1932

Abstract

Myriad DNA-binding proteins undergo dynamic assembly, translocation, and conformational changes while on DNA or alter the physical configuration of the DNA substrate to control its metabolism. It is now possible to directly observe these activities—often central to the protein function—thanks to the advent of single-molecule fluorescence- and force-based techniques. In particular, the integration of fluorescence detection and force manipulation has unlocked multidimensional measurements of protein–DNA interactions and yielded unprecedented mechanistic insights into the biomolecular processes that orchestrate cellular life. In this review, we first introduce the different experimental geometries developed for single-molecule correlative force and fluorescence microscopy, with a focus on optical tweezers as the manipulation technique. We then describe the utility of these integrative platforms for imaging protein dynamics on DNA and chromatin, as well as their unique capabilities in generating complex DNA configurations and uncovering force-dependent protein behaviors. Finally, we give a perspective on the future directions of this emerging research field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-030822-032904
2024-07-16
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-030822-032904.html?itemId=/content/journals/10.1146/annurev-biophys-030822-032904&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM. 2005.. Direct observation of base-pair stepping by RNA polymerase. . Nature 438::46065
    [Crossref] [Google Scholar]
  2. 2.
    Aicart-Ramos C, Hormeno S, Wilkinson OJ, Dillingham MS, Moreno-Herrero F. 2022.. Long DNA constructs to study helicases and nucleic acid translocases using optical tweezers. . Methods Enzymol. 673::31158
    [Crossref] [Google Scholar]
  3. 3.
    Anand R, Buechelmaier E, Belan O, Newton M, Vancevska A, et al. 2022.. HELQ is a dual-function DSB repair enzyme modulated by RPA and RAD51. . Nature 601::26873
    [Crossref] [Google Scholar]
  4. 4.
    Arai Y, Yasuda R, Akashi K, Harada Y, Miyata H, et al. 1999.. Tying a molecular knot with optical tweezers. . Nature 399::44648
    [Crossref] [Google Scholar]
  5. 5.
    Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. 1986.. Observation of a single-beam gradient force optical trap for dielectric particles. . Opt. Lett. 11::28890
    [Crossref] [Google Scholar]
  6. 6.
    Backer AS, Biebricher AS, King GA, Wuite GJL, Heller I, Peterman EJG. 2019.. Single-molecule polarization microscopy of DNA intercalators sheds light on the structure of S-DNA. . Sci. Adv. 5::eaav1083
    [Crossref] [Google Scholar]
  7. 7.
    Bakx JAM, Biebricher AS, King GA, Christodoulis P, Sarlos K, et al. 2022.. Duplex DNA and BLM regulate gate opening by the human TopoIIIα-RMI1-RMI2 complex. . Nat. Commun. 13::584
    [Crossref] [Google Scholar]
  8. 8.
    Belan O, Barroso C, Kaczmarczyk A, Anand R, Federico S, et al. 2021.. Single-molecule analysis reveals cooperative stimulation of Rad51 filament nucleation and growth by mediator proteins. . Mol. Cell 81::105873.e7
    [Crossref] [Google Scholar]
  9. 9.
    Belan O, Greenhough L, Kuhlen L, Anand R, Kaczmarczyk A, et al. 2023.. Visualization of direct and diffusion-assisted RAD51 nucleation by full-length human BRCA2 protein. . Mol. Cell 83::292540.e8
    [Crossref] [Google Scholar]
  10. 10.
    Belan O, Sebald M, Adamowicz M, Anand R, Vancevska A, et al. 2022.. POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells. . Mol. Cell 82::466480.e9
    [Crossref] [Google Scholar]
  11. 11.
    Bell JC, Plank JL, Dombrowski CC, Kowalczykowski SC. 2012.. Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. . Nature 491::27478
    [Crossref] [Google Scholar]
  12. 12.
    Bennink ML, Leuba SH, Leno GH, Zlatanova J, de Grooth BG, Greve J. 2001.. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. . Nat. Struct. Biol. 8::60610
    [Crossref] [Google Scholar]
  13. 13.
    Bennink ML, Scharer OD, Kanaar R, Sakata-Sogawa K, Schins JM, et al. 1999.. Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1. . Cytometry 36::2008
    [Crossref] [Google Scholar]
  14. 14.
    Berg HC. 1993.. Random Walks in Biology. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  15. 15.
    Bi L, Qin Z, Wang T, Li Y, Jia X, et al. 2022.. The convergence of head-on DNA unwinding forks induces helicase oligomerization and activity transition. . PNAS 119::e2116462119
    [Crossref] [Google Scholar]
  16. 16.
    Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, et al. 2001.. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. . Nature 409::37478
    [Crossref] [Google Scholar]
  17. 17.
    Biebricher A, Hirano S, Enzlin JH, Wiechens N, Streicher WW, et al. 2013.. PICH: a DNA translocase specially adapted for processing anaphase bridge DNA. . Mol. Cell 51::691701
    [Crossref] [Google Scholar]
  18. 18.
    Biebricher AS, Heller I, Roijmans RF, Hoekstra TP, Peterman EJ, Wuite GJ. 2015.. The impact of DNA intercalators on DNA and DNA-processing enzymes elucidated through force-dependent binding kinetics. . Nat. Commun. 6::7304
    [Crossref] [Google Scholar]
  19. 19.
    Blainey PC, Luo G, Kou SC, Mangel WF, Verdine GL, et al. 2009.. Nonspecifically bound proteins spin while diffusing along DNA. . Nat. Struct. Mol. Biol. 16::122429
    [Crossref] [Google Scholar]
  20. 20.
    Brau RR, Tarsa PB, Ferrer JM, Lee P, Lang MJ. 2006.. Interlaced optical force-fluorescence measurements for single molecule biophysics. . Biophys. J. 91::106977
    [Crossref] [Google Scholar]
  21. 21.
    Brouwer I, Moschetti T, Candelli A, Garcin EB, Modesti M, et al. 2018.. Two distinct conformational states define the interaction of human RAD51-ATP with single-stranded DNA. . EMBO J. 37::e98162
    [Crossref] [Google Scholar]
  22. 22.
    Brouwer I, Sitters G, Candelli A, Heerema SJ, Heller I, et al. 2016.. Sliding sleeves of XRCC4-XLF bridge DNA and connect fragments of broken DNA. . Nature 535::56669
    [Crossref] [Google Scholar]
  23. 23.
    Brouwer I, Zhang H, Candelli A, Normanno D, Peterman EJG, et al. 2017.. Human RAD52 captures and holds DNA strands, increases DNA flexibility, and prevents melting of duplex DNA: implications for DNA recombination. . Cell Rep. 18::284553
    [Crossref] [Google Scholar]
  24. 24.
    Brower-Toland BD, Smith CL, Yeh RC, Lis JT, Peterson CL, Wang MD. 2002.. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. . PNAS 99::196065
    [Crossref] [Google Scholar]
  25. 25.
    Bustamante C, Bryant Z, Smith SB. 2003.. Ten years of tension: single-molecule DNA mechanics. . Nature 421::42327
    [Crossref] [Google Scholar]
  26. 26.
    Bustamante C, Chemla YR, Forde NR, Izhaky D. 2004.. Mechanical processes in biochemistry. . Annu. Rev. Biochem. 73::70548
    [Crossref] [Google Scholar]
  27. 27.
    Bustamante C, Yan S. 2022.. The development of single molecule force spectroscopy: from polymer biophysics to molecular machines. . Q. Rev. Biophys. 55::e9
    [Crossref] [Google Scholar]
  28. 28.
    Bustamante CJ, Chemla YR, Liu S, Wang MD. 2021.. Optical tweezers in single-molecule biophysics. . Nat. Rev. Methods Primers 1::25
    [Crossref] [Google Scholar]
  29. 29.
    Buzon P, Maity S, Christodoulis P, Wiertsema MJ, Dunkelbarger S, et al. 2021.. Virus self-assembly proceeds through contact-rich energy minima. . Sci. Adv. 7::eabg0811
    [Crossref] [Google Scholar]
  30. 30.
    Camunas-Soler J, Ribezzi-Crivellari M, Ritort F. 2016.. Elastic properties of nucleic acids by single-molecule force spectroscopy. . Annu. Rev. Biophys. 45::6584
    [Crossref] [Google Scholar]
  31. 31.
    Candelli A, Hoekstra TP, Farge G, Gross P, Peterman EJ, Wuite GJ. 2013.. A toolbox for generating single-stranded DNA in optical tweezers experiments. . Biopolymers 99::61120
    [Crossref] [Google Scholar]
  32. 32.
    Candelli A, Holthausen JT, Depken M, Brouwer I, Franker MA, et al. 2014.. Visualization and quantification of nascent RAD51 filament formation at single-monomer resolution. . PNAS 111::1509095
    [Crossref] [Google Scholar]
  33. 33.
    Candelli A, Wuite GJ, Peterman EJ. 2011.. Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions. . Phys. Chem. Chem. Phys. 13::726372
    [Crossref] [Google Scholar]
  34. 34.
    Capitanio M, Pavone FS. 2013.. Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. . Biophys. J. 105::1293303
    [Crossref] [Google Scholar]
  35. 35.
    Carcamo CC, Poyton MF, Ranjan A, Park G, Louder RK, et al. 2022.. ATP binding facilitates target search of SWR1 chromatin remodeler by promoting one-dimensional diffusion on DNA. . eLife 11::e77352
    [Crossref] [Google Scholar]
  36. 36.
    Chang JT, Li S, Beckwitt EC, Than T, Haluska C, et al. 2022.. Smc5/6’s multifaceted DNA binding capacities stabilize branched DNA structures. . Nat. Commun. 13::7179
    [Crossref] [Google Scholar]
  37. 37.
    Chen J, Le S, Basu A, Chazin WJ, Yan J. 2015.. Mechanochemical regulations of RPA's binding to ssDNA. . Sci. Rep. 5::9296
    [Crossref] [Google Scholar]
  38. 38.
    Chien FT, van Noort J. 2009.. 10 years of tension on chromatin: results from single molecule force spectroscopy. . Curr. Pharm. Biotechnol. 10::47485
    [Crossref] [Google Scholar]
  39. 39.
    Choi J, Grosely R, Puglisi EV, Puglisi JD. 2019.. Expanding single-molecule fluorescence spectroscopy to capture complexity in biology. . Curr. Opin. Struct. Biol. 58::23340
    [Crossref] [Google Scholar]
  40. 40.
    Chua GNL, Watters JW, Olinares PDB, Luo JA, Chait BT, Liu S. 2023.. Differential dynamics specify MeCP2 function at methylated DNA and nucleosomes. . bioRxiv 2023.06.02.543478. https://doi.org/10.1101/2023.06.02.543478
  41. 41.
    Comstock MJ, Ha T, Chemla YR. 2011.. Ultrahigh-resolution optical trap with single-fluorophore sensitivity. . Nat. Methods 8::33540
    [Crossref] [Google Scholar]
  42. 42.
    Comstock MJ, Whitley KD, Jia H, Sokoloski J, Lohman TM, et al. 2015.. Direct observation of structure-function relationship in a nucleic acid-processing enzyme. . Science 348::35254
    [Crossref] [Google Scholar]
  43. 43.
    Cordova JC, Das DK, Manning HW, Lang MJ. 2014.. Combining single-molecule manipulation and single-molecule detection. . Curr. Opin. Struct. Biol. 28::14248
    [Crossref] [Google Scholar]
  44. 44.
    Crickard JB, Moevus CJ, Kwon Y, Sung P, Greene EC. 2020.. Rad54 drives ATP hydrolysis-dependent DNA sequence alignment during homologous recombination. . Cell 181::138094.e18
    [Crossref] [Google Scholar]
  45. 45.
    Dame RT, Noom MC, Wuite GJL. 2006.. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. . Nature 444::38790
    [Crossref] [Google Scholar]
  46. 46.
    Davis RB, Kaur T, Moosa MM, Banerjee PR. 2021.. FUS oncofusion protein condensates recruit mSWI/SNF chromatin remodeler via heterotypic interactions between prion-like domains. . Protein Sci. 30::145466
    [Crossref] [Google Scholar]
  47. 47.
    de Asis Balaguer F, Aicart-Ramos C, Fisher GLM, de Bragança S, Martin-Cuevas EM, et al. 2021.. CTP promotes efficient ParB-dependent DNA condensation by facilitating one-dimensional diffusion from parS. . eLife 10::e67554
    [Crossref] [Google Scholar]
  48. 48.
    De Vlaminck I, Dekker C. 2012.. Recent advances in magnetic tweezers. . Annu. Rev. Biophys. 41::45372
    [Crossref] [Google Scholar]
  49. 49.
    Desai VP, Frank F, Lee A, Righini M, Lancaster L, et al. 2019.. Co-temporal force and fluorescence measurements reveal a ribosomal gear shift mechanism of translation regulation by structured mRNAs. . Mol. Cell 75::100719.e5
    [Crossref] [Google Scholar]
  50. 50.
    Diaz-Celis C, Canari-Chumpitaz C, Sosa RP, Castillo JP, Zhang M, et al. 2022.. Assignment of structural transitions during mechanical unwrapping of nucleosomes and their disassembly products. . PNAS 119::e2206513119
    [Crossref] [Google Scholar]
  51. 51.
    Dijk MA, Kapitein LC, van Mameren J, Schmidt CF, Peterman EJ. 2004.. Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. . J. Phys. Chem. B 108::647984
    [Crossref] [Google Scholar]
  52. 52.
    Duesterberg VK, Fischer-Hwang IT, Perez CF, Hogan DW, Block SM. 2015.. Observation of long-range tertiary interactions during ligand binding by the TPP riboswitch aptamer. . eLife 4::e12362
    [Crossref] [Google Scholar]
  53. 53.
    Duzdevich D, Greene EC. 2013.. Towards physiological complexity with in vitro single-molecule biophysics. . Philos. Trans. R. Soc. Lond. B 368::20120271
    [Crossref] [Google Scholar]
  54. 54.
    Duzdevich D, Redding S, Greene EC. 2014.. DNA dynamics and single-molecule biology. . Chem. Rev. 114::307286
    [Crossref] [Google Scholar]
  55. 55.
    Duzdevich D, Warner MD, Ticau S, Ivica NA, Bell SP, Greene EC. 2015.. The dynamics of eukaryotic replication initiation: origin specificity, licensing, and firing at the single-molecule level. . Mol. Cell 58::48394
    [Crossref] [Google Scholar]
  56. 56.
    Farge G, Laurens N, Broekmans OD, van den Wildenberg SM, Dekker LC, et al. 2012.. Protein sliding and DNA denaturation are essential for DNA organization by human mitochondrial transcription factor A. . Nat. Commun. 3::1013
    [Crossref] [Google Scholar]
  57. 57.
    Farge G, Mehmedovic M, Baclayon M, van den Wildenberg SM, Roos WH, et al. 2014.. In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription. . Cell Rep. 8::6674
    [Crossref] [Google Scholar]
  58. 58.
    Feric M. 2021.. Droplets take DNA by force. . Nat. Phys. 17::98182
    [Crossref] [Google Scholar]
  59. 59.
    Fierz B, Poirier MG. 2019.. Biophysics of chromatin dynamics. . Annu. Rev. Biophys. 48::32145
    [Crossref] [Google Scholar]
  60. 60.
    Forget AL, Kowalczykowski SC. 2012.. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. . Nature 482::42327
    [Crossref] [Google Scholar]
  61. 61.
    Forth S, Sheinin MY, Inman J, Wang MD. 2013.. Torque measurement at the single-molecule level. . Annu. Rev. Biophys. 42::583604
    [Crossref] [Google Scholar]
  62. 62.
    Franklin RE, Gosling RG. 1953.. Molecular configuration in sodium thymonucleate. . Nature 171::74041
    [Crossref] [Google Scholar]
  63. 63.
    Galletto R, Amitani I, Baskin RJ, Kowalczykowski SC. 2006.. Direct observation of individual RecA filaments assembling on single DNA molecules. . Nature 443::87578
    [Crossref] [Google Scholar]
  64. 64.
    Gien H, Morse M, McCauley MJ, Kitzrow JP, Musier-Forsyth K, et al. 2022.. HIV-1 nucleocapsid protein binds double-stranded DNA in multiple modes to regulate compaction and capsid uncoating. . Viruses 14::235
    [Crossref] [Google Scholar]
  65. 65.
    Gorman J, Plys AJ, Visnapuu ML, Alani E, Greene EC. 2010.. Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. . Nat. Struct. Mol. Biol. 17::93238
    [Crossref] [Google Scholar]
  66. 66.
    Graham TG, Walter JC, Loparo JJ. 2016.. Two-stage synapsis of DNA ends during non-homologous end joining. . Mol. Cell 61::85058
    [Crossref] [Google Scholar]
  67. 67.
    Greenhough LA, Liang CC, Belan O, Kunzelmann S, Maslen S, et al. 2023.. Structure and function of the RAD51B-RAD51C-RAD51D-XRCC2 tumour suppressor. . Nature 619::65057
    [Crossref] [Google Scholar]
  68. 68.
    Greenleaf WJ, Woodside MT, Block SM. 2007.. High-resolution, single-molecule measurements of biomolecular motion. . Annu. Rev. Biophys. Biomol. Struct. 36::17190
    [Crossref] [Google Scholar]
  69. 69.
    Guo L, Zhao Y, Zhang Q, Feng Y, Bi L, et al. 2022.. Stochastically multimerized ParB orchestrates DNA assembly as unveiled by single-molecule analysis. . Nucleic Acids Res. 50::9294305
    [Crossref] [Google Scholar]
  70. 70.
    Gutierrez-Escribano P, Newton MD, Llauro A, Huber J, Tanasie L, et al. 2019.. A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules. . Sci. Adv. 5::eaay6804
    [Crossref] [Google Scholar]
  71. 71.
    Halford SE, Marko JF. 2004.. How do site-specific DNA-binding proteins find their targets?. Nucleic Acids Res. 32::304052
    [Crossref] [Google Scholar]
  72. 72.
    Hall MA, Shundrovsky A, Bai L, Fulbright RM, Lis JT, Wang MD. 2009.. High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. . Nat. Struct. Mol. Biol. 16::12429
    [Crossref] [Google Scholar]
  73. 73.
    Halma MTJ, Tuszynski JA, Wuite GJL. 2023.. Optical tweezers for drug discovery. . Drug Discov. Today 28::103443
    [Crossref] [Google Scholar]
  74. 74.
    Harada Y, Funatsu T, Murakami K, Nonoyama Y, Ishihama A, Yanagida T. 1999.. Single-molecule imaging of RNA polymerase-DNA interactions in real time. . Biophys. J. 76::70915
    [Crossref] [Google Scholar]
  75. 75.
    Heller I, Hoekstra TP, King GA, Peterman EJ, Wuite GJ. 2014.. Optical tweezers analysis of DNA-protein complexes. . Chem. Rev. 114::3087119
    [Crossref] [Google Scholar]
  76. 76.
    Heller I, Laurens N, Vorselen D, Broekmans OD, Biebricher AS, et al. 2017.. Versatile quadruple-trap optical tweezers for dual DNA experiments. . Methods Mol. Biol. 1486::25772
    [Crossref] [Google Scholar]
  77. 77.
    Heller I, Sitters G, Broekmans OD, Farge G, Menges C, et al. 2013.. STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. . Nat. Methods 10::91016
    [Crossref] [Google Scholar]
  78. 78.
    Hill FR, Monachino E, van Oijen AM. 2017.. The more the merrier: high-throughput single-molecule techniques. . Biochem. Soc. Trans. 45::75969
    [Crossref] [Google Scholar]
  79. 79.
    Hodges C, Bintu L, Lubkowska L, Kashlev M, Bustamante C. 2009.. Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. . Science 325::62628
    [Crossref] [Google Scholar]
  80. 80.
    Hohng S, Zhou R, Nahas MK, Yu J, Schulten K, et al. 2007.. Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the Holliday junction. . Science 318::27983
    [Crossref] [Google Scholar]
  81. 81.
    Hormeno S, Wilkinson OJ, Aicart-Ramos C, Kuppa S, Antony E, et al. 2022.. Human HELB is a processive motor protein that catalyzes RPA clearance from single-stranded DNA. . PNAS 119::e2112376119
    [Crossref] [Google Scholar]
  82. 82.
    Hoskins AA, Friedman LJ, Gallagher SS, Crawford DJ, Anderson EG, et al. 2011.. Ordered and dynamic assembly of single spliceosomes. . Science 331::128995
    [Crossref] [Google Scholar]
  83. 83.
    Jain A, Liu R, Ramani B, Arauz E, Ishitsuka Y, et al. 2011.. Probing cellular protein complexes using single-molecule pull-down. . Nature 473::48488
    [Crossref] [Google Scholar]
  84. 84.
    Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T. 2008.. Advances in single-molecule fluorescence methods for molecular biology. . Annu. Rev. Biochem. 77::5176
    [Crossref] [Google Scholar]
  85. 85.
    Kaczmarczyk AP, Declais AC, Newton MD, Boulton SJ, Lilley DMJ, Rueda DS. 2022.. Search and processing of Holliday junctions within long DNA by junction-resolving enzymes. . Nat. Commun. 13::5921
    [Crossref] [Google Scholar]
  86. 86.
    Keenen MM, Brown D, Brennan LD, Renger R, Khoo H, et al. 2021.. HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. . eLife 10::e64563
    [Crossref] [Google Scholar]
  87. 87.
    Kim Y, de la Torre A, Leal AA, Finkelstein IJ. 2017.. Efficient modification of lambda-DNA substrates for single-molecule studies. . Sci. Rep. 7::2071
    [Crossref] [Google Scholar]
  88. 88.
    King GA, Burla F, Peterman EJG, Wuite GJL. 2019.. Supercoiling DNA optically. . PNAS 116::2653439
    [Crossref] [Google Scholar]
  89. 89.
    King GA, Gross P, Bockelmann U, Modesti M, Wuite GJ, Peterman EJ. 2013.. Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy. . PNAS 110::385964
    [Crossref] [Google Scholar]
  90. 90.
    King GA, Peterman EJ, Wuite GJ. 2016.. Unravelling the structural plasticity of stretched DNA under torsional constraint. . Nat. Commun. 7::11810
    [Crossref] [Google Scholar]
  91. 91.
    Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. 2000.. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. . PNAS 97::820610
    [Crossref] [Google Scholar]
  92. 92.
    Kono S, van den Berg A, Simonetta M, Mukhortava A, Garman EF, Tessmer I. 2022.. Resolving the subtle details of human DNA alkyltransferase lesion search and repair mechanism by single-molecule studies. . PNAS 119::e2116218119
    [Crossref] [Google Scholar]
  93. 93.
    Kuppa S, Deveryshetty J, Chadda R, Mattice JR, Pokhrel N, et al. 2022.. Rtt105 regulates RPA function by configurationally stapling the flexible domains. . Nat. Commun. 13::5152
    [Crossref] [Google Scholar]
  94. 94.
    Kuriyan J, Konforti B, Wemmer D. 2012.. The Molecules of Life. New York:: WW Norton
    [Google Scholar]
  95. 95.
    Lang MJ, Fordyce PM, Engh AM, Neuman KC, Block SM. 2004.. Simultaneous, coincident optical trapping and single-molecule fluorescence. . Nat. Methods 1::13339
    [Crossref] [Google Scholar]
  96. 96.
    Lavelle C, Victor JM, Zlatanova J. 2010.. Chromatin fiber dynamics under tension and torsion. . Int. J. Mol. Sci. 11::155779
    [Crossref] [Google Scholar]
  97. 97.
    Le TT, Gao X, Park SH, Lee J, Inman JT, et al. 2019.. Synergistic coordination of chromatin torsional mechanics and topoisomerase activity. . Cell 179::61931.e15
    [Crossref] [Google Scholar]
  98. 98.
    Le TT, Wang MD. 2018.. Molecular highways-navigating collisions of DNA motor proteins. . J. Mol. Biol. 430::451324
    [Crossref] [Google Scholar]
  99. 99.
    Lee KS, Balci H, Jia H, Lohman TM, Ha T. 2013.. Direct imaging of single UvrD helicase dynamics on long single-stranded DNA. . Nat. Commun. 4::1878
    [Crossref] [Google Scholar]
  100. 100.
    Leicher R, Ge EJ, Lin X, Reynolds MJ, Xie W, et al. 2020.. Single-molecule and in silico dissection of the interaction between Polycomb repressive complex 2 and chromatin. . PNAS 117::3046575
    [Crossref] [Google Scholar]
  101. 101.
    Leicher R, Liu S. 2022.. Probing the interaction between chromatin and chromatin-associated complexes with optical tweezers. . Methods Mol. Biol. 2478::31327
    [Crossref] [Google Scholar]
  102. 102.
    Leicher R, Osunsade A, Chua GNL, Faulkner SC, Latham AP, et al. 2022.. Single-stranded nucleic acid binding and coacervation by linker histone H1. . Nat. Struct. Mol. Biol. 29::46371
    [Crossref] [Google Scholar]
  103. 103.
    Li S, Wasserman MR, Yurieva O, Bai L, O'Donnell ME, Liu S. 2022.. Nucleosome-directed replication origin licensing independent of a consensus DNA sequence. . Nat. Commun. 13::4947
    [Crossref] [Google Scholar]
  104. 104.
    Li S, Wasserman MR, Yurieva O, Bai L, O'Donnell ME, Liu S. 2022.. Origin recognition complex harbors an intrinsic nucleosome remodeling activity. . PNAS 119::e2211568119
    [Crossref] [Google Scholar]
  105. 105.
    Liang J, Li J, Zhong Z, Rujiralai T, Ma J. 2021.. Quantifying the force in flow-cell based single-molecule stretching experiments. . Nanoscale 13::1591627
    [Crossref] [Google Scholar]
  106. 106.
    Lin YY, Brouns T, Kolbeck PJ, Vanderlinden W, Lipfert J. 2023.. High-yield, ligation-free assembly of DNA constructs with nucleosome positioning sequence repeats for single molecule manipulation assays. . J. Biol. Chem. 299::104874
    [Crossref] [Google Scholar]
  107. 107.
    Liu K, Grasso EM, Pu S, Zou M, Liu S, et al. Structure and DNA-bridging activity of the essential Rec114-Mei4 trimer interface. . Genes Dev. 37::51834
    [Crossref] [Google Scholar]
  108. 108.
    Losito M, Smith QM, Newton MD, Cuomo ME, Rueda DS. 2021.. Cas12a target search and cleavage on force-stretched DNA. . Phys. Chem. Chem. Phys. 23::2664044
    [Crossref] [Google Scholar]
  109. 109.
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. 1997.. Crystal structure of the nucleosome core particle at 2.8 A resolution. . Nature 389::25160
    [Crossref] [Google Scholar]
  110. 110.
    Lyon AS, Peeples WB, Rosen MK. 2021.. A framework for understanding the functions of biomolecular condensates across scales. . Nat. Rev. Mol. Cell Biol. 22::21535
    [Crossref] [Google Scholar]
  111. 111.
    Ma CJ, Gibb B, Kwon Y, Sung P, Greene EC. 2017.. Protein dynamics of human RPA and RAD51 on ssDNA during assembly and disassembly of the RAD51 filament. . Nucleic Acids Res. 45::74961
    [Crossref] [Google Scholar]
  112. 112.
    Ma CJ, Steinfeld JB, Greene EC. 2017.. Single-stranded DNA curtains for studying homologous recombination. . Methods Enzymol. 582::193219
    [Crossref] [Google Scholar]
  113. 113.
    Marchetti M, Kamsma D, Cazares Vargas E, Hernandez Garcia A, van der Schoot P, et al. 2019.. Real-time assembly of viruslike nucleocapsids elucidated at the single-particle level. . Nano Lett. 19::574653
    [Crossref] [Google Scholar]
  114. 114.
    Marko JF. 2008.. Micromechanical studies of mitotic chromosomes. . Chromosome Res. 16::46997
    [Crossref] [Google Scholar]
  115. 115.
    McCauley MJ, Morse M, Becker N, Hu Q, Botuyan MV, et al. 2022.. Human FACT subunits coordinate to catalyze both disassembly and reassembly of nucleosomes. . Cell Rep. 41::111858
    [Crossref] [Google Scholar]
  116. 116.
    Meijering AEC, Sarlos K, Nielsen CF, Witt H, Harju J, et al. 2022.. Nonlinear mechanics of human mitotic chromosomes. . Nature 605::54550
    [Crossref] [Google Scholar]
  117. 117.
    Mersch KN, Sokoloski JE, Nguyen B, Galletto R, Lohman TM. 2023.. “Helicase” activity promoted through dynamic interactions between a ssDNA translocase and a diffusing SSB protein. . PNAS 120::e2216777120
    [Crossref] [Google Scholar]
  118. 118.
    Metzler R, Jeon JH, Cherstvy AG, Barkai E. 2014.. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. . Phys. Chem. Chem. Phys. 16::2412864
    [Crossref] [Google Scholar]
  119. 119.
    Mitra J, Makurath MA, Ngo TTM, Troitskaia A, Chemla YR, Ha T. 2019.. Extreme mechanical diversity of human telomeric DNA revealed by fluorescence-force spectroscopy. . PNAS 116::835059
    [Crossref] [Google Scholar]
  120. 120.
    Moffitt JR, Chemla YR, Aathavan K, Grimes S, Jardine PJ, et al. 2009.. Intersubunit coordination in a homomeric ring ATPase. . Nature 457::44650
    [Crossref] [Google Scholar]
  121. 121.
    Moffitt JR, Chemla YR, Smith SB, Bustamante C. 2008.. Recent advances in optical tweezers. . Annu. Rev. Biochem. 77::20528
    [Crossref] [Google Scholar]
  122. 122.
    Morin JA, Wittmann S, Choubey S, Klosin A, Golfier S, et al. 2022.. Sequence-dependent surface condensation of a pioneer transcription factor on DNA. . Nat. Phys. 18::27176
    [Crossref] [Google Scholar]
  123. 123.
    Neuman KC, Block SM. 2004.. Optical trapping. . Rev. Sci. Instrum. 75::2787809
    [Crossref] [Google Scholar]
  124. 124.
    Neuman KC, Nagy A. 2008.. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. . Nat. Methods 5::491505
    [Crossref] [Google Scholar]
  125. 125.
    Newton MD, Losito M, Smith QM, Parnandi N, Taylor BJ, et al. 2023.. Negative DNA supercoiling induces genome-wide Cas9 off-target activity. . Mol. Cell 83:(19):353345.e5
    [Crossref] [Google Scholar]
  126. 126.
    Newton MD, Taylor BJ, Driessen RPC, Roos L, Cvetesic N, et al. 2019.. DNA stretching induces Cas9 off-target activity. . Nat. Struct. Mol. Biol. 26::18592
    [Crossref] [Google Scholar]
  127. 127.
    Ngo TT, Zhang Q, Zhou R, Yodh JG, Ha T. 2015.. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. . Cell 160::113544
    [Crossref] [Google Scholar]
  128. 128.
    Nguyen T, Li S, Chang JT, Watters JW, Ng H, et al. 2022.. Chromatin sequesters pioneer transcription factor Sox2 from exerting force on DNA. . Nat. Commun. 13::3988
    [Crossref] [Google Scholar]
  129. 129.
    Paik DH, Perkins TT. 2011.. Overstretching DNA at 65 pN does not require peeling from free ends or nicks. . J. Am. Chem. Soc. 133::321921
    [Crossref] [Google Scholar]
  130. 130.
    Patrick EM, Slivka JD, Payne B, Comstock MJ, Schmidt JC. 2020.. Observation of processive telomerase catalysis using high-resolution optical tweezers. . Nat. Chem. Biol. 16::8019
    [Crossref] [Google Scholar]
  131. 131.
    Paul B, Chaubet L, Verver DE, Montoya G. 2022.. Mechanics of CRISPR-Cas12a and engineered variants on lambda-DNA. . Nucleic Acids Res. 50::520825
    [Crossref] [Google Scholar]
  132. 132.
    Perkins TT. 2014.. Angstrom-precision optical traps and applications. . Annu. Rev. Biophys. 43::279302
    [Crossref] [Google Scholar]
  133. 133.
    Perkins TT, Quake SR, Smith DE, Chu S. 1994.. Relaxation of a single DNA molecule observed by optical microscopy. . Science 264::82226
    [Crossref] [Google Scholar]
  134. 134.
    Pradhan B, Barth R, Kim E, Davidson IF, Bauer B, et al. 2022.. SMC complexes can traverse physical roadblocks bigger than their ring size. . Cell Rep. 41::111491
    [Crossref] [Google Scholar]
  135. 135.
    Price AC, Pilkiewicz KR, Graham TGW, Song D, Eaves JD, Loparo JJ. 2015.. DNA motion capture reveals the mechanical properties of DNA at the mesoscale. . Biophys. J. 108::253240
    [Crossref] [Google Scholar]
  136. 136.
    Qin Z, Bi L, Hou XM, Zhang S, Zhang X, et al. 2020.. Human RPA activates BLM's bidirectional DNA unwinding from a nick. . eLife 9::e54098
    [Crossref] [Google Scholar]
  137. 137.
    Quail T, Golfier S, Elsner M, Ishihara K, Murugesan V, et al. 2021.. Force generation by protein-DNA co-condensation. . Nat. Phys. 17::100712
    [Crossref] [Google Scholar]
  138. 138.
    Quake SR, Babcock H, Chu S. 1997.. The dynamics of partially extended single molecules of DNA. . Nature 388::15154
    [Crossref] [Google Scholar]
  139. 139.
    Ramirez Montero D, Sanchez H, van Veen E, van Laar T, Solano B, et al. 2023.. Nucleotide binding halts diffusion of the eukaryotic replicative helicase during activation. . Nat. Commun. 14::2082
    [Crossref] [Google Scholar]
  140. 140.
    Renger R, Morin JA, Lemaitre R, Ruer-Gruss M, Julicher F, et al. 2022.. Co-condensation of proteins with single- and double-stranded DNA. . PNAS 119::e2107871119
    [Crossref] [Google Scholar]
  141. 141.
    Roy R, Hohng S, Ha T. 2008.. A practical guide to single-molecule FRET. . Nat. Methods 5::50716
    [Crossref] [Google Scholar]
  142. 142.
    Sanchez H, Liu Z, van Veen E, van Laar T, Diffley JFX, Dekker NH. 2023.. A chromatinized origin reduces the mobility of ORC and MCM through interactions and spatial constraint. . Nat. Commun. 14::6735
    [Crossref] [Google Scholar]
  143. 143.
    Sanchez H, McCluskey K, van Laar T, van Veen E, Asscher FM, et al. 2021.. DNA replication origins retain mobile licensing proteins. . Nat. Commun. 12::1908
    [Crossref] [Google Scholar]
  144. 144.
    Sarlos K, Biebricher AS, Bizard AH, Bakx JAM, Ferrete-Bonastre AG, et al. 2018.. Reconstitution of anaphase DNA bridge recognition and disjunction. . Nat. Struct. Mol. Biol. 25::86876
    [Crossref] [Google Scholar]
  145. 145.
    Schaich MA, Schnable BL, Kumar N, Roginskaya V, Jakielski RC, et al. 2023.. Single-molecule analysis of DNA-binding proteins from nuclear extracts (SMADNE). . Nucleic Acids Res. 51::e39
    [Crossref] [Google Scholar]
  146. 146.
    Shabestari MH, Meijering AEC, Roos WH, Wuite GJL, Peterman EJG. 2017.. Recent advances in biological single-molecule applications of optical tweezers and fluorescence microscopy. . Methods Enzymol. 582::85119
    [Crossref] [Google Scholar]
  147. 147.
    Sirinakis G, Ren Y, Gao Y, Xi Z, Zhang Y. 2012.. Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy. . Rev. Sci. Instrum. 83::093708
    [Crossref] [Google Scholar]
  148. 148.
    Spakman D, Clement TVM, Biebricher AS, King GA, Singh MI, et al. 2022.. PICH acts as a force-dependent nucleosome remodeler. . Nat. Commun. 13::7277
    [Crossref] [Google Scholar]
  149. 149.
    Spakman D, King GA, Peterman EJG, Wuite GJL. 2020.. Constructing arrays of nucleosome positioning sequences using Gibson Assembly for single-molecule studies. . Sci. Rep. 10::9903
    [Crossref] [Google Scholar]
  150. 150.
    Spies M, Bianco PR, Dillingham MS, Handa N, Baskin RJ, Kowalczykowski SC. 2003.. A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase. . Cell 114::64754
    [Crossref] [Google Scholar]
  151. 151.
    Suksombat S, Khafizov R, Kozlov AG, Lohman TM, Chemla YR. 2015.. Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways. . eLife 4::e08193
    [Crossref] [Google Scholar]
  152. 152.
    Sun M, Amiri H, Tong AB, Shintomi K, Hirano T, et al. 2023.. Monitoring the compaction of single DNA molecules in Xenopus egg extract in real time. . PNAS 120::e2221309120
    [Crossref] [Google Scholar]
  153. 153.
    Syrjanen JL, Heller I, Candelli A, Davies OR, Peterman EJ, et al. 2017.. Single-molecule observation of DNA compaction by meiotic protein SYCP3. . eLife 6::e22582
    [Crossref] [Google Scholar]
  154. 154.
    Tafoya S, Large SJ, Liu S, Bustamente C, Sivak DA. 2019.. Using a system's equilibrium behavior to reduce its energy dissipation in nonequilibrium processes. . PNAS 116:(13):592024
    [Crossref] [Google Scholar]
  155. 155.
    Tafvizi A, Huang F, Fersht AR, Mirny LA, van Oijen AM. 2011.. A single-molecule characterization of p53 search on DNA. . PNAS 108::56368
    [Crossref] [Google Scholar]
  156. 156.
    Tanasie NL, Gutierrez-Escribano P, Jaklin S, Aragon L, Stigler J. 2022.. Stabilization of DNA fork junctions by Smc5/6 complexes revealed by single-molecule imaging. . Cell Rep. 41::111778
    [Crossref] [Google Scholar]
  157. 157.
    Tang M, Pobegalov G, Tanizawa H, Chen ZA, Rappsilber J, et al. 2023.. Establishment of dsDNA-dsDNA interactions by the condensing complex. . Mol. Cell 83:(21):3787800.e9
    [Crossref] [Google Scholar]
  158. 158.
    Tinoco I Jr., Gonzalez RL Jr. 2011.. Biological mechanisms, one molecule at a time. . Genes Dev. 25::120531
    [Crossref] [Google Scholar]
  159. 159.
    van Mameren J, Gross P, Farge G, Hooijman P, Modesti M, et al. 2009.. Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging. . PNAS 106::1823136
    [Crossref] [Google Scholar]
  160. 160.
    van Mameren J, Modesti M, Kanaar R, Wyman C, Peterman EJ, Wuite GJ. 2009.. Counting RAD51 proteins disassembling from nucleoprotein filaments under tension. . Nature 457::74548
    [Crossref] [Google Scholar]
  161. 161.
    van Mameren J, Modesti M, Kanaar R, Wyman C, Wuite GJ, Peterman EJ. 2006.. Dissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers. . Biophys. J. 91::L7880
    [Crossref] [Google Scholar]
  162. 162.
    van Mameren J, Peterman EJ, Wuite GJ. 2008.. See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. . Nucleic Acids Res. 36::438189
    [Crossref] [Google Scholar]
  163. 163.
    Veigel C, Schmidt CF. 2011.. Moving into the cell: single-molecule studies of molecular motors in complex environments. . Nat. Rev. Mol. Cell Biol. 12::16376
    [Crossref] [Google Scholar]
  164. 164.
    Vladescu ID, McCauley MJ, Nunez ME, Rouzina I, Williams MC. 2007.. Quantifying force-dependent and zero-force DNA intercalation by single-molecule stretching. . Nat. Methods 4::51722
    [Crossref] [Google Scholar]
  165. 165.
    Vlijm R, Smitshuijzen JS, Lusser A, Dekker C. 2012.. NAP1-assisted nucleosome assembly on DNA measured in real time by single-molecule magnetic tweezers. . PLOS ONE 7::e46306
    [Crossref] [Google Scholar]
  166. 166.
    von Hippel PH, Berg OG. 1989.. Facilitated target location in biological systems. . J. Biol. Chem. 264::67578
    [Crossref] [Google Scholar]
  167. 167.
    Wallace MI, Molloy JE, Trentham DR. 2003.. Combined single-molecule force and fluorescence measurements for biology. . J. Biol. 2::4
    [Crossref] [Google Scholar]
  168. 168.
    Wan L, Toland S, Robinson-McCarthy LR, Lee N, Schaich MA, et al. 2023.. Unlicensed origin DNA melting by MCV and SV40 polyomavirus LT proteins is independent of ATP-dependent helicase activity. . PNAS 120:(30):e2308010120
    [Crossref] [Google Scholar]
  169. 169.
    Wang L, Watters JW, Ju X, Lu G, Liu S. 2023.. Head-on and co-directional RNA polymerase collisions orchestrate bidirectional transcription termination. . Mol. Cell 83::115364
    [Crossref] [Google Scholar]
  170. 170.
    Wang T, Hu J, Li Y, Bi L, Guo L, et al. 2022.. Bloom syndrome helicase compresses single-stranded DNA into phase-separated condensates. . Angew. Chem. Int. Ed. 61::e202209463
    [Crossref] [Google Scholar]
  171. 171.
    Wasserman MR, Liu S. 2019.. A tour de force on the double helix: exploiting DNA mechanics to study DNA-based molecular machines. . Biochemistry 58::466776
    [Crossref] [Google Scholar]
  172. 172.
    Wasserman MR, Schauer GD, O'Donnell ME, Liu S. 2019.. Replication fork activation is enabled by a single-stranded DNA gate in CMG helicase. . Cell 178::60011.e16
    [Crossref] [Google Scholar]
  173. 173.
    Watson JD, Crick FH. 1953.. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. . Nature 171::73738
    [Crossref] [Google Scholar]
  174. 174.
    Wilkins MH, Stokes AR, Wilson HR. 1953.. Molecular structure of deoxypentose nucleic acids. . Nature 171::73840
    [Crossref] [Google Scholar]
  175. 175.
    Xu L, Cabanas-Danes J, Halma MTJ, Heller I, Stratmann SA, et al. 2023.. Regulation of T7 gp2.5 binding dynamics by its C-terminal tail, template conformation and sequence. . Nucleic Acids Res. 51::654053
    [Crossref] [Google Scholar]
  176. 176.
    Yadav R, Senanayake KB, Comstock MJ. 2022.. High-resolution optical tweezers combined with multicolor single-molecule microscopy. . Methods Mol. Biol. 2478::141240
    [Crossref] [Google Scholar]
  177. 177.
    Zhang X, Chen H, Le S, Rouzina I, Doyle PS, Yan J. 2013.. Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching by single-molecule calorimetry. . PNAS 110::386570
    [Crossref] [Google Scholar]
  178. 178.
    Zheng Q, Juette MF, Jockusch S, Wasserman MR, Zhou Z, et al. 2014.. Ultra-stable organic fluorophores for single-molecule research. . Chem. Soc. Rev. 43::104456
    [Crossref] [Google Scholar]
  179. 179.
    Zhou R, Kozlov AG, Roy R, Zhang J, Korolev S, et al. 2011.. SSB functions as a sliding platform that migrates on DNA via reptation. . Cell 146::22232
    [Crossref] [Google Scholar]
  180. 180.
    Zuo L, Zhang G, Massett M, Cheng J, Guo Z, et al. 2021.. Loci-specific phase separation of FET fusion oncoproteins promotes gene transcription. . Nat. Commun. 12::1491
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-030822-032904
Loading
/content/journals/10.1146/annurev-biophys-030822-032904
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error