J. 2019.. Some thoughts on the future of cell mechanics. . Biophys. Rev. 11:(5):66770
    [Crossref] [Google Scholar]
  69. 69.
    Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Käs J. 2001.. The optical stretcher: a novel laser tool to micromanipulate cells. . Biophys. J. 81:(2):76784
    [Crossref] [Google Scholar]
  70. 70.
    Guck J, Ananthakrishnan R, Moon TJ, Cunningham CC, Käs J. 2000.. Optical deformability of soft biological dielectrics. . Phys. Rev. Lett. 84:(23):545154
    [Crossref] [Google Scholar]
  71. 71.
    Guck J, Chilvers ER. 2013.. Mechanics meets medicine. . Sci. Transl. Med. 5:(212):36
    [Crossref] [Google Scholar]
  72. 72.
    Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, et al. 2005.. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. . Biophys. J. 88:(5):368998
    [Crossref] [Google Scholar]
  73. 73.
    Guilak F. 1995.. Compression-induced changes in the shape and volume of the chondrocyte nucleus. . J. Biomech. 28:(12):152941
    [Crossref] [Google Scholar]
  74. 74.
    Guilak F, Erickson GR, Ting-Beall HP. 2002.. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. . Biophys. J. 82:(2):72027
    [Crossref] [Google Scholar]
  75. 75.
    Guilak F, Tedrow JR, Burgkart R. 2000.. Viscoelastic properties of the cell nucleus. . Biochem. Biophys. Res. Commun. 269:(3):78186
    [Crossref] [Google Scholar]
  76. 76.
    Guillou L, Dahl JB, Lin J-MG, Barakat AI, Husson J, et al. 2016.. Measuring cell viscoelastic properties using a microfluidic extensional flow device. . Biophys. J. 111:(9):203950
    [Crossref] [Google Scholar]
  77. 77.
    Guillou L, Sheybani R, Jensen AE, Di Carlo D, Caffery TS, et al. 2021.. Development and validation of a cellular host response test as an early diagnostic for sepsis. . PLOS ONE 16:(4):e0246980
    [Crossref] [Google Scholar]
  78. 78.
    Guo M, Ehrlicher AJ, Mahammad S, Fabich H, Jensen MH, et al. 2013.. The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. . Biophys. J. 105:(7):156268
    [Crossref] [Google Scholar]
  79. 79.
    Guo M, Pegoraro AF, Mao A, Zhou EH, Arany PR, et al. 2017.. Cell volume change through water efflux impacts cell stiffness and stem cell fate. . PNAS 114:(41):E861827
    [Google Scholar]
  80. 80.
    Hall A. 2005.. Rho GTPases and the control of cell behaviour. . Biochem. Soc. Trans. 33:(5):89195
    [Crossref] [Google Scholar]
  81. 81.
    Hamill OP, Martinac B. 2001.. Molecular basis of mechanotransduction in living cells. . Physiol. Rev. 81:(2):685740
    [Crossref] [Google Scholar]
  82. 82.
    Han YL, Pegoraro AF, Li H, Li K, Yuan Y, et al. 2020.. Cell swelling, softening and invasion in a three-dimensional breast cancer model. . Nat. Phys. 16:(1):1018
    [Crossref] [Google Scholar]
  83. 83.
    Hanson L, Zhao W, Lou HY, Lin ZC, Lee SW, . 2015.. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. . Nat. Nanotechnol. 10:(6):55462
    [Crossref] [Google Scholar]
  84. 84.
    Hao Y, Cheng S, Tanaka Y, Hosokawa Y, Yalikun Y, Li M. 2020.. Mechanical properties of single cells: measurement methods and applications. . Biotechnol. Adv. 45::107648
    [Crossref] [Google Scholar]
  85. 85.
    Harada T, Swift J, Irianto J, Shin JW, Spinler KR, et al. 2014.. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. . J. Cell Biol. 204:(5):66982
    [Crossref] [Google Scholar]
  86. 86.
    Hennig K, Wang I, Moreau P, Valon L, DeBeco S, et al. 2020.. Stick-slip dynamics of cell adhesion triggers spontaneous symmetry breaking and directional migration of mesenchymal cells on one-dimensional lines. . Sci. Adv. 6::eaau5670
    [Crossref] [Google Scholar]
  87. 87.
    Herricks T, Antia M, Rathod PK. 2009.. Deformability limits of Plasmodium falciparum-infected red blood cells. . Cell. Microbiol. 11:(9):134053
    [Crossref] [Google Scholar]
  88. 88.
    Herrmann H, Strelkov SV, Burkhard P, Aebi U. 2009.. Intermediate filaments: primary determinants of cell architecture and plasticity. . J. Clin. Investig. 119:(7):177283
    [Crossref] [Google Scholar]
  89. 89.
    Higgins G, Kim JE, Ferruzzi J, Abdalrahman T, Franz T, Zaman MH. 2021.. Decreased cell stiffness facilitates cell detachment and cell migration from breast cancer spheroids in 3D collagen matrices of different rigidity. . bioRxiv 2021.01.21.427639. https://doi.org/10.1101/2021.01.21.427639
  90. 90.
    Hobson CM, Kern M, O'Brien ET, Stephens AD, Falvo MR, Superfine R. 2020.. Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics. . Mol. Biol. Cell 31:(16):1788801
    [Crossref] [Google Scholar]
  91. 91.
    Hochmuth RM. 2000.. Micropipette aspiration of living cells. . J. Biomech. 33:(1):1522
    [Crossref] [Google Scholar]
  92. 92.
    Hosseini K, Taubenberger A, Werner C, Fischer-Friedrich E. 2020.. EMT-induced cell-mechanical changes enhance mitotic rounding strength. . Adv. Sci. 7:(19):2001276
    [Crossref] [Google Scholar]
  93. 93.
    Izquierdo E, Quinkler T, De Renzis S. 2018.. Guided morphogenesis through optogenetic activation of Rho signalling during early Drosophila embryogenesis. . Nat. Commun. 9::2366
    [Crossref] [Google Scholar]
  94. 94.
    Jacobi A, Rosendahl P, Kräter M, Urbanska M, Herbig M, Guck J. 2019.. Analysis of biomechanical properties of hematopoietic stem and progenitor cells using real-time fluorescence and deformability cytometry. . Methods Mol. Biol. 2017::13548
    [Crossref] [Google Scholar]
  95. 95.
    Janmey PA, Euteneuer U, Traub P, Schliwa M. 1991.. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. . J. Cell Biol. 113:(1):15560
    [Crossref] [Google Scholar]
  96. 96.
    Janmey PA, Georges PC, Hvidt S. 2007.. Basic rheology for biologists. . Methods Cell Biol. 83:(07):327
    [Google Scholar]
  97. 97.
    Kelkar M, Bohec P, Charras G. 2020.. Mechanics of the cellular actin cortex: from signalling to shape change. . Curr. Opin. Cell Biol. 66::6978
    [Crossref] [Google Scholar]
  98. 98.
    Kennedy BF, Wijesinghe P, Sampson DD. 2017.. The emergence of optical elastography in biomedicine. . Nat. Photon. 11:(4):21521
    [Crossref] [Google Scholar]
  99. 99.
    Khatibzadeh N, Gupta S, Farrell B, Brownell WE, Anvari B. 2012.. Effects of cholesterol on nano-mechanical properties of the living cell plasma membrane. . Soft Matter. 8:(32):835060
    [Crossref] [Google Scholar]
  100. 100.
    Kirby TJ, Lammerding J. 2018.. Emerging views of the nucleus as a cellular mechanosensor. . Nat. Cell Biol. 20:(4):37381
    [Crossref] [Google Scholar]
  101. 101.
    Koenderink GH, Paluch EK. 2018.. Architecture shapes contractility in actomyosin networks. . Curr. Opin. Cell Biol. 50::7985
    [Crossref] [Google Scholar]
  102. 102.
    Kollmannsberger P, Fabry B. 2011.. Linear and nonlinear rheology of living cells. . Annu. Rev. Mater. Res. 41::7597
    [Crossref] [Google Scholar]
  103. 103.
    Kozminsky M, Sohn LL. 2020.. The promise of single-cell mechanophenotyping for clinical applications. . Biomicrofluidics 14:(3):031301
    [Crossref] [Google Scholar]
  104. 104.
    Kräter M, Abuhattum S, Soteriou D, Jacobi A, Krüger T, et al. 2021.. AIDeveloper: deep learning image classification in life science and beyond. . Adv. Sci. 8:(11):e2003743
    [Crossref] [Google Scholar]
  105. 105.
    Krieg M, Arboleda-Estudillo Y, Puech PH, Käfer J, Graner F, et al. 2008.. Tensile forces govern germ-layer organization in zebrafish. . Nat. Cell Biol. 10:(4):42936
    [Crossref] [Google Scholar]
  106. 106.
    Kubánková M, Hohberger B, Hoffmanns J, Fürst J, Herrmann M, et al. 2021.. Physical phenotype of blood cells is altered in COVID-19. . Biophys. J. 120:(14):283847
    [Crossref] [Google Scholar]
  107. 107.
    Kubitschke H, Schnauss J, Nnetu KD, Warmt E, Stange R, Kaes J. 2017.. Actin and microtubule networks contribute differently to cell response for small and large strains. . New J. Phys. 19:(9):093003
    [Crossref] [Google Scholar]
  108. 108.
    Lakes R. 2009.. Introduction: phenomena. . In Viscoelastic Materials, pp. 113. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  109. 109.
    Lam WA, Rosenbluth MJ, Fletcher DA. 2007.. Chemotherapy exposure increases leukemia cell stiffness. . Blood 109:(8):35058
    [Crossref] [Google Scholar]
  110. 110.
    Lam WA, Rosenbluth MJ, Fletcher DA. 2008.. Increased leukaemia cell stiffness is associated with symptoms of leucostasis in paediatric acute lymphoblastic leukaemia. . Br. J. Haematol. 142:(3):497501
    [Crossref] [Google Scholar]
  111. 111.
    Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, et al. 2004.. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. . J. Clin. Investig. 113:(3):37078
    [Crossref] [Google Scholar]
  112. 112.
    Lange JR, Steinwachs J, Kolb T, Lautscham LA, Harder I, et al. 2015.. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties. . Biophys. J. 109:(1):2634
    [Crossref] [Google Scholar]
  113. 113.
    Lautenschläger F, Paschke S, Schinkinger S, Bruel A, Beil M, Guck J. 2009.. The regulatory role of cell mechanics for migration of differentiating myeloid cells. . PNAS 106:(37):15696701
    [Crossref] [Google Scholar]
  114. 114.
    Le Master E, Paul A, Lazarko D, Aguilar V, Ahn SJ, et al. 2022.. Caveolin-1 is a primary determinant of endothelial stiffening associated with dyslipidemia, disturbed flow, and ageing. . Sci. Rep. 12::17822
    [Crossref] [Google Scholar]
  115. 115.
    Le Roux AL, Quiroga X, Walani N, Arroyo M, Roca-Cusachs P. 2019.. The plasma membrane as a mechanochemical transducer. . Philos. Trans. R. Soc. B 374:(1779):0221
    [Crossref] [Google Scholar]
  116. 116.
    Lecuit T, Lenne PF. 2007.. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. . Nat. Rev. Mol. Cell Biol. 8:(8):63344
    [Crossref] [Google Scholar]
  117. 117.
    Lecuit T, Lenne PF, Munro E. 2011.. Force generation, transmission, and integration during cell and tissue morphogenesis. . Annu. Rev. Cell Dev. Biol. 27::15784
    [Crossref] [Google Scholar]
  118. 118.
    Lee JSH, Hale CM, Panorchan P, Khatau SB, George JP, et al. 2007.. Nuclear lamin A/C deficiency induces defects in cell mechanics, polarization, and migration. . Biophys. J. 93:(7):254252
    [Crossref] [Google Scholar]
  119. 119.
    Lei K, Kurum A, Kaynak M, Bonati L, Han Y, et al. 2021.. Cancer-cell stiffening via cholesterol depletion enhances adoptive T-cell immunotherapy. . Nat. Biomed. Eng. 5:(12):141125
    [Crossref] [Google Scholar]
  120. 120.
    Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, et al. 2009.. Matrix crosslinking forces tumor progression by enhancing integrin signaling. . Cell 139:(5):891906
    [Crossref] [Google Scholar]
  121. 121.
    Li QS, Lee GYH, Ong CN, Lim CT. 2008.. AFM indentation study of breast cancer cells. . Biochem. Biophys. Res. Commun. 374:(4):60913
    [Crossref] [Google Scholar]
  122. 122.
    Li Y, Kučera O, Cuvelier D, Rutkowski DM, Deygas M, et al. 2023.. Compressive forces stabilize microtubules in living cells. . Nat. Mater. 22:(7):91324
    [Crossref] [Google Scholar]
  123. 123.
    Lichtman MA. 1973.. Rheology of leukocytes, leukocyte suspensions, and blood in leukemia. Possible relationship to clinical manifestations. . J. Clin. Investig. 52:(2):35058
    [Crossref] [Google Scholar]
  124. 124.
    Lim CT, Li A. 2011.. Mechanopathology of red blood cell diseases—why mechanics matters. . Theor. Appl. Mech. Lett. 1:(1):014000
    [Crossref] [Google Scholar]
  125. 125.
    Lim CT, Zhou EH, Quek ST. 2006.. Mechanical models for living cells—a review. . J. Biomech. 39:(2):195216
    [Crossref] [Google Scholar]
  126. 126.
    Lin H-H, Lin H-K, Lin I-H, Chiou Y-W, Chen H-W, et al. 2015.. Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing. . Oncotarget 6:(25):2094658
    [Crossref] [Google Scholar]
  127. 127.
    Lipowsky HH. 2005.. Microvascular rheology and hemodynamics. . Microcirculation 12:(1):515
    [Crossref] [Google Scholar]
  128. 128.
    Liu Z, Lee SJ, Park S, Konstantopoulos K, Glunde K, et al. 2020.. Cancer cells display increased migration and deformability in pace with metastatic progression. . FASEB J. 34:(7):930715
    [Crossref] [Google Scholar]
  129. 129.
    Lolo F-N, Walani N, Seemann E, Zalvidea D, Pavón DM, et al. 2023.. Caveolin-1 dolines form a distinct and rapid caveolae-independent mechanoadaptation system. . Nat. Cell Biol. 25::12033
    [Crossref] [Google Scholar]
  130. 130.
    Lühr JJ, Alex N, Amon L, Kräter M, Kubánková M, et al. 2020.. Maturation of monocyte-derived DCs leads to increased cellular stiffness, higher membrane fluidity, and changed lipid composition. . Front. Immunol. 11::590121
    [Crossref] [Google Scholar]
  131. 131.
    Luo Q, Kuang D, Zhang B, Song G. 2016.. Cell stiffness determined by atomic force microscopy and its correlation with cell motility. . Biochim. Biophys. Acta 1860:(9):195360
    [Crossref] [Google Scholar]
  132. 132.
    Luster AD, Alon R, von Andrian UH. 2005.. Immune cell migration in inflammation: present and future therapeutic targets. . Nat. Immunol. 6:(12):118290
    [Crossref] [Google Scholar]
  133. 133.
    Ly C, Ogana H, Kim HN, Hurwitz S, Deeds EJ, et al. 2023.. Altered physical phenotypes of leukemia cells that survive chemotherapy treatment. . Integr. Biol. 15::zyad006
    [Crossref] [Google Scholar]
  134. 134.
    Mahla RS. 2016.. Stem cells applications in regenerative medicine and disease therapeutics. . Int. J. Cell Biol. 2016::6940283
    [Crossref] [Google Scholar]
  135. 135.
    Maître JL, Niwayama R, Turlier H, Nedelec F, Hiiragi T. 2015.. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. . Nat. Cell Biol. 17:(7):84955
    [Crossref] [Google Scholar]
  136. 136.
    Maloney JM, Nikova D, Lautenschläger F, Clarke E, Langer R, et al. 2010.. Mesenchymal stem cell mechanics from the attached to the suspended state. . Biophys. J. 99:(8):247987
    [Crossref] [Google Scholar]
  137. 137.
    Martens JC, Radmacher M. 2008.. Softening of the actin cytoskeleton by inhibition of myosin II. . Pflugers Arch. 456:(1):95100
    [Crossref] [Google Scholar]
  138. 138.
    Maruyama K, Kaibara M, Fukada E. 1974.. Rheology of F-actin. I. Network of F-actin in solution. . Biochim. Biophys. Acta 371:(1):2029
    [Crossref] [Google Scholar]
  139. 139.
    Massiera G, Van Citters KM, Biancaniello PL, Crocker JC. 2007.. Mechanics of single cells: rheology, time dependence, and fluctuations. . Biophys. J. 93:(10):370313
    [Crossref] [Google Scholar]
  140. 140.
    Mayadas TN, Cullere X, Lowell CA. 2014.. The multifaceted functions of neutrophils. . Annu. Rev. Pathol. Mech. Dis. 9::181218
    [Crossref] [Google Scholar]
  141. 141.
    Mendez MG, Restle D, Janmey PA. 2014.. Vimentin enhances cell elastic behavior and protects against compressive stress. . Biophys. J. 107:(2):31423
    [Crossref] [Google Scholar]
  142. 142.
    Mietke A, Otto O, Girardo S, Rosendahl P, Taubenberger A, et al. 2015.. Extracting cell stiffness from real-time deformability cytometry: theory and experiment. . Biophys. J. 109:(10):202336
    [Crossref] [Google Scholar]
  143. 143.
    Milo R, Phillips R. 2015.. How big is a human cell?. In Cell Biology by the Numbers, pp. 1417. New York:: Garland Sci.
    [Google Scholar]
  144. 144.
    Moeendarbary E, Harris AR. 2014.. Cell mechanics: principles, practices, and prospects. . WIREs Syst. Biol. Med. 6:(5):37188
    [Crossref] [Google Scholar]
  145. 145.
    Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA, et al. 2013.. The cytoplasm of living cells behaves as a poroelastic material. . Nat. Mater. 12:(3):25361
    [Crossref] [Google Scholar]
  146. 146.
    Mokbel M, Mokbel D, Mietke A, Träber N, Salvatore G, et al. 2017.. Numerical simulation of real-time deformability cytometry to extract cell mechanical properties. . ACS Biomater. Sci. Eng. 3:(11):296273
    [Crossref] [Google Scholar]
  147. 147.
    Morone N, Fujiwara T, Murase K, Kasai RS, Ike H, et al. 2006.. Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. . J. Cell Biol. 174:(6):85162
    [Crossref] [Google Scholar]
  148. 148.
    Mostowy S, Cossart P. 2012.. Septins: the fourth component of the cytoskeleton. . Nat. Rev. Mol. Cell Biol. 13:(3):18394
    [Crossref] [Google Scholar]
  149. 149.
    Mostowy S, Janel S, Forestier C, Roduit C, Kasas S, et al. 2011.. A role for septins in the interaction between the Listeria monocytogenes invasion protein InlB and the Met receptor. . Biophys. J. 100:(8):194959
    [Crossref] [Google Scholar]
  150. 150.
    Munder MC, Midtvedt D, Franzmann T, Nüske E, Otto O, et al. 2016.. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. . eLife 5::e09347
    [Crossref] [Google Scholar]
  151. 151.
    Muñoz HE, Lin J, Yeh BG, Biswas T, Di Carlo D. 2023.. Fluorescence imaging deformability cytometry: integrating nuclear structure with mechanical phenotyping. . Med-X 1::10
    [Crossref] [Google Scholar]
  152. 152.
    Nawaz AA, Soteriou D, Xu CK, Goswami R, Herbig M, et al. 2023.. Image-based cell sorting using focused travelling surface acoustic waves. . Lab. Chip 23:(2):37287
    [Crossref] [Google Scholar]
  153. 153.
    Nawaz AA, Urbanska M, Herbig M, Nötzel M, Kräter M, et al. 2020.. Intelligent image-based deformation-assisted cell sorting with molecular specificity. . Nat. Methods 17:(6):59599
    [Crossref] [Google Scholar]
  154. 154.
    Nematbakhsh Y, Lim CT. 2015.. Cell biomechanics and its applications in human disease diagnosis. . Acta Mech. Sin. 31:(2):26873
    [Crossref] [Google Scholar]
  155. 155.
    Nishino M, Tanaka H, Ogura H, Inoue Y, Koh T, et al. 2005.. Serial changes in leukocyte deformability and whole blood rheology in patients with sepsis or trauma. . J. Trauma 59:(6):142531
    [Crossref] [Google Scholar]
  156. 156.
    Nyberg KD, Hu KH, Kleinman SH, Khismatullin DB, Butte MJ, Rowat AC. 2017.. Quantitative deformability cytometry: rapid, calibrated measurements of cell mechanical properties. . Biophys. J. 113:(7):157484
    [Crossref] [Google Scholar]
  157. 157.
    Nyga A, Plak K, Kräter M, Urbanska M, Kim K, et al. 2023.. Dynamics of cell rounding during detachment. . iScience 26:(5):106696
    [Crossref] [Google Scholar]
  158. 158.
    Oakes PW, Wagner E, Brand CA, Probst D, Linke M, et al. 2017.. Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres. . Nat. Commun. 8::15817
    [Crossref] [Google Scholar]
  159. 159.
    Ofek G, Willard VP, Koay EJ, Hu JC, Lin P, Athanasiou KA. 2009.. Mechanical characterization of differentiated human embryonic stem cells. . J. Biomech. Eng. 131:(6):061011
    [Crossref] [Google Scholar]
  160. 160.
    Otto O, Rosendahl P, Mietke A, Golfier S, Herold C, et al. 2015.. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. . Nat. Methods 12:(3):199202
    [Crossref] [Google Scholar]
  161. 161.
    Pai A, Sundd P, Tees DFJ. 2008.. In situ microrheological determination of neutrophil stiffening following adhesion in a model capillary. . Ann. Biomed. Eng. 36:(4):596603
    [Crossref] [Google Scholar]
  162. 162.
    Parajón E, Surcel A, Robinson DN. 2021.. The mechanobiome: a goldmine for cancer therapeutics. . Am. J. Physiol. Cell Physiol. 320:(3):C30623
    [Crossref] [Google Scholar]
  163. 163.
    Parton RG, Del Pozo MA. 2013.. Caveolae as plasma membrane sensors, protectors and organizers. . Nat. Rev. Mol. Cell Biol. 14:(2):98112
    [Crossref] [Google Scholar]
  164. 164.
    Patel NR, Bole M, Chen C, Hardin CC, Kho AT, et al. 2012.. Cell elasticity determines macrophage function. . PLOS ONE 7:(9):e41024
    [Crossref] [Google Scholar]
  165. 165.
    Patteson AE, Vahabikashi A, Pogoda K, Adam SA, Mandal K, et al. 2019.. Vimentin protects cells against nuclear rupture and DNA damage during migration. . J. Cell Biol. 218:(12):407992
    [Crossref] [Google Scholar]
  166. 166.
    Pegoraro AF, Janmey P, Weitz DA. 2017.. Mechanical properties of the cytoskeleton and cells. . Cold Spring Harb. Perspect. Biol. 9:(11):a022038
    [Crossref] [Google Scholar]
  167. 167.
    Petersen N, Mcconnaughey WB, Elson EL. 1982.. Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. . Proc. Natl. Acad. Sci. U S A 79:532731
    [Google Scholar]
  168. 168.
    Pillarisetti A, Desai JP, Ladjal H, Schiffmacher A, Ferreira A, Keefer CL. 2011.. Mechanical phenotyping of mouse embryonic stem cells: increase in stiffness with differentiation. . Cell Reprogramming 13:(4):37180
    [Crossref] [Google Scholar]
  169. 169.
    Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, et al. 2012.. The nanomechanical signature of breast cancer. . Nat. Nanotechnol. 7:(11):75765
    [Crossref] [Google Scholar]
  170. 170.
    Popel AS, Johnson PC. 2005.. Microcirculation and hemorheology. . Annu. Rev. Fluid Mech. 37::4369
    [Crossref] [Google Scholar]
  171. 171.
    Prame Kumar K, Nicholls AJ, Wong CHY. 2018.. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. . Cell Tissue Res. 371:(3):55165
    [Crossref] [Google Scholar]
  172. 172.
    Preira P, Forel JM, Robert P, Nègre P, Biarnes-Pelicot M, et al. 2016.. The leukocyte-stiffening property of plasma in early acute respiratory distress syndrome (ARDS) revealed by a microfluidic single-cell study: the role of cytokines and protection with antibodies. . Crit. Care 20::8
    [Crossref] [Google Scholar]
  173. 173.
    Preira P, Leoni T, Valignat M, Lellouch A, Robert P, et al. 2012.. Microfluidic tools to investigate pathologies in the blood microcirculation. . Int. J. Nanotechnol. 9:(3–7):52947
    [Crossref] [Google Scholar]
  174. 174.
    Prevedel R, Diz-Muñoz A, Ruocco G, Antonacci G. 2019.. Brillouin microscopy: an emerging tool for mechanobiology. . Nat. Methods 16:(10):96977
    [Crossref] [Google Scholar]
  175. 175.
    Radmacher M. 2007.. Studying the mechanics of cellular processes by atomic force microscopy. . Methods Cell Biol. 83:(07):34772
    [Crossref] [Google Scholar]
  176. 176.
    Reynolds NH, Ronan W, Dowling EP, Owens P, McMeeking RM, McGarry JP. 2014.. On the role of the actin cytoskeleton and nucleus in the biomechanical response of spread cells. . Biomaterials 35:(13):401525
    [Crossref] [Google Scholar]
  177. 177.
    Rianna C, Radmacher M, Kumar S. 2020.. Direct evidence that tumor cells soften when navigating confined spaces. . Mol. Biol. Cell 31:(16):172634
    [Crossref] [Google Scholar]
  178. 178.
    Ribatti D, Tamma R, Annese T. 2020.. Epithelial-mesenchymal transition in cancer: a historical overview. . Transl. Oncol. 13:(6):100773
    [Crossref] [Google Scholar]
  179. 179.
    Riento K, Ridley AJ. 2003.. ROCKs: multifunctional kinases in cell behaviour. . Nat. Rev. Mol. Cell Biol. 4:(6):44656
    [Crossref] [Google Scholar]
  180. 180.
    Rigato A, Miyagi A, Scheuring S, Rico F. 2017.. High-frequency microrheology reveals cytoskeleton dynamics in living cells. . Nat. Phys. 13:(8):77175
    [Crossref] [Google Scholar]
  181. 181.
    Roberts AB, Zhang J, Raj Singh V, Nikolić M, Moeendarbary E, et al. 2021.. Tumor cell nuclei soften during transendothelial migration. . J. Biomech. 121::110400
    [Crossref] [Google Scholar]
  182. 182.
    Roca-Cusachs P, Almendros I, Sunyer R, Gavara N, Farré R, Navajas D. 2006.. Rheology of passive and adhesion-activated neutrophils probed by atomic force microscopy. . Biophys. J. 91:(9):350818
    [Crossref] [Google Scholar]
  183. 183.
    Rosenbluth MJ, Lam WA, Fletcher DA. 2006.. Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. . Biophys. J. 90:(8):29943003
    [Crossref] [Google Scholar]
  184. 184.
    Rosenbluth MJ, Lam WA, Fletcher DA. 2008.. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. . Lab. Chip 8:(7):106270
    [Crossref] [Google Scholar]
  185. 185.
    Rosendahl P, Plak K, Jacobi A, Kraeter M, Toepfner N, et al. 2018.. Real-time fluorescence and deformability cytometry. . Nat. Methods 15:(5):35558
    [Crossref] [Google Scholar]
  186. 186.
    Roylance D. 2001.. Engineering Viscoelasticity. Cambridge, MA:: MIT
    [Google Scholar]
  187. 187.
    Samarage CR, White MD, Álvarez YD, Fierro-González JC, Henon Y, et al. 2015.. Cortical tension allocates the first inner cells of the mammalian embryo. . Dev. Cell 34:(4):43547
    [Crossref] [Google Scholar]
  188. 188.
    Santos-Ferreira T, Herbig M, Otto O, Carido M, Karl MO, et al. 2019.. Morpho-rheological fingerprinting of rod photoreceptors using real-time deformability cytometry. . Cytometry A 95:(11):114557
    [Crossref] [Google Scholar]
  189. 189.
    Scarcelli G, Polacheck WJ, Nia HT, Patel K, Grodzinsky AJ, et al. 2015.. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. . Nat. Methods 12:(12):113234
    [Crossref] [Google Scholar]
  190. 190.
    Schlüßler R, Kim K, Nötzel M, Taubenberger A, Abuhattum S, et al. 2022.. Correlative all-optical quantification of mass density and mechanics of sub-cellular compartments with fluorescence specificity. . eLife 11::e68490
    [Crossref] [Google Scholar]
  191. 191.
    Schnoor M, Vadillo E, Guerrero-Fonseca IM. 2021.. The extravasation cascade revisited from a neutrophil perspective. . Curr. Opin. Physiol. 19::11928
    [Crossref] [Google Scholar]
  192. 192.
    Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP. 2007.. Stem cell transplantation: the lung barrier. . Transplant. Proc. 39:(2):57376
    [Crossref] [Google Scholar]
  193. 193.
    Sens P, Plastino J. 2015.. Membrane tension and cytoskeleton organization in cell motility. . J. Phys. Condens. Matter 27:(27):273103
    [Crossref] [Google Scholar]
  194. 194.
    Shaebani MR, Stankevicins L, Vesperini D, Urbanska M, Flormann DAD, et al. 2022.. Effects of vimentin on the migration, search efficiency, and mechanical resilience of dendritic cells. . Biophys. J. 121:(20):395061
    [Crossref] [Google Scholar]
  195. 195.
    Shalem O, Sanjana NE, Zhang F. 2015.. High-throughput functional genomics using CRISPR-Cas9. . Nat. Rev. Genet. 16:(5):299311
    [Crossref] [Google Scholar]
  196. 196.
    Shelby JP, White J, Ganesan K, Rathod PK, Chiu DT. 2003.. A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. . PNAS 100:(25):1461822
    [Crossref] [Google Scholar]
  197. 197.
    Shi C, Pamer EG. 2011.. Monocyte recruitment during infection and inflammation. . Nat. Rev. Immunol. 11:(11):76274
    [Crossref] [Google Scholar]
  198. 198.
    Shoham N, Girshovitz P, Katzengold R, Shaked NT, Benayahu D, Gefen A. 2014.. Adipocyte stiffness increases with accumulation of lipid droplets. . Biophys. J. 106:(6):142131
    [Crossref] [Google Scholar]
  199. 199.
    Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M, et al. 2011.. Cells respond to mechanical stress by rapid disassembly of caveolae. . Cell 144:(3):40213
    [Crossref] [Google Scholar]
  200. 200.
    Skory RM, Moverley AA, Ardestani G, Alvarez Y, Domingo-Muelas A, et al. 2023.. The nuclear lamina couples mechanical forces to cell fate in the preimplantation embryo via actin organization. . Nat. Commun. 14::3101
    [Crossref] [Google Scholar]
  201. 201.
    Soteriou D, Kubánková M, Schweitzer C, López-Posadas R, Pradhan R, et al. 2023.. Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies. . Nat. Biomed. Eng. 7:(11):1392403
    [Crossref] [Google Scholar]
  202. 202.
    Spiliotis ET, Nakos K. 2021.. Cellular functions of actin- and microtubule-associated septins. . Curr. Biol. 31:(10):R65166
    [Crossref] [Google Scholar]
  203. 203.
    Steeg PS. 2016.. Targeting metastasis. . Nat. Rev. Cancer 16:(4):20118
    [Crossref] [Google Scholar]
  204. 204.
    Steffen S, Abraham S, Herbig M, Schmidt F, Blau K, et al. 2018.. Toll-like receptor-mediated upregulation of CXCL16 in psoriasis orchestrates neutrophil activation. . J. Investig. Dermatol. 138:(2):34454
    [Crossref] [Google Scholar]
  205. 205.
    Steltenkamp S, Rommel C, Wegener J, Janshoff A. 2006.. Membrane stiffness of animal cells challenged by osmotic stress. . Small 2:(8–9):101620
    [Crossref] [Google Scholar]
  206. 206.
    Stooke-Vaughan GA, Campàs O. 2018.. Physical control of tissue morphogenesis across scales. . Curr. Opin. Genet. Dev. 51::11119
    [Crossref] [Google Scholar]
  207. 207.
    Sugitate T, Kihara T, Liu XY, Miyake J. 2009.. Mechanical role of the nucleus in a cell in terms of elastic modulus. . Curr. Appl. Phys. 9:(4):e29193
    [Crossref] [Google Scholar]
  208. 208.
    Surcel A, Schiffhauer ES, Thomas DG, Zhu Q, DiNapoli KT, et al. 2019.. Targeting mechanoresponsive proteins in pancreatic cancer: 4-hydroxyacetophenone blocks dissemination and invasion by activating MYH14. . Cancer Res. 79:(18):466578
    [Crossref] [Google Scholar]
  209. 209.
    Suresh S. 2007.. Biomechanics and biophysics of cancer cells. . Acta Biomater. 3:(4):41338
    [Crossref] [Google Scholar]
  210. 210.
    Swaminathan V, Mythreye K, O'Brien ET, Berchuck A, Blobe GC, Superfine R. 2011.. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. . Cancer Res. 71:(15):507580
    [Crossref] [Google Scholar]
  211. 211.
    Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP, et al. 2013.. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. . Science 341:(6149):1240104
    [Crossref] [Google Scholar]
  212. 212.
    Tan Y, Kong C, Chen S, Cheng SH, Li RA, Sun D. 2012.. Probing the mechanobiological properties of human embryonic stem cells in cardiac differentiation by optical tweezers. . J. Biomech. 45:(1):12328
    [Crossref] [Google Scholar]
  213. 213.
    Tavares S, Vieira AF, Taubenberger AV, Araújo M, Martins NP, et al. 2017.. Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. . Nat. Commun. 8::15237
    [Crossref] [Google Scholar]
  214. 214.
    Tello-Lafoz M, Srpan K, Sanchez EE, Hu J, Remsik J, et al. 2021.. Cytotoxic lymphocytes target characteristic biophysical vulnerabilities in cancer. . Immunity 54:(5):103754.e7
    [Crossref] [Google Scholar]
  215. 215.
    Thompson AJ, Pillai EK, Dimov IB, Foster SK, Holt CE, Franze K. 2019.. Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain. . eLife 8::e39356
    [Crossref] [Google Scholar]
  216. 216.
    Thoumine O, Ott A, Cardoso O, Meister J-J. 1999.. Microplates: a new tool for manipulation and mechanical perturbation of individual cells. . J. Biochem. Biophys. Methods 39:(1–2):4762
    [Crossref] [Google Scholar]
  217. 217.
    Tietze S, Kräter M, Jacobi A, Taubenberger A, Herbig M, et al. 2019.. Spheroid culture of mesenchymal stromal cells results in morphorheological properties appropriate for improved microcirculation. . Adv. Sci. 6:(8):1802104
    [Crossref] [Google Scholar]
  218. 218.
    Tinevez JY, Schulze U, Salbreux G, Roensch J, Joanny JF, Paluch E. 2009.. Role of cortical tension in bleb growth. . PNAS 106:(44):1858186
    [Crossref] [Google Scholar]
  219. 219.
    Toepfner N, Herold C, Otto O, Rosendahl P, Jacobi A, et al. 2018.. Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood. . eLife 7::e29213
    [Crossref] [Google Scholar]
  220. 220.
    Tojkander S, Gateva G, Lappalainen P. 2012.. Actin stress fibers—assembly, dynamics and biological roles. . J. Cell Sci. 125:(8):185564
    [Google Scholar]
  221. 221.
    Toyoda Y, Cattin CJ, Stewart MP, Poser I, Theis M, et al. 2017.. Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding. . Nat. Commun. 8::1266
    [Crossref] [Google Scholar]
  222. 222.
    Tse HTK, Gossett DR, Moon YS, Masaeli M, Sohsman M, et al. 2013.. Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. . Sci. Transl. Med. 5:(212):212ra163
    [Crossref] [Google Scholar]
  223. 223.
    Urbanska M. 2022.. Single-cell mechanical phenotyping across timescales and cell state transitions. PhD thesis , Tech. Univ. Dresden, Ger.:
    [Google Scholar]
  224. 224.
    Urbanska M, Ge Y, Winzi M, Abuhattum S, Ali SS, et al. 2023.. De novo identification of universal cell mechanics gene signatures. . eLife 12::RP87930
    [Google Scholar]
  225. 225.
    Urbanska M, Muñoz HE, Shaw Bagnall J, Otto O, Manalis SR, et al. 2020.. A comparison of microfluidic methods for high-throughput cell deformability measurements. . Nat. Methods 17:(6):58793
    [Crossref] [Google Scholar]
  226. 226.
    Urbanska M, Winzi M, Neumann K, Abuhattum S, Rosendahl P, et al. 2017.. Single-cell mechanical phenotype is an intrinsic marker of reprogramming and differentiation along the mouse neural lineage. . Development 144:(23):431321
    [Crossref] [Google Scholar]
  227. 227.
    Valon L, Marín-Llauradó A, Wyatt T, Charras G, Trepat X. 2017.. Optogenetic control of cellular forces and mechanotransduction. . Nat. Commun. 8::14396
    [Crossref] [Google Scholar]
  228. 228.
    Vestweber D. 2015.. How leukocytes cross the vascular endothelium. . Nat. Rev. Immunol. 15:(11):692704
    [Crossref] [Google Scholar]
  229. 229.
    Wagner E, Glotzer M. 2016.. Local RhoA activation induces cytokinetic furrows independent of spindle position and cell cycle stage. . J. Cell Biol. 213:(6):64149
    [Crossref] [Google Scholar]
  230. 230.
    Wakatsuki T, Schwab B, Thompson NC, Elson EL. 2001.. Effects of cytochalasin D and latrunculin B on mechanical properties of cells. . J. Cell Sci. 114:(Pt 5):102536
    [Crossref] [Google Scholar]
  231. 231.
    Wang K, Sun XH, Zhang Y, Zhang T, Zheng Y, et al. 2019.. Characterization of cytoplasmic viscosity of hundreds of single tumour cells based on micropipette aspiration. . R. Soc. Open Sci. 6:(3):181707
    [Crossref] [Google Scholar]
  232. 232.
    Wang N, Stamenović D. 2000.. Contribution of intermediate filaments to cell stiffness, stiffening, and growth. . Am. J. Physiol. Cell Physiol. 279:(1):C18894
    [Crossref] [Google Scholar]
  233. 233.
    Wang X, Liu H, Zhu M, Cao C, Xu Z, et al. 2018.. Mechanical stability of the cell nucleus—roles played by the cytoskeleton in nuclear deformation and strain recovery. . J. Cell Sci. 131:(13):jcs209627
    [Crossref] [Google Scholar]
  234. 234.
    Watanabe T, Kajiume T, Takaue Y, Kawano Y, Kanamaru S, et al. 2001.. Decrease in circulating hematopoietic progenitor cells by trapping in the pulmonary circulation. . Cytotherapy 3:(6):46166
    [Crossref] [Google Scholar]
  235. 235.
    Watson H. 2015.. Biological membranes. . Essays Biochem. 59::4370
    [Crossref] [Google Scholar]
  236. 236.
    Wirtz D, Konstantopoulos K, Searson PC. 2011.. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. . Nat. Rev. Cancer 11:(7):51222
    [Crossref] [Google Scholar]
  237. 237.
    Wittmann T, Dema A, van Haren J. 2020.. Lights, cytoskeleton, action: optogenetic control of cell dynamics. . Curr. Opin. Cell Biol. 66::110
    [Crossref] [Google Scholar]
  238. 238.
    Wittwer LD, Reichel F, Aland S. 2022.. Numerical simulation of deformability cytometry: transport of a biological cell through a microfluidic channel. . In Modeling of Mass Transport Processes in Biological Media, ed. S Becker, AV Kuznetsov, F de Monte, F Pontrelli, D Zhao , pp. 3356. London:: Academic
    [Google Scholar]
  239. 238a.
    Wittwer LD, Reichel F, Müller P, Guck J, Aland S. 2023.. A new hyperelastic lookup table for RT-DC. . Soft Matter 19(11):206473
    [Google Scholar]
  240. 239.
    Wolf K, te Lindert M, Krause M, Alexander S, te Riet J, et al. 2013.. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. . J. Cell Biol. 201:(7):106984
    [Crossref] [Google Scholar]
  241. 240.
    Worthen GS, Schwab B, Elson EL, Downey GP. 1989.. Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. . Science 245:(4914):18386
    [Crossref] [Google Scholar]
  242. 241.
    Wu P-H, Aroush DR-B, Asnacios A, Chen W-C, Dokukin ME, et al. 2018.. A comparison of methods to assess cell mechanical properties. . Nat. Methods 15:(7):49198
    [Crossref] [Google Scholar]
  243. 242.
    Xavier M, Rosendahl P, Herbig M, Kräter M, Spencer D, et al. 2016.. Mechanical phenotyping of primary human skeletal stem cells in heterogeneous populations by real-time deformability cytometry. . Integr. Biol. 8:(5):61623
    [Crossref] [Google Scholar]
  244. 243.
    Xu W, Mezencev R, Kim B, Wang L, McDonald J, Sulchek T. 2012.. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. . PLOS ONE 7:(10):e46609
    [Crossref] [Google Scholar]
  245. 244.
    Yap B, Kamm RD. 2005.. Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties. . J. Appl. Physiol. 98:(5):193039
    [Crossref] [Google Scholar]
  246. 245.
    Yoshida K, Kondo R, Wang Q, Doerschuk CM. 2006.. Neutrophil cytoskeletal rearrangements during capillary sequestration in bacterial pneumonia in rats. . Am. J. Respir. Crit. Care Med. 174:(6):68998
    [Crossref] [Google Scholar]
  247. 246.
    Yu H, Tay CY, Leong WS, Tan SCW, Liao K, Tan LP. 2010.. Mechanical behavior of human mesenchymal stem cells during adipogenic and osteogenic differentiation. . Biochem. Biophys. Res. Commun. 393:(1):15055
    [Crossref] [Google Scholar]
  248. 247.
    Zhang J, Alisafaei F, Nikolić M, Nou XA, Kim H, et al. 2020.. Nuclear mechanics within intact cells is regulated by cytoskeletal network and internal nanostructures. . Small 16:(18):1907688
    [Crossref] [Google Scholar]
  249. 248.
    Zhang J, Nou XA, Kim H, Scarcelli G. 2017.. Brillouin flow cytometry for label-free mechanical phenotyping of the nucleus. . Lab. Chip 17:(4):66370
    [Crossref] [Google Scholar]
  250. 249.
    Zheng Y, Wen J, Nguyen J, Cachia MA, Wang C, Sun Y. 2015.. Decreased deformability of lymphocytes in chronic lymphocytic leukemia. . Sci. Rep. 5::7613
    [Crossref] [Google Scholar]
  251. 250.
    Zhou EH, Trepat X, Park CY, Lenormand G, Oliver MN, et al. 2009.. Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition. . PNAS 106:(26):1063237
    [Crossref] [Google Scholar]
  252. 251.
    Zhou ZL, Ngan AHW, Tang B, Wang AX. 2012.. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope. . J. Mech. Behav. Biomed. Mater. 8::13442
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-030822-030629
Loading
/content/journals/10.1146/annurev-biophys-030822-030629
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error