1932

Abstract

The volumes of living cells undergo dynamic changes to maintain the cells’ structural and functional integrity in many physiological processes. Minor fluctuations in cell volume can serve as intrinsic signals that play a crucial role in cell fate determination during mechanotransduction. In this review, we discuss the variability of cell volume and its role in vivo, along with an overview of the mechanisms governing cell volume regulation. Additionally, we provide insights into the current approaches used to control cell volume in vitro. Furthermore, we summarize the biological implications of cell volume regulation and discuss recent advances in understanding the fundamental relationship between cell volume and mechanotransduction. Finally, we delve into the potential underlying mechanisms, including intracellular macromolecular crowding and cellular mechanics, that govern the global regulation of cell fate in response to changes in cell volume. By exploring the intricate interplay between cell volume and mechanotransduction, we underscore the importance of considering cell volume as a fundamental signaling cue to unravel the basic principles of mechanotransduction. Additionally, we propose future research directions that can extend our current understanding of cell volume in mechanotransduction. Overall, this review highlights the significance of considering cell volume as a fundamental signal in understanding the basic principles in mechanotransduction and points out the possibility of controlling cell volume to control cell fate, mitigate disease-related damage, and facilitate the healing of damaged tissues.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-030822-035656
2024-07-16
2025-02-16
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-030822-035656.html?itemId=/content/journals/10.1146/annurev-biophys-030822-035656&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acquaviva C, Pines J. 2006.. The anaphase-promoting complex/cyclosome: APC/C. . J. Cell Sci. 119::24014
    [Crossref] [Google Scholar]
  2. 2.
    Adebowale K, Gong Z, Hou JC, Wisdom KM, Garbett D, et al. 2021.. Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. . Nat. Mater. 20::129099
    [Crossref] [Google Scholar]
  3. 3.
    Amodeo AA, Skotheim JM. 2016.. Cell-size control. . Cold Spring Harb. Perspect. Biol. 8::a019083
    [Crossref] [Google Scholar]
  4. 4.
    Bao M, Xie J, Katoele N, Hu X, Wang B, et al. 2018.. Cellular volume and matrix stiffness direct stem cell behavior in a 3D microniche. . ACS Appl. Mater. Interfaces 11::175459
    [Crossref] [Google Scholar]
  5. 5.
    Bao M, Xie J, Piruska A, Huck WT. 2017.. 3D microniches reveal the importance of cell size and shape. . Nat. Commun. 8::1962
    [Crossref] [Google Scholar]
  6. 6.
    Batty P, Gerlich DW. 2019.. Mitotic chromosome mechanics: how cells segregate their genome. . Trends Cell Biol. 29::71726
    [Crossref] [Google Scholar]
  7. 7.
    Bays JL, Campbell HK, Heidema C, Sebbagh M, DeMali KA. 2017.. Linking E-cadherin mechanotransduction to cell metabolism through force-mediated activation of AMPK. . Nat. Cell Biol. 19::72431
    [Crossref] [Google Scholar]
  8. 8.
    Björklund M. 2019.. Cell size homeostasis: metabolic control of growth and cell division. . Biochim. Biophys. Acta Mol. Cell Res. 1866::40917
    [Crossref] [Google Scholar]
  9. 9.
    Boyd-Shiwarski CR, Shiwarski DJ, Griffiths SE, Beacham RT, Norrell L, et al. 2022.. WNK kinases sense molecular crowding and rescue cell volume via phase separation. . Cell 185::4488506.e20
    [Crossref] [Google Scholar]
  10. 10.
    Burg MB. 2000.. Macromolecular crowding as a cell volume sensor. . Cell. Physiol. Biochem. 10::25156
    [Crossref] [Google Scholar]
  11. 11.
    Bush PG, Hall AC. 2003.. The volume and morphology of chondrocytes within non-degenerate and degenerate human articular cartilage. . Osteoarthritis Cartil. 11::24251
    [Crossref] [Google Scholar]
  12. 12.
    Caliari SR, Vega SL, Kwon M, Soulas EM, Burdick JA. 2016.. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. . Biomaterials 103::31423
    [Crossref] [Google Scholar]
  13. 13.
    Cameron AR, Frith JE, Cooper-White JJ. 2011.. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. . Biomaterials 32::597993
    [Crossref] [Google Scholar]
  14. 14.
    Campos M, Surovtsev IV, Kato S, Paintdakhi A, Beltran B, et al. 2014.. A constant size extension drives bacterial cell size homeostasis. . Cell 159::143346
    [Crossref] [Google Scholar]
  15. 15.
    Charrier EE, Pogoda K, Wells RG, Janmey PA. 2018.. Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. . Nat. Commun. 9::449
    [Crossref] [Google Scholar]
  16. 16.
    Chaudhuri O, Gu L, Darnell M, Klumpers D, Bencherif SA, et al. 2015.. Substrate stress relaxation regulates cell spreading. . Nat. Commun. 6::6364
    [Crossref] [Google Scholar]
  17. 17.
    Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, et al. 2016.. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. . Nat. Mater. 15::32634
    [Crossref] [Google Scholar]
  18. 18.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. 1997.. Geometric control of cell life and death. . Science 276::142528
    [Crossref] [Google Scholar]
  19. 19.
    Cooper KL, Oh S, Sung Y, Dasari RR, Kirschner MW, Tabin CJ. 2013.. Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. . Nature 495::37578
    [Crossref] [Google Scholar]
  20. 20.
    Dar D, Dar N, Cai L, Newman DK. 2021.. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. . Science 373::eabi4882
    [Crossref] [Google Scholar]
  21. 21.
    Dasgupta A, Merkel M, Clark MJ, Jacob AE, Dawson JE, et al. 2018.. Cell volume changes contribute to epithelial morphogenesis in zebrafish Kupffer's vesicle. . eLife 7::e30963
    [Crossref] [Google Scholar]
  22. 22.
    Deng N-N, Vibhute MA, Zheng L, Zhao H, Yelleswarapu M, Huck WT. 2018.. Macromolecularly crowded protocells from reversibly shrinking monodisperse liposomes. . J. Am. Chem. Soc. 140::7399402
    [Crossref] [Google Scholar]
  23. 23.
    Devany J, Falk MJ, Holt LJ, Murugan A, Gardel ML. 2023.. Epithelial tissue confinement inhibits cell growth and leads to volume-reducing divisions. . Dev. Cell 58::146276.e8
    [Crossref] [Google Scholar]
  24. 24.
    Devine D, Vijayakumar V, Wong SW, Lenzini S, Newman P, Shin JW. 2020.. Hydrogel micropost arrays with single post tunability to study cell volume and mechanotransduction. . Adv. Biosyst. 4::2000012
    [Crossref] [Google Scholar]
  25. 25.
    DuFort CC, Paszek MJ, Weaver VM. 2011.. Balancing forces: architectural control of mechanotransduction. . Nat. Rev. Mol. Cell Biol. 12::30819
    [Crossref] [Google Scholar]
  26. 26.
    Edgar BA. 2006.. How flies get their size: genetics meets physiology. . Nat. Rev. Genet. 7::90716
    [Crossref] [Google Scholar]
  27. 27.
    Edinger AL, Thompson CB. 2002.. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. . Mol. Biol. Cell 13::227688
    [Crossref] [Google Scholar]
  28. 28.
    Edwards A, Layton AT. 2017.. Cell volume regulation in the proximal tubule of rat kidney: proximal tubule cell volume regulation. . Bull. Math. Biol. 79::251233
    [Crossref] [Google Scholar]
  29. 29.
    Eling N, Morgan MD, Marioni JC. 2019.. Challenges in measuring and understanding biological noise. . Nat. Rev. Genet. 20::53648
    [Crossref] [Google Scholar]
  30. 30.
    Engler AJ, Sen S, Sweeney HL, Discher DE. 2006.. Matrix elasticity directs stem cell lineage specification. . Cell 126::67789
    [Crossref] [Google Scholar]
  31. 31.
    Evers TM, Holt LJ, Alberti S, Mashaghi A. 2021.. Reciprocal regulation of cellular mechanics and metabolism. . Nat. Metab. 3::45668
    [Crossref] [Google Scholar]
  32. 32.
    Franklin JL, Johnson EM Jr. 1998.. Control of neuronal size homeostasis by trophic factor–mediated coupling of protein degradation to protein synthesis. . J. Cell Biol. 142::131324
    [Crossref] [Google Scholar]
  33. 33.
    French A. 1992.. Mechanotransduction. . Annu. Rev. Physiol. 54::13552
    [Crossref] [Google Scholar]
  34. 34.
    Ginzberg MB, Kafri R, Kirschner M. 2015.. On being the right (cell) size. . Science 348::1245075
    [Crossref] [Google Scholar]
  35. 35.
    Gokhale RH, Shingleton AW. 2015.. Size control: the developmental physiology of body and organ size regulation. . Wiley Interdiscip. Rev. Dev. Biol. 4::33556
    [Crossref] [Google Scholar]
  36. 36.
    Gong Z, Szczesny SE, Caliari SR, Charrier EE, Chaudhuri O, et al. 2018.. Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. . PNAS 115::E268695
    [Google Scholar]
  37. 37.
    Gonzales DT, Yandrapalli N, Robinson T, Zechner C, Tang TD. 2022.. Cell-free gene expression dynamics in synthetic cell populations. . ACS Synth. Biol. 11::20515
    [Crossref] [Google Scholar]
  38. 38.
    Gregory TR. 2002.. A bird's-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves. . Evolution 56::12130
    [Google Scholar]
  39. 39.
    Guo M, Pegoraro AF, Mao A, Zhou EH, Arany PR, et al. 2017.. Cell volume change through water efflux impacts cell stiffness and stem cell fate. . PNAS 114::E861827
    [Google Scholar]
  40. 40.
    Gupta SK, Li Y, Guo M. 2019.. Anisotropic mechanics and dynamics of a living mammalian cytoplasm. . Soft Matter 15::19099
    [Crossref] [Google Scholar]
  41. 41.
    Han YL, Pegoraro AF, Li H, Li K, Yuan Y, et al. 2020.. Cell swelling, softening and invasion in a three-dimensional breast cancer model. . Nat. Phys. 16::1018
    [Crossref] [Google Scholar]
  42. 42.
    Hansen MM, Meijer LH, Spruijt E, Maas RJ, Rosquelles MV, et al. 2016.. Macromolecular crowding creates heterogeneous environments of gene expression in picolitre droplets. . Nat. Nanotechnol. 11::19197
    [Crossref] [Google Scholar]
  43. 43.
    Harris AR, Jreij P, Fletcher DA. 2018.. Mechanotransduction by the actin cytoskeleton: converting mechanical stimuli into biochemical signals. . Annu. Rev. Biophys. 47::61731
    [Crossref] [Google Scholar]
  44. 44.
    Hengstschläger M, Braun K, Soucek T, Miloloza A, Hengstschläger-Ottnad E. 1999.. Cyclin-dependent kinases at the G1-S transition of the mammalian cell cycle. . Mutat. Res. 436::19
    [Crossref] [Google Scholar]
  45. 45.
    Ilina O, Gritsenko PG, Syga S, Lippoldt J, La Porta CA, et al. 2020.. Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. . Nat. Cell Biol. 22::110315
    [Crossref] [Google Scholar]
  46. 46.
    Jiang H, Sun SX. 2013.. Cellular pressure and volume regulation and implications for cell mechanics. . Biophys. J. 105::60919
    [Crossref] [Google Scholar]
  47. 47.
    Johnston G, Pringle J, Hartwell LH. 1977.. Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. . Exp. Cell Res. 105::7998
    [Crossref] [Google Scholar]
  48. 48.
    Jorgensen P, Edgington NP, Schneider BL, Rupeš I, Tyers M, Futcher B. 2007.. The size of the nucleus increases as yeast cells grow. . Mol. Biol. Cell 18::352332
    [Crossref] [Google Scholar]
  49. 49.
    Kaern M, Elston TC, Blake WJ, Collins JJ. 2005.. Stochasticity in gene expression: from theories to phenotypes. . Nat. Rev. Genet. 6::45164
    [Crossref] [Google Scholar]
  50. 50.
    Karagöz E, Ülçay A, Turhan V. 2014.. Mean platelet volume and red blood cell distribution width in prognosis of chronic hepatitis B. . Wien. Klin. Wochenschr. 126::25051
    [Crossref] [Google Scholar]
  51. 51.
    Kilian KA, Bugarija B, Lahn BT, Mrksich M. 2010.. Geometric cues for directing the differentiation of mesenchymal stem cells. . PNAS 107::487277
    [Crossref] [Google Scholar]
  52. 52.
    Lamouille S, Derynck R. 2007.. Cell size and invasion in TGF-β–induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. . J. Cell Biol. 178::43751
    [Crossref] [Google Scholar]
  53. 53.
    Lee H-p, Gu L, Mooney DJ, Levenston ME, Chaudhuri O. 2017.. Mechanical confinement regulates cartilage matrix formation by chondrocytes. . Nat. Mater. 16::124351
    [Crossref] [Google Scholar]
  54. 54.
    Lee H-p, Stowers R, Chaudhuri O. 2019.. Volume expansion and TRPV4 activation regulate stem cell fate in three-dimensional microenvironments. . Nat. Commun. 10::529
    [Crossref] [Google Scholar]
  55. 55.
    Levy DL, Heald R. 2010.. Nuclear size is regulated by importin α and Ntf2 in Xenopus. . Cell 143::28898
    [Crossref] [Google Scholar]
  56. 56.
    Lew DJ, Kornbluth S. 1996.. Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. . Curr. Opin. Cell Biol. 8::795804
    [Crossref] [Google Scholar]
  57. 57.
    Li Y, Chen M, Hu J, Sheng R, Lin Q, et al. 2021.. Volumetric compression induces intracellular crowding to control intestinal organoid growth via Wnt/β-catenin signaling. . Cell Stem Cell 28::6378.e7
    [Crossref] [Google Scholar]
  58. 58.
    Li Y, Mao AS, Seo BR, Zhao X, Gupta SK, et al. 2020.. Compression-induced dedifferentiation of adipocytes promotes tumor progression. . Sci. Adv. 6::eaax5611
    [Crossref] [Google Scholar]
  59. 59.
    Li Y, Tang W, Guo M. 2021.. The cell as matter: connecting molecular biology to cellular functions. . Matter 4::186391
    [Crossref] [Google Scholar]
  60. 60.
    Lloyd AC. 2013.. The regulation of cell size. . Cell 154::1194205
    [Crossref] [Google Scholar]
  61. 61.
    Major LG, Holle AW, Young JL, Hepburn MS, Jeong K, et al. 2019.. Volume adaptation controls stem cell mechanotransduction. . ACS Appl. Mater. Interfaces 11::4552030
    [Crossref] [Google Scholar]
  62. 62.
    Marguerat S, Bähler J. 2012.. Coordinating genome expression with cell size. . Trends Genet. 28::56065
    [Crossref] [Google Scholar]
  63. 63.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. 2004.. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. . Dev. Cell 6::48395
    [Crossref] [Google Scholar]
  64. 64.
    McEvoy E, Han YL, Guo M, Shenoy VB. 2020.. Gap junctions amplify spatial variations in cell volume in proliferating tumor spheroids. . Nat. Commun. 11::6148
    [Crossref] [Google Scholar]
  65. 65.
    McManus ML, Churchwell KB, Strange K. 1995.. Regulation of cell volume in health and disease. . N. Engl. J. Med. 333::126067
    [Crossref] [Google Scholar]
  66. 66.
    Mitra A, Venkatachalapathy S, Ratna P, Wang Y, Jokhun DS, Shivashankar G. 2017.. Cell geometry dictates TNFα-induced genome response. . PNAS 114::E388291
    [Crossref] [Google Scholar]
  67. 67.
    Mohammed D, Charras G, Vercruysse E, Versaevel M, Lantoine J, et al. 2019.. Substrate area confinement is a key determinant of cell velocity in collective migration. . Nat. Phys. 15::85866
    [Crossref] [Google Scholar]
  68. 68.
    Montrose-Rafizadeh C, Guggino WB. 1990.. Cell volume regulation in the nephron. . Annu. Rev. Physiol. 52::76172
    [Crossref] [Google Scholar]
  69. 69.
    Mourão MA, Hakim JB, Schnell S. 2014.. Connecting the dots: the effects of macromolecular crowding on cell physiology. . Biophys. J. 107::276166
    [Crossref] [Google Scholar]
  70. 70.
    Nettesheim G, Nabti I, Murade CU, Jaffe GR, King SJ, Shubeita GT. 2020.. Macromolecular crowding acts as a physical regulator of intracellular transport. . Nat. Phys. 16::114451
    [Crossref] [Google Scholar]
  71. 71.
    Neumann FR, Nurse P. 2007.. Nuclear size control in fission yeast. . J. Cell Biol. 179::593600
    [Crossref] [Google Scholar]
  72. 72.
    Neurohr GE, Terry RL, Lengefeld J, Bonney M, Brittingham GP, et al. 2019.. Excessive cell growth causes cytoplasm dilution and contributes to senescence. . Cell 176::108397.e18
    [Crossref] [Google Scholar]
  73. 73.
    Norred SE, Caveney PM, Chauhan G, Collier LK, Collier CP, et al. 2018.. Macromolecular crowding induces spatial correlations that control gene expression bursting patterns. . ACS Synth. Biol. 7::125158
    [Crossref] [Google Scholar]
  74. 74.
    Nurse P, Thuriaux P. 1977.. Controls over the timing of DNA replication during the cell cycle of fission yeast. . Exp. Cell Res. 107::36575
    [Crossref] [Google Scholar]
  75. 75.
    Perez-Gonzalez NA, Rochman ND, Yao K, Tao J, Le M-TT, et al. 2019.. YAP and TAZ regulate cell volume. . J. Cell Biol. 218::347288
    [Crossref] [Google Scholar]
  76. 76.
    Price H, Sparrow A, Nauman AF. 1973.. Correlations between nuclear volume, cell volume and DNA content in meristematic cells of herbaceous angiosperms. . Experientia 29::102829
    [Crossref] [Google Scholar]
  77. 77.
    Qian H. 2012.. Cooperativity in cellular biochemical processes: noise-enhanced sensitivity, fluctuating enzyme, bistability with nonlinear feedback, and other mechanisms for sigmoidal responses. . Annu. Rev. Biophys. 41::179204
    [Crossref] [Google Scholar]
  78. 78.
    Rehberg M, Ritter J, Genzel Y, Flockerzi D, Reichl U. 2013.. The relation between growth phases, cell volume changes and metabolism of adherent cells during cultivation. . J. Biotechnol. 164::48999
    [Crossref] [Google Scholar]
  79. 79.
    Rodríguez-Fraticelli AE, Auzan M, Alonso MA, Bornens M, Martín-Belmonte F. 2012.. Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis. . J. Cell Biol. 198::101123
    [Crossref] [Google Scholar]
  80. 80.
    Roffay C, Molinard G, Kim K, Urbanska M, Andrade V, et al. 2021.. Passive coupling of membrane tension and cell volume during active response of cells to osmosis. . PNAS 118::e2103228118
    [Crossref] [Google Scholar]
  81. 81.
    Sang D, Shu T, Pantoja CF, de Opakua AI, Zweckstetter M, Holt LJ. 2022.. Condensed-phase signaling can expand kinase specificity and respond to macromolecular crowding. . Mol. Cell 82::3693711.e10
    [Crossref] [Google Scholar]
  82. 82.
    Scott KE, Fraley SI, Rangamani P. 2021.. A spatial model of YAP/TAZ signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes. . PNAS 118::e2021571118
    [Crossref] [Google Scholar]
  83. 83.
    Serrano JC, Gupta SK, Kamm RD, Guo M. 2021.. In pursuit of designing multicellular engineered living systems: a fluid mechanical perspective. . Annu. Rev. Fluid Mech. 53::41137
    [Crossref] [Google Scholar]
  84. 84.
    Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DI, et al. 1994.. Engineering cell shape and function. . Science 264::69698
    [Crossref] [Google Scholar]
  85. 85.
    Sokolova E, Spruijt E, Hansen MM, Dubuc E, Groen J, et al. 2013.. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. . PNAS 110::1169297
    [Crossref] [Google Scholar]
  86. 86.
    Strange K. 2004.. Cellular volume homeostasis. . Adv. Physiol. Educ. 28::15559
    [Crossref] [Google Scholar]
  87. 87.
    Stroka KM, Jiang H, Chen S-H, Tong Z, Wirtz D, et al. 2014.. Water permeation drives tumor cell migration in confined microenvironments. . Cell 157::61123
    [Crossref] [Google Scholar]
  88. 88.
    Sun H, Tu X, Baserga R. 2006.. A mechanism for cell size regulation by the insulin and insulin-like growth factor-I receptors. . Cancer Res. 66::111069
    [Crossref] [Google Scholar]
  89. 89.
    Sun Y, Chen CS, Fu J. 2012.. Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. . Annu. Rev. Biophys. 41::51942
    [Crossref] [Google Scholar]
  90. 90.
    Sveiczer A, Novak B, Mitchison J. 1996.. The size control of fission yeast revisited. . J. Cell Sci. 109::294757
    [Crossref] [Google Scholar]
  91. 91.
    Syková E, Nicholson C. 2008.. Diffusion in brain extracellular space. . Physiol. Rev. 88::1277340
    [Crossref] [Google Scholar]
  92. 92.
    Tabaka M, Kalwarczyk T, Szymanski J, Hou S, Holyst R. 2014.. The effect of macromolecular crowding on mobility of biomolecules, association kinetics, and gene expression in living cells. . Front. Physiol. 2::54
    [Google Scholar]
  93. 93.
    Tao J, Sun SX. 2015.. Active biochemical regulation of cell volume and a simple model of cell tension response. . Biophys. J. 109::154150
    [Crossref] [Google Scholar]
  94. 94.
    Toney GM. 2010.. Regulation of neuronal cell volume: from activation to inhibition to degeneration. . J. Physiol. 588::334748
    [Crossref] [Google Scholar]
  95. 95.
    Torrino S, Grasset EM, Audebert S, Belhadj I, Lacoux C, et al. 2021.. Mechano-induced cell metabolism promotes microtubule glutamylation to force metastasis. . Cell Metab. 33::134257.e10
    [Crossref] [Google Scholar]
  96. 96.
    Venkova L, Vishen AS, Lembo S, Srivastava N, Duchamp B, et al. 2022.. A mechano-osmotic feedback couples cell volume to the rate of cell deformation. . eLife 11::e72381
    [Crossref] [Google Scholar]
  97. 97.
    Vibhute MA, Schaap MH, Maas RJ, Nelissen FH, Spruijt E, et al. 2020.. Transcription and translation in cytomimetic protocells perform most efficiently at distinct macromolecular crowding conditions. . ACS Synth. Biol. 9::2797807
    [Crossref] [Google Scholar]
  98. 98.
    von Erlach TC, Bertazzo S, Wozniak MA, Horejs C-M, Maynard SA, et al. 2018.. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate. . Nat. Mater. 17::23742
    [Crossref] [Google Scholar]
  99. 99.
    Walter H, Brooks DE. 1995.. Phase separation in cytoplasm, due to macromolecular crowding, is the basis for microcompartmentation. . FEBS Lett. 361::13539
    [Crossref] [Google Scholar]
  100. 100.
    Wang M, Chai N, Sha B, Guo M, Zhuang J, et al. 2018.. The effect of substrate stiffness on cancer cell volume homeostasis. . J. Cell. Physiol. 233::141423
    [Crossref] [Google Scholar]
  101. 101.
    Watt FM, Huck WT. 2013.. Role of the extracellular matrix in regulating stem cell fate. . Nat. Rev. Mol. Cell Biol. 14::46773
    [Crossref] [Google Scholar]
  102. 102.
    Wilson CS, Mongin AA. 2018.. Cell volume control in healthy brain and neuropathologies. . Curr. Top. Membr. 81::385455
    [Crossref] [Google Scholar]
  103. 103.
    Wu Y, Pegoraro AF, Weitz DA, Janmey P, Sun SX. 2022.. The correlation between cell and nucleus size is explained by an eukaryotic cell growth model. . PLOS Comput. Biol. 18::e1009400
    [Crossref] [Google Scholar]
  104. 104.
    Xie J, Bao M, Hu X, Koopman WJ, Huck WT. 2021.. Energy expenditure during cell spreading influences the cellular response to matrix stiffness. . Biomaterials 267::120494
    [Crossref] [Google Scholar]
  105. 105.
    Xie K, Yang Y, Jiang H. 2018.. Controlling cellular volume via mechanical and physical properties of substrate. . Biophys. J. 114::67587
    [Crossref] [Google Scholar]
  106. 106.
    Xie S, Skotheim JM. 2020.. A G1 sizer coordinates growth and division in the mouse epidermis. . Curr. Biol. 30::91624.e2
    [Crossref] [Google Scholar]
  107. 107.
    Yamamoto S, Kita S, Iyoda T, Yamada T, Iwamoto T. 2011.. New molecular mechanisms for cardiovascular disease: cardiac hypertrophy and cell-volume regulation. . J. Pharmacol. Sci. 116::34349
    [Crossref] [Google Scholar]
  108. 108.
    Zatulovskiy E, Skotheim JM. 2020.. On the molecular mechanisms regulating animal cell size homeostasis. . Trends Genet. 36::36072
    [Crossref] [Google Scholar]
  109. 109.
    Zhao B, Tumaneng K, Guan K-L. 2011.. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. . Nat. Cell Biol. 13::87783
    [Crossref] [Google Scholar]
  110. 110.
    Zhu M, Cornwall-Scoones J, Wang P, Handford CE, Na J, et al. 2020.. Developmental clock and mechanism of de novo polarization of the mouse embryo. . Science 370::eabd2703
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-030822-035656
Loading
/content/journals/10.1146/annurev-biophys-030822-035656
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error