1932

Abstract

Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-030822-032650
2024-07-16
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-030822-032650.html?itemId=/content/journals/10.1146/annurev-biophys-030822-032650&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Armeev GA, Kniazeva AS, Komarova GA, Kirpichnikov MP, Shaytan AK. 2021.. Histone dynamics mediate DNA unwrapping and sliding in nucleosomes. . Nat. Commun. 12::2387
    [Crossref] [Google Scholar]
  2. 2.
    Arya G, Schlick T. 2006.. Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model. . PNAS 103:(44):1623641
    [Crossref] [Google Scholar]
  3. 3.
    Bajpai G, Pavlov DA, Lorber D, Volk T, Safran S. 2021.. Mesoscale phase separation of chromatin in the nucleus. . eLife 10::e63976
    [Crossref] [Google Scholar]
  4. 4.
    Banani SF, Lee HO, Hyman AA, Rosen MK. 2017.. Biomolecular condensates: organizers of cellular biochemistry. . Nat. Rev. Mol. Cell Biol. 18:(5):28598
    [Crossref] [Google Scholar]
  5. 5.
    Belmont AS. 2021.. Nuclear compartments: an incomplete primer to nuclear compartments, bodies, and genome organization relative to nuclear architecture. . Cold Spring Harb. Perspect. Biol. 14:(7):a041268
    [Crossref] [Google Scholar]
  6. 6.
    Bhat P, Honson D, Guttman M. 2021.. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. . Nat. Rev. Mol. Cell Biol. 22:(10):65370
    [Crossref] [Google Scholar]
  7. 7.
    Bilokapic S, Strauss M, Halic M. 2018.. Cryo-EM of nucleosome core particle interactions in trans. . Sci. Rep. 8::7046
    [Crossref] [Google Scholar]
  8. 8.
    Boninsegna L, Yildirim A, Polles G, Zhan Y, Quinodoz SA, et al. 2022.. Integrative genome modeling platform reveals essentiality of rare contact events in 3D genome organizations. . Nat. Methods 19:(8):93849
    [Crossref] [Google Scholar]
  9. 9.
    Brahmachari S, Contessoto VG, Di Pierro M, Onuchic JN. 2022.. Shaping the genome via lengthwise compaction, phase separation, and lamina adhesion. . Nucleic Acids Res. 50:(8):425871
    [Crossref] [Google Scholar]
  10. 10.
    Brandani GB, Niina T, Tan C, Takada S. 2018.. DNA sliding in nucleosomes via twist defect propagation revealed by molecular simulations. . Nucleic Acids Res. 46:(6):2788801
    [Crossref] [Google Scholar]
  11. 11.
    Brangwynne CP, Tompa P, Pappu RV. 2015.. Polymer physics of intracellular phase transitions. . Nat. Phys. 11:(11):899904
    [Crossref] [Google Scholar]
  12. 12.
    Brower-Toland BD, Smith CL, Yeh RC, Lis JT, Peterson CL, Wang MD. 2002.. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. . PNAS 99:(4):196065
    [Crossref] [Google Scholar]
  13. 13.
    Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG. 1995.. Funnels, pathways, and the energy landscape of protein folding: a synthesis. . Proteins Struct. Funct. Bioinform. 21:(3):16795
    [Crossref] [Google Scholar]
  14. 14.
    Bryngelson JD, Wolynes PG. 1987.. Spin glasses and the statistical mechanics of protein folding. . PNAS 84:(21):752428
    [Crossref] [Google Scholar]
  15. 15.
    Buckle A, Brackley CA, Boyle S, Marenduzzo D, Gilbert N. 2018.. Polymer simulations of heteromorphic chromatin predict the 3D folding of complex genomic loci. . Mol. Cell 72:(4):78697
    [Crossref] [Google Scholar]
  16. 16.
    Chen Y, Zhang Y, Wang Y, Zhang L, Brinkman EK, et al. 2018.. Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler. . J. Cell Biol. 217:(11):402548
    [Crossref] [Google Scholar]
  17. 17.
    Choi JM, Holehouse AS, Pappu RV. 2020.. Physical principles underlying the complex biology of intracellular phase transitions. . Annu. Rev. Biophys. 49::10733
    [Crossref] [Google Scholar]
  18. 18.
    Chu X, Wang J. 2022.. Quantifying chromosome structural reorganizations during differentiation, reprogramming, and transdifferentiation. . Phys. Rev. Lett. 129:(6):068102
    [Crossref] [Google Scholar]
  19. 19.
    Clementi C, Nymeyer H, Onuchic JN. 2000.. Topological and energetic factors: What determines the structural details of the transition state ensemble and ``en-route'' intermediates for protein folding? An investigation for small globular proteins. . J. Mol. Biol. 298:(5):93753
    [Crossref] [Google Scholar]
  20. 20.
    Collepardo-Guevara R, Portella G, Vendruscolo M, Frenkel D, Schlick T, Orozco M. 2015.. Chromatin unfolding by epigenetic modifications explained by dramatic impairment of internucleosome interactions: a multiscale computational study. . J. Am. Chem. Soc. 137:(32):1020515
    [Crossref] [Google Scholar]
  21. 21.
    Collepardo-Guevara R, Schlick T. 2012.. Crucial role of dynamic linker histone binding and divalent ions for DNA accessibility and gene regulation revealed by mesoscale modeling of oligonucleosomes. . Nucleic Acids Res. 40:(18):880317
    [Crossref] [Google Scholar]
  22. 22.
    Cremer T, Cremer M, Hubner B, Strickfaden H, Smeets D, et al. 2015.. The 4D nucleome: evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. . FEBS Lett. 589:(20 Pt A):293143
    [Crossref] [Google Scholar]
  23. 23.
    Cui Y, Bustamante C. 2000.. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. . PNAS 97:(1):12732
    [Crossref] [Google Scholar]
  24. 24.
    Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. 2002.. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. . J. Mol. Biol. 319:(5):1097113
    [Crossref] [Google Scholar]
  25. 25.
    Davtyan A, Schafer NP, Zheng W, Clementi C, Wolynes PG, Papoian GA. 2012.. AWSEM-MD: protein structure prediction using coarse-grained physical potentials and bioinformatically based local structure biasing. . J. Phys. Chem. B 116:(29):8494503
    [Crossref] [Google Scholar]
  26. 26.
    Dekker J, Mirny L. 2016.. The 3D genome as moderator of chromosomal communication. . Cell 164:(6):111021
    [Crossref] [Google Scholar]
  27. 27.
    Dekker J, Rippe K, Dekker M, Kleckner N. 2002.. Capturing chromosome conformation. . Science 295:(5558):130611
    [Crossref] [Google Scholar]
  28. 28.
    Di Pierro M, Cheng RR, Lieberman Aiden E, Wolynes PG, Onuchic JN. 2017.. De novo prediction of human chromosome structures: epigenetic marking patterns encode genome architecture. . PNAS 114:(46):1212631
    [Crossref] [Google Scholar]
  29. 29.
    Di Pierro M, Zhang B, Aiden EL, Wolynes PG, Onuchic JN. 2016.. Transferable model for chromosome architecture. . PNAS 113:(43):1216873
    [Crossref] [Google Scholar]
  30. 30.
    Dignon GL, Zheng W, Kim YC, Best RB, Mittal J. 2018.. Sequence determinants of protein phase behavior from a coarse-grained model. . PLOS Comput. Biol. 14:(1):e1005941
    [Crossref] [Google Scholar]
  31. 31.
    Dill KA, Chan HS. 1997.. From Levinthal to pathways to funnels. . Nat. Struct. Biol. 4:(1):1019
    [Crossref] [Google Scholar]
  32. 32.
    Ding X, Lin X, Zhang B. 2021.. Stability and folding pathways of tetra-nucleosome from six-dimensional free energy surface. . Nat. Commun. 12::1091
    [Crossref] [Google Scholar]
  33. 33.
    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, et al. 2012.. Topological domains in mammalian genomes identified by analysis of chromatin interactions. . Nature 485:(7398):37680
    [Crossref] [Google Scholar]
  34. 34.
    Doi M. 2013.. Soft Matter Physics. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  35. 35.
    Dorigo B, Schalch T, Bystricky K, Richmond TJ. 2003.. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. . J. Mol. Biol. 327:(1):8596
    [Crossref] [Google Scholar]
  36. 36.
    Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Richmond TJ. 2004.. Nucleosome arrays reveal the two-start organization of the chromatin fiber. . Science 306:(5701):157173
    [Crossref] [Google Scholar]
  37. 37.
    Ernst J, Kellis M. 2012.. ChromHMM: automating chromatin-state discovery and characterization. . Nat. Methods 9:(3):21516
    [Crossref] [Google Scholar]
  38. 38.
    Esposito A, Bianco S, Chiariello AM, Abraham A, Fiorillo L, et al. 2022.. Polymer physics reveals a combinatorial code linking 3D chromatin architecture to 1D chromatin states. . Cell Rep. 38:(13):110601
    [Crossref] [Google Scholar]
  39. 39.
    Farr SE, Woods EJ, Joseph JA, Garaizar A, Collepardo-Guevara R. 2021.. Nucleosome plasticity is a critical element of chromatin liquid–liquid phase separation and multivalent nucleosome interactions. . Nat. Commun. 12::2883
    [Crossref] [Google Scholar]
  40. 40.
    Finn EH, Misteli T. 2019.. Molecular basis and biological function of variability in spatial genome organization. . Science 365:(6457):eaaw9498
    [Crossref] [Google Scholar]
  41. 41.
    Flory PJ. 1942.. Thermodynamics of high polymer solutions. . J. Chem. Phys. 10:(1):5161
    [Crossref] [Google Scholar]
  42. 42.
    Freeman GS, Hinckley DM, Lequieu JP, Whitmer JK, De Pablo JJ. 2014.. Coarse-grained modeling of DNA curvature. . J. Chem. Phys. 141:(16):165103
    [Crossref] [Google Scholar]
  43. 43.
    Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. 2016.. Formation of chromosomal domains by loop extrusion. . Cell Rep. 15:(9):203849
    [Crossref] [Google Scholar]
  44. 44.
    Funke JJ, Ketterer P, Lieleg C, Schunter S, Korber P, Dietz H. 2016.. Uncovering the forces between nucleosomes using DNA origami. . Sci. Adv. 2:(11):e1600974
    [Crossref] [Google Scholar]
  45. 45.
    Ghoneim M, Fuchs HA, Musselman CA. 2021.. Histone tail conformations: a fuzzy affair with DNA. . Trends Biochem. Sci. 46:(7):56478
    [Crossref] [Google Scholar]
  46. 46.
    Gibson BA, Blaukopf C, Lou T, Chen L, Doolittle LK, et al. 2023.. In diverse conditions, intrinsic chromatin condensates have liquid-like material properties. . PNAS 120:(18):e2218085120
    [Crossref] [Google Scholar]
  47. 47.
    Gibson BA, Doolittle LK, Schneider MW, Jensen LE, Gamarra N, et al. 2019.. Organization of chromatin by intrinsic and regulated phase separation. . Cell 179:(2):47084
    [Crossref] [Google Scholar]
  48. 48.
    Gordon F, Luger K, Hansen JC. 2005.. The core histone N-terminal tail domains function independently and additively during salt-dependent oligomerization of nucleosomal arrays. . J. Biol. Chem. 280:(40):337016
    [Crossref] [Google Scholar]
  49. 49.
    Gorkin DU, Leung D, Ren B. 2014.. The 3D genome in transcriptional regulation and pluripotency. . Cell Stem Cell 14:(6):76275
    [Crossref] [Google Scholar]
  50. 50.
    Goychuk A, Kannan D, Chakraborty AK, Kardar M. 2023.. Polymer folding through active processes recreates features of genome organization. . PNAS 120:(20):e2221726120
    [Crossref] [Google Scholar]
  51. 51.
    Grigoryev SA, Woodcock CL. 2012.. Chromatin organization—the 30 nm fiber. . Exp. Cell Res. 318:(12):144855
    [Crossref] [Google Scholar]
  52. 52.
    Hansen JC, Maeshima K, Hendzel MJ. 2021.. The solid and liquid states of chromatin. . Epigenet. Chromatin 14:(1):50
    [Crossref] [Google Scholar]
  53. 53.
    Hilbert L, Sato Y, Kuznetsova K, Bianucci T, Kimura H, et al. 2021.. Transcription organizes euchromatin via microphase separation. . Nat. Commun. 12::1360
    [Crossref] [Google Scholar]
  54. 54.
    Hinckley DM, Freeman GS, Whitmer JK, De Pablo JJ. 2013.. An experimentally-informed coarse-grained 3-site-per-nucleotide model of DNA: structure, thermodynamics, and dynamics of hybridization. . J. Chem. Phys. 139:(14):144903
    [Crossref] [Google Scholar]
  55. 55.
    Hnisz D, Day DS, Young RA. 2016.. Insulated neighborhoods: structural and functional units of mammalian gene control. . Cell 167:(5):1188200
    [Crossref] [Google Scholar]
  56. 56.
    Hollingsworth SA, Dror RO. 2018.. Molecular dynamics simulation for all. . Neuron 99:(6):112943
    [Crossref] [Google Scholar]
  57. 57.
    Hübner MR, Eckersley-Maslin MA, Spector DL. 2013.. Chromatin organization and transcriptional regulation. . Curr. Opin. Genet. Dev. 23:(2):8995
    [Crossref] [Google Scholar]
  58. 58.
    Huggins ML. 1942.. Some properties of solutions of long-chain compounds. . J. Phys. Chem. 46:(1):15158
    [Crossref] [Google Scholar]
  59. 59.
    Ishida H, Kono H. 2021.. Torsional stress can regulate the unwrapping of two outer half superhelical turns of nucleosomal DNA. . PNAS 118:(7):e2020452118
    [Crossref] [Google Scholar]
  60. 60.
    Jost D, Carrivain P, Cavalli G, Vaillant C. 2014.. Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. . Nucleic Acids Res. 42:(15):955361
    [Crossref] [Google Scholar]
  61. 61.
    Kaczmarczyk A, Meng H, Ordu O, van Noort J, Dekker NH. 2020.. Chromatin fibers stabilize nucleosomes under torsional stress. . Nat. Commun. 11::126
    [Crossref] [Google Scholar]
  62. 62.
    Kadam S, Kumari K, Manivannan V, Dutta S, Mitra MK, Padinhateeri R. 2023.. Predicting scale-dependent chromatin polymer properties from systematic coarse-graining. . Nat. Commun. 14::4108
    [Crossref] [Google Scholar]
  63. 63.
    Kalashnikova AA, Porter-Goff ME, Muthurajan UM, Luger K, Hansen JC. 2013.. The role of the nucleosome acidic patch in modulating higher order chromatin structure. . J. R. Soc. Interface 10:(82):20121022
    [Crossref] [Google Scholar]
  64. 64.
    Kamat K, Lao Z, Qi Y, Wang Y, Ma J, Zhang B. 2023.. Compartmentalization with nuclear landmarks yields random, yet precise, genome organization. . Biophys. J. 122:(7):137689
    [Crossref] [Google Scholar]
  65. 65.
    Katritch V, Bustamante C, Olson WK. 2000.. Pulling chromatin fibers: computer simulations of direct physical micromanipulations. . J. Mol. Biol. 295:(1):2940
    [Crossref] [Google Scholar]
  66. 66.
    Kenzaki H, Takada S. 2021.. Linker DNA length is a key to tri-nucleosome folding. . J. Mol. Biol. 433:(6):166792
    [Crossref] [Google Scholar]
  67. 67.
    Kepper N, Ettig R, Stehr R, Marnach S, Wedemann G, Rippe K. 2011.. Force spectroscopy of chromatin fibers: extracting energetics and structural information from Monte Carlo simulations. . Biopolymers 95:(7):43547
    [Crossref] [Google Scholar]
  68. 68.
    Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A. 2016.. Coarse-grained protein models and their applications. . Chem. Rev. 116:(14):7898936
    [Crossref] [Google Scholar]
  69. 69.
    Koslover EF, Fuller CJ, Straight AF, Spakowitz AJ. 2010.. Local geometry and elasticity in compact chromatin structure. . Biophys. J. 99:(12):394150
    [Crossref] [Google Scholar]
  70. 70.
    Kruithof M, Chien FT, Routh A, Logie C, Rhodes D, van Noort J. 2009.. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. . Nat. Struct. Mol. Biol. 16:(5):53440
    [Crossref] [Google Scholar]
  71. 71.
    Lafontaine DL, Riback JA, Bascetin R, Brangwynne CP. 2021.. The nucleolus as a multiphase liquid condensate. . Nat. Rev. Mol. Cell Biol. 22:(3):16582
    [Crossref] [Google Scholar]
  72. 72.
    Laghmach R, Di Pierro M, Potoyan DA. 2020.. Mesoscale liquid model of chromatin recapitulates nuclear order of eukaryotes. . Biophys. J. 118:(9):213040
    [Crossref] [Google Scholar]
  73. 73.
    Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, et al. 2017.. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. . Nature 547:(7662):23640
    [Crossref] [Google Scholar]
  74. 74.
    Latham AP, Zhang B. 2019.. Improving coarse-grained protein force fields with small-angle X-ray scattering data. . J. Phys. Chem. B 123:(5):102634
    [Crossref] [Google Scholar]
  75. 75.
    Latham AP, Zhang B. 2021.. Consistent force field captures homologue-resolved HP1 phase separation. . J. Chem. Theory Comput. 17:(5):313444
    [Crossref] [Google Scholar]
  76. 76.
    Latham AP, Zhang B. 2022.. Molecular determinants for the layering and coarsening of biological condensates. . Aggregate 3:(6):e306
    [Crossref] [Google Scholar]
  77. 77.
    Lequieu J, Córdoba A, Moller J, De Pablo JJ. 2019.. 1CPN: a coarse-grained multi-scale model of chromatin. . J. Chem. Phys. 150:(21):215102
    [Crossref] [Google Scholar]
  78. 78.
    Lequieu J, Córdoba A, Schwartz DC, de Pablo JJ. 2016.. Tension-dependent free energies of nucleosome unwrapping. . ACS Central Sci. 2:(9):66066
    [Crossref] [Google Scholar]
  79. 79.
    Lequieu J, Schwartz DC, de Pablo JJ. 2017.. In silico evidence for sequence-dependent nucleosome sliding. . PNAS 114:(44):E9197205
    [Crossref] [Google Scholar]
  80. 80.
    Li S, Tie T, Panchenko A. 2023.. Histone variant H2A.Z modulates nucleosome dynamics to promote DNA accessibility. . Nat. Commun. 14::769
    [Crossref] [Google Scholar]
  81. 81.
    Li W, Wolynes PG, Takada S. 2011.. Frustration, specific sequence dependence, and nonlinearity in large-amplitude fluctuations of allosteric proteins. . PNAS 108:(9):35049
    [Crossref] [Google Scholar]
  82. 82.
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, et al. 2009.. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. . Science 326:(5950):28993
    [Crossref] [Google Scholar]
  83. 83.
    Lin X, Qi Y, Latham AP, Zhang B. 2021.. Multiscale modeling of genome organization with maximum entropy optimization. . J. Chem. Phys. 155:(1):010901
    [Crossref] [Google Scholar]
  84. 84.
    Lin X, Zhang B. 2023.. Explicit ion modeling predicts physicochemical interactions for chromatin organization. . bioRxiv 2023.05.16.541030. https://doi.org/10.1101/2023.05.16.541030
  85. 85.
    Liu S, Lin X, Zhang B. 2022.. Chromatin fiber breaks into clutches under tension and crowding. . Nucleic Acids Res. 50:(17):973847
    [Crossref] [Google Scholar]
  86. 86.
    Liu S, Zhang L, Quan H, Tian H, Meng L, et al. 2018.. From 1D sequence to 3D chromatin dynamics and cellular functions: a phase separation perspective. . Nucleic Acids Res. 46:(18):936783
    [Crossref] [Google Scholar]
  87. 87.
    Lowary P, Widom J. 1998.. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. . J. Mol. Biol. 276:(1):1942
    [Crossref] [Google Scholar]
  88. 88.
    Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. 1997.. Crystal structure of the nucleosome core particle at 2.8 Å resolution. . Nature 389:(6648):25160
    [Crossref] [Google Scholar]
  89. 89.
    MacPherson Q, Beltran B, Spakowitz AJ. 2018.. Bottom-up modeling of chromatin segregation due to epigenetic modifications. . PNAS 115:(50):1273944
    [Crossref] [Google Scholar]
  90. 90.
    Maeshima K, Hihara S, Eltsov M. 2010.. Chromatin structure: Does the 30-nm fibre exist in vivo?. Curr. Opin. Cell Biol. 22:(3):29197
    [Crossref] [Google Scholar]
  91. 91.
    Maeshima K, Rogge R, Tamura S, Joti Y, Hikima T, et al. 2016.. Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers. . EMBO J. 35:(10):111532
    [Crossref] [Google Scholar]
  92. 92.
    Marco E, Meuleman W, Huang J, Glass K, Pinello L, et al. 2017.. Multi-scale chromatin state annotation using a hierarchical hidden Markov model. . Nat. Commun. 8::15011
    [Crossref] [Google Scholar]
  93. 93.
    Marinov GK. 2018.. A decade of ChIP-seq. . Briefings Funct. Genom. 17:(2):7779
    [Crossref] [Google Scholar]
  94. 94.
    Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, De Vries AH. 2007.. The MARTINI force field: coarse grained model for biomolecular simulations. . J. Phys. Chem. B 111:(27):781224
    [Crossref] [Google Scholar]
  95. 95.
    McGinty RK, Tan S. 2015.. Nucleosome structure and function. . Chem. Rev. 115:(6):225573
    [Crossref] [Google Scholar]
  96. 96.
    Meng H, Andresen K, van Noort J. 2015.. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers. . Nucleic Acids Res. 43:(7):357890
    [Crossref] [Google Scholar]
  97. 97.
    Mirny L, Shakhnovich E. 2001.. Protein folding theory: from lattice to all-atom models. . Annu. Rev. Biophys. Biomol. Struct. 30::36196
    [Crossref] [Google Scholar]
  98. 98.
    Moller J, Lequieu J, de Pablo JJ. 2019.. The free energy landscape of internucleosome interactions and its relation to chromatin fiber structure. . ACS Cent. Sci. 5:(2):34148
    [Crossref] [Google Scholar]
  99. 99.
    Ngo TT, Zhang Q, Zhou R, Yodh JG, Ha T. 2015.. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. . Cell 160:(6):113544
    [Crossref] [Google Scholar]
  100. 100.
    Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, et al. 2012.. Spatial partitioning of the regulatory landscape of the X-inactivation centre. . Nature 485:(7398):38185
    [Crossref] [Google Scholar]
  101. 101.
    Norouzi D, Zhurkin VB. 2018.. Dynamics of chromatin fibers: comparison of Monte Carlo simulations with force spectroscopy. . Biophys. J. 115:(9):164455
    [Crossref] [Google Scholar]
  102. 102.
    Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA. 2018.. Chromatin organization by an interplay of loop extrusion and compartmental segregation. . PNAS 115:(29):E6697706
    [Crossref] [Google Scholar]
  103. 103.
    Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O'Shea CC. 2017.. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. . Science 357:(6349):eaag0025
    [Crossref] [Google Scholar]
  104. 104.
    Park S, Athreya A, Carrizo GE, Benning NA, Mitchener MM, et al. 2023.. Electrostatic coding of genome organization principles within single native nucleosomes. . bioRxiv 2023.12.08.570828. https://doi.org/10.1101/2023.12.08.570828
  105. 105.
    Park S, Mitchener M, Dao H, Muir T, Ha T. 2022.. Biophysical driving forces of heterochromatin organization. . Biophys. J. 121:(3):159a
    [Crossref] [Google Scholar]
  106. 106.
    Parsons T, Zhang B. 2019.. Critical role of histone tail entropy in nucleosome unwinding. . J. Chem. Phys. 150:(18):185103
    [Crossref] [Google Scholar]
  107. 107.
    Pepenella S, Murphy KJ, Hayes JJ. 2014.. Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure. . Chromosoma 123::313
    [Crossref] [Google Scholar]
  108. 108.
    Perišić O, Schlick T. 2017.. Dependence of the linker histone and chromatin condensation on the nucleosome environment. . J. Phys. Chem. B 121:(33):782332
    [Crossref] [Google Scholar]
  109. 109.
    Plys AJ, Davis CP, Kim J, Rizki G, Keenen MM, et al. 2019.. Phase separation of polycomb-repressive complex 1 is governed by a charged disordered region of CBX2. . Genes Dev. 33:(13–14):799813
    [Crossref] [Google Scholar]
  110. 110.
    Poirier MG, Bussiek M, Langowski J, Widom J. 2008.. Spontaneous access to DNA target sites in folded chromatin fibers. . J. Mol. Biol. 379:(4):77286
    [Crossref] [Google Scholar]
  111. 111.
    Qi Y, Zhang B. 2019.. Predicting three-dimensional genome organization with chromatin states. . PLOS Comput. Biol. 15:(6):e1007024
    [Crossref] [Google Scholar]
  112. 112.
    Quinodoz SA, Jachowicz JW, Bhat P, Ollikainen N, Banerjee AK, et al. 2021.. RNA promotes the formation of spatial compartments in the nucleus. . Cell 184:(23):577590.e30
    [Crossref] [Google Scholar]
  113. 113.
    Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, et al. 2014.. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. . Cell 159:(7):166580
    [Crossref] [Google Scholar]
  114. 114.
    Reddy G, Thirumalai D. 2021.. Asymmetry in histone rotation in forced unwrapping and force quench rewrapping in a nucleosome. . Nucleic Acids Res. 49:(9):490718
    [Crossref] [Google Scholar]
  115. 115.
    Robinson PJ, Fairall L, Huynh VA, Rhodes D. 2006.. EM measurements define the dimensions of the ``30-nm'' chromatin fiber: evidence for a compact, interdigitated structure. . PNAS 103:(17):650611
    [Crossref] [Google Scholar]
  116. 116.
    Rosa A, Everaers R. 2008.. Structure and dynamics of interphase chromosomes. . PLOS Comput. Biol. 4:(8):e1000153
    [Crossref] [Google Scholar]
  117. 117.
    Rowley MJ, Corces VG. 2018.. Organizational principles of 3D genome architecture. . Nat. Rev. Genet. 19:(12):789800
    [Crossref] [Google Scholar]
  118. 118.
    Rubinstein M, Colby RH. 2003.. Polymer Physics. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  119. 119.
    Sabari BR, Dall'Agnese A, Boija A, Klein IA, Coffey EL, et al. 2018.. Coactivator condensation at super-enhancers links phase separation and gene control. . Science 361:(6400):eaar3958
    [Crossref] [Google Scholar]
  120. 120.
    Sabari BR, Dall'Agnese A, Young RA. 2020.. Biomolecular condensates in the nucleus. . Trends Biochem. Sci. 45:(11):96177
    [Crossref] [Google Scholar]
  121. 121.
    Sanborn AL, Rao SSP, Huang SCC, Durand NC, Huntley MH, et al. 2015.. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. . PNAS 112:(47):E645665
    [Crossref] [Google Scholar]
  122. 122.
    Schalch T, Duda S, Sargent DF, Richmond TJ. 2005.. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. . Nature 436:(7047):13841
    [Crossref] [Google Scholar]
  123. 123.
    Schwarz PM, Felthauser A, Fletcher TM, Hansen JC. 1996.. Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains. . Biochemistry 35:(13):400915
    [Crossref] [Google Scholar]
  124. 124.
    Schwarz PM, Hansen JC. 1994.. Formation and stability of higher order chromatin structures: contributions of the histone octamer. . J. Biol. Chem. 269:(23):1628489
    [Crossref] [Google Scholar]
  125. 125.
    Sehnal D, Bittrich S, Deshpande M, Svobodová R, Berka K, et al. 2021.. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. . Nucleic Acids Res. 49:(W1):W43137
    [Crossref] [Google Scholar]
  126. 126.
    Shi G, Liu L, Hyeon C, Thirumalai D. 2018.. Interphase human chromosome exhibits out of equilibrium glassy dynamics. . Nat. Commun. 9::3161
    [Crossref] [Google Scholar]
  127. 127.
    Shin Y, Brangwynne CP. 2017.. Liquid phase condensation in cell physiology and disease. . Science 357:(6357):eaaf4382
    [Crossref] [Google Scholar]
  128. 128.
    Song F, Chen P, Sun D, Wang M, Dong L, et al. 2014.. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. . Science 344:(6182):37680
    [Crossref] [Google Scholar]
  129. 129.
    Spector DL, Lamond AI. 2011.. Nuclear speckles. . Cold Spring Harb. Perspect. Biol. 3:(2):a000646
    [Crossref] [Google Scholar]
  130. 130.
    Strickfaden H, Tolsma TO, Sharma A, Underhill DA, Hansen JC, Hendzel MJ. 2020.. Condensed chromatin behaves like a solid on the mesoscale in vitro and in living cells. . Cell 183:(7):177284
    [Crossref] [Google Scholar]
  131. 131.
    Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH. 2017.. Phase separation drives heterochromatin domain formation. . Nature 547:(7662):24145
    [Crossref] [Google Scholar]
  132. 132.
    Su JH, Zheng P, Kinrot SS, Bintu B, Zhuang X. 2020.. Genome-scale imaging of the 3D organization and transcriptional activity of chromatin. . Cell 182:(6):164159
    [Crossref] [Google Scholar]
  133. 133.
    Sun J, Zhang Q, Schlick T. 2005.. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation. . PNAS 102:(23):818085
    [Crossref] [Google Scholar]
  134. 134.
    Sun Q, Perez-Rathke A, Czajkowsky DM, Shao Z, Liang J. 2021.. High-resolution single-cell 3D-models of chromatin ensembles during Drosophila embryogenesis. . Nat. Commun. 12::205
    [Crossref] [Google Scholar]
  135. 135.
    Sun T, Minhas V, Mirzoev A, Korolev N, Lyubartsev AP, Nordenskiöld L. 2022.. A bottom-up coarse-grained model for nucleosome–nucleosome interactions with explicit ions. . J. Chem. Theory Comput. 18:(6):394860
    [Crossref] [Google Scholar]
  136. 136.
    Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N, et al. 2021.. Integrated spatial genomics reveals global architecture of single nuclei. . Nature 590:(7845):34450
    [Crossref] [Google Scholar]
  137. 137.
    Takizawa T, Meaburn KJ, Misteli T. 2008.. The meaning of gene positioning. . Cell 135:(1):913
    [Crossref] [Google Scholar]
  138. 138.
    Tan C, Takada S. 2020.. Nucleosome allostery in pioneer transcription factor binding. . PNAS 117:(34):2058696
    [Crossref] [Google Scholar]
  139. 139.
    Tatavosian R, Kent S, Brown K, Yao T, Duc HN, et al. 2019.. Nuclear condensates of the Polycomb protein chromobox 2 (CBX2) assemble through phase separation. . J. Biol. Chem. 294:(5):145163
    [Crossref] [Google Scholar]
  140. 140.
    Widom J. 1986.. Physicochemical studies of the folding of the 100 Å nucleosome filament into the 300 Å filament: cation dependence. . J. Mol. Biol. 190:(3):41124
    [Crossref] [Google Scholar]
  141. 141.
    Winogradoff D, Aksimentiev A. 2019.. Molecular mechanism of spontaneous nucleosome unraveling. . J. Mol. Biol. 431:(2):32335
    [Crossref] [Google Scholar]
  142. 142.
    Woods DC, Rodríguez-Ropero F, Wereszczynski J. 2021.. The dynamic influence of linker histone saturation within the poly-nucleosome array. . J. Mol. Biol. 433:(10):166902
    [Crossref] [Google Scholar]
  143. 143.
    Wu H, Dalal Y, Papoian GA. 2021.. Binding dynamics of disordered linker histone H1 with a nucleosomal particle. . J. Mol. Biol. 433:(6):166881
    [Crossref] [Google Scholar]
  144. 144.
    Xie L, Dong P, Qi Y, Hsieh THS, English BP, et al. 2022.. BRD2 compartmentalizes the accessible genome. . Nat. Genet. 54:(4):48191
    [Crossref] [Google Scholar]
  145. 145.
    Xie WJ, Zhang B. 2019.. Learning the formation mechanism of domain-level chromatin states with epigenomics data. . Biophys. J. 116:(10):204756
    [Crossref] [Google Scholar]
  146. 146.
    Zhang B, Wolynes PG. 2015.. Topology, structures, and energy landscapes of human chromosomes. . PNAS 112:(19):606267
    [Crossref] [Google Scholar]
  147. 147.
    Zhang B, Wolynes PG. 2016.. Shape transitions and chiral symmetry breaking in the energy landscape of the mitotic chromosome. . Phys. Rev. Lett. 116:(24):248101
    [Crossref] [Google Scholar]
  148. 148.
    Zhang B, Zheng W, Papoian GA, Wolynes PG. 2016.. Exploring the free energy landscape of nucleosomes. . J. Am. Chem. Soc. 138:(26):812633
    [Crossref] [Google Scholar]
  149. 149.
    Zhang M, Daz-Celis C, Onoa B, Cañari-Chumpitaz C, Requejo KI, et al. 2022.. Molecular organization of the early stages of nucleosome phase separation visualized by cryo-electron tomography. . Mol. Cell 82:(16):300014
    [Crossref] [Google Scholar]
  150. 150.
    Zhao Y, Garcia BA. 2015.. Comprehensive catalog of currently documented histone modifications. . Cold Spring Harb. Perspect. Biol. 7:(9):a025064
    [Crossref] [Google Scholar]
  151. 151.
    Zhou K, Gebala M, Woods D, Sundararajan K, Edwards G, et al. 2022.. CENP-N promotes the compaction of centromeric chromatin. . Nat. Struct. Mol. Biol. 29:(4):40313
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-030822-032650
Loading
/content/journals/10.1146/annurev-biophys-030822-032650
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error