1932

Abstract

The ability of enzymes to harness free-radical chemistry allows for some of the most amazing transformations in nature, including reduction of ribonucleotides and carbon skeleton rearrangements. Enzyme cofactors involved in this chemistry can be large and complex, such as adenosylcobalamin (coenzyme B), simpler, such as -adenosylmethionine and an iron-sulfur cluster (i.e., poor man's B), or very small, such as one nonheme iron atom coordinated by protein ligands. Although the chemistry catalyzed by these enzyme-bound cofactors is unparalleled, it does come at a price. The enzyme must be able to control these radical reactions, preventing unwanted chemistry and protecting the enzyme active site from damage. Here, we consider a set of radical folds: the (β/α) or TIM barrel, combined with a Rossmann domain for coenzyme B-dependent chemistry. Using specific enzyme examples, we consider how nature employs the common TIM barrel fold and its Rossmann domain partner for radical-based chemistry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-050511-102225
2012-06-09
2024-06-20
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-biophys-050511-102225
Loading
/content/journals/10.1146/annurev-biophys-050511-102225
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error