1932

Abstract

Many proteins can be split into fragments that spontaneously reassemble, without covalent linkage, into a functional protein. For split green fluorescent proteins (GFPs), fragment reassembly leads to a fluorescent readout, which has been widely used to investigate protein–protein interactions. We review the scope and limitations of this approach as well as other diverse applications of split GFPs as versatile sensors, molecular glues, optogenetic tools, and platforms for photophysical studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-051013-022846
2019-05-06
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/biophys/48/1/annurev-biophys-051013-022846.html?itemId=/content/journals/10.1146/annurev-biophys-051013-022846&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acharya A, Bogdanov AM, Grigorenko BL, Bravaya KB, Nemukhin AV et al. 2017. Photoinduced chemistry in fluorescent proteins: curse or blessing?. Chem. Rev. 117:758–95
    [Google Scholar]
  2. 2.
    Avitabile E, Forghieri C, Campadelli-Fiume G 2007. Complexes between herpes simplex virus glycoproteins gD, gB, and gH detected in cells by complementation of split enhanced green fluorescent protein. J. Virol. 81:11532–37
    [Google Scholar]
  3. 3.
    Bae C, Suchyna TM, Ziegler L, Sachs F, Gottlieb PA 2016. Human PIEZO1 ion channel functions as a split protein. PLOS ONE 11:e0151289
    [Google Scholar]
  4. 4.
    Baird GS, Zacharias DA, Tsien RY 1999. Circular permutation and receptor insertion within green fluorescent proteins. PNAS 96:11241–46
    [Google Scholar]
  5. 5.
    Baldwin RL 2009. In memoriam: reflections on Fred Richards (1925–2009). Protein Sci 18:682–85
    [Google Scholar]
  6. 6.
    Bale SS, Kwon SJ, Shah DA, Kane RS, Dordick JS 2010. A GFP complementation system for monitoring and directing nanomaterial mediated protein delivery to human cellular organelles. Biotechnol. Bioeng. 107:1040–47
    [Google Scholar]
  7. 7.
    Barondeau DP, Putnam CD, Kassmann CJ, Tainer JA, Getzoff ED 2003. Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. PNAS 100:12111–16
    [Google Scholar]
  8. 8.
    Bertolaet BL, Knowles JR 1995. Complementation of fragments of triosephosphate isomerase defined by exon boundaries. Biochemistry 34:5736–43
    [Google Scholar]
  9. 9.
    Blakeley BD, Chapman AM, McNaughton BR 2012. Split-superpositive GFP reassembly is a fast, efficient, and robust method for detecting protein–protein interactions in vivo. Mol. Biosyst. 8:2036–40
    [Google Scholar]
  10. 10.
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:1263–68
    [Google Scholar]
  11. 11.
    Cabantous S, Nguyen HB, Pédelacq JD, Koraichi F, Chaudhary A et al. 2013. A new protein-protein interaction sensor based on tripartite split-GFP association. Sci. Rep. 3:2854
    [Google Scholar]
  12. 12.
    Cabantous S, Rogers Y, Terwilliger TC, Waldo GS 2008. New molecular reporters for rapid protein folding assays. PLOS ONE 3:e2387
    [Google Scholar]
  13. 13.
    Cabantous S, Terwilliger TC, Waldo GS 2005. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat. Biotechnol. 23:102–7
    [Google Scholar]
  14. 14.
    Cabantous S, Waldo GS 2006. In vivo and in vitro protein solubility assays using split GFP. Nat. Methods 3:845–54
    [Google Scholar]
  15. 15.
    Callahan BP, Stanger MJ, Belfort M 2010. Protease activation of split green fluorescent protein. ChemBioChem 11:2259–63
    [Google Scholar]
  16. 16.
    Chattoraj M, King BA, Bublitz GU, Boxer SG 1996. Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. PNAS 93:8362–67
    [Google Scholar]
  17. 17.
    Chen M, Liu S, Li W, Zhang Z, Zhang X et al. 2016. Three-fragment fluorescence complementation coupled with photoactivated localization microscopy for nanoscale imaging of ternary complexes. ACS Nano 10:8482–90
    [Google Scholar]
  18. 18.
    Christie JM, Gawthorne J, Young G, Fraser NJ, Roe AJ 2012. LOV to BLUF: flavoprotein contributions to the optogenetic toolkit. Mol. Plant 5:533–44
    [Google Scholar]
  19. 19.
    Chu J, Zhang Z, Zheng Y, Yang J, Qin L et al. 2009. A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions. Biosens. Bioelectron. 25:234–39
    [Google Scholar]
  20. 20.
    Chun W, Waldo GS, Johnson GV 2007. Split GFP complementation assay: a novel approach to quantitatively measure aggregation of tau in situ: effects of GSK3β activation and caspase 3 cleavage. J. Neurochem. 103:2529–39
    [Google Scholar]
  21. 21.
    Cieri D, Vicario M, Giacomello M, Vallese F, Filadi R et al. 2018. SPLICS: a split green fluorescent protein-based contact site sensor for narrow and wide heterotypic organelle juxtaposition. Cell Death Differ 25:1131–45
    [Google Scholar]
  22. 22.
    Craggs TD 2009. Green fluorescent protein: structure, folding and chromophore maturation. Chem. Soc. Rev. 38:2865–75
    [Google Scholar]
  23. 23.
    Cubitt AB, Woollenweber LA, Heim R 1999. Understanding structure-function relationships in the Aequoreavictoria green fluorescent protein. Methods in Cell Biology 58 KF Sullivan, SA Kay 19–30 San Diego, CA: Academic
    [Google Scholar]
  24. 24.
    Demidov VV, Dokholyan NV, Witte-Hoffmann C, Chalasani P, Yiu H-W et al. 2006. Fast complementation of split fluorescent protein triggered by DNA hybridization. PNAS 103:2052–56
    [Google Scholar]
  25. 25.
    Deng A, Boxer SG 2018. Structural insight into the photochemistry of split green fluorescent proteins: a unique role for a His-tag. J. Am. Chem. Soc. 140:375–81
    [Google Scholar]
  26. 26.
    Do K, Boxer SG 2011. Thermodynamics, kinetics, and photochemistry of β-strand association and dissociation in a split-GFP system. J. Am. Chem. Soc. 133:18078–81
    [Google Scholar]
  27. 27.
    Do K, Boxer SG 2013. GFP variants with alternative β-strands and their application as light-driven protease sensors: a tale of two tails. J. Am. Chem. Soc. 135:10226–29
    [Google Scholar]
  28. 28.
    Enterina JR, Wu L, Campbell RE 2015. Emerging fluorescent protein technologies. Curr. Opin. Chem. Biol. 27:10–17
    [Google Scholar]
  29. 29.
    Evdokimov AG, Pokross ME, Egorov NS, Zaraisky AG, Yampolsky IV et al. 2006. Structural basis for the fast maturation of Arthropoda green fluorescent protein. EMBO Rep 7:1006–12
    [Google Scholar]
  30. 30.
    Fan J-Y, Cui Z-Q, Wei H-P, Zhang Z-P, Zhou Y-F et al. 2008. Split mCherry as a new red bimolecular fluorescence complementation system for visualizing protein–protein interactions in living cells. Biochem. Biophys. Res. Commun. 367:47–53
    [Google Scholar]
  31. 31.
    Fafarman AT, Boxer SG 2010. Nitrile bonds as infrared probes of electrostatics in ribonuclease S. J. Phys. Chem. B 114:13536–44
    [Google Scholar]
  32. 32.
    Feinberg EH, Vanhoven MK, Bendesky A, Wang G, Fetter RD et al. 2008. GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57:353–63
    [Google Scholar]
  33. 33.
    Feng S, Sekine S, Pessino V, Li H, Leonetti MD, Huang B 2017. Improved split fluorescent proteins for endogenous protein labeling. Nat. Commun. 8:370
    [Google Scholar]
  34. 34.
    Filonov GS, Verkhusha VV 2013. A near-infrared BiFC reporter for in vivo imaging of protein-protein interactions. Chem. Biol. 20:1078–86
    [Google Scholar]
  35. 35.
    Fujii Y, Yoshimura A, Kodama Y 2018. A novel orange-colored bimolecular fluorescence complementation (BiFC) assay using monomeric Kusabira-Orange protein. BioTechniques 64:153–61
    [Google Scholar]
  36. 36.
    Galarneau A, Primeau M, Trudeau L-E, Michnick SW 2002. β-Lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein–protein interactions. Nat. Biotechnol. 20:619–22
    [Google Scholar]
  37. 37.
    de Prat Gay G, Ruiz-Sanz J, Davis B, Fersht AR 1994. The structure of the transition state for the association of two fragments of the barley chymotrypsin inhibitor 2 to generate native-like protein: implications for mechanisms of protein folding. PNAS 91:10943–46
    [Google Scholar]
  38. 38.
    Ghosh I, Hamilton AD, Regan L 2000. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 122:5658–59
    [Google Scholar]
  39. 39.
    Han Y, Wang S, Zhang Z, Ma X, Li W et al. 2014. In vivo imaging of protein–protein and RNA–protein interactions using novel far-red fluorescence complementation systems. Nucleic Acids Res 42:e103
    [Google Scholar]
  40. 40.
    Heim R, Prasher DC, Tsien RY 1994. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. PNAS 91:12501–4
    [Google Scholar]
  41. 41.
    Hertel F, Mo GCH, Duwé S, Dedecker P, Zhang J 2016. RefSOFI for mapping nanoscale organization of protein-protein interactions in living cells. Cell Rep 14:390–400
    [Google Scholar]
  42. 42.
    Horstman A, Tonaco IA, Boutilier K, Immink RG 2014. A cautionary note on the use of split-YFP/BiFC in plant protein-protein interaction studies. Int. J. Mol. Sci. 15:9628–43
    [Google Scholar]
  43. 43.
    Hu CD, Chinenov Y, Kerppola TK 2002. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9:789–98
    [Google Scholar]
  44. 44.
    Hu CD, Kerppola TK 2003. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21:539–45
    [Google Scholar]
  45. 45.
    Huang Y-M, Banerjee S, Crone DE, Schenkelberg CD, Pitman DJ et al. 2015. Toward computationally designed self-reporting biosensors using leave-one-out green fluorescent protein. Biochemistry 54:6263–73
    [Google Scholar]
  46. 46.
    Huang Y-M, Bystroff C 2009. Complementation and reconstitution of fluorescence from circularly permuted and truncated green fluorescent protein. Biochemistry 48:929–40
    [Google Scholar]
  47. 47.
    Jach G, Pesch M, Richter K, Frings S, Uhrig JF 2006. An improved mRFP1 adds red to bimolecular fluorescence complementation. Nat. Methods 3:597–600
    [Google Scholar]
  48. 48.
    Jackrel ME, Cortajarena AL, Liu TY, Regan L 2010. Screening libraries to identify proteins with desired binding activities using a split-GFP reassembly assay. ACS Chem. Biol. 5:553–62
    [Google Scholar]
  49. 49.
    Jiang WX, Dong X, Jiang J, Yang YH, Yang J et al. 2016. Specific cell surface labeling of GPCRs using split GFP. Sci. Rep. 6:20568
    [Google Scholar]
  50. 50.
    Johnsson N, Varshavsky A 1994. Split ubiquitin as a sensor of protein interactions in vivo. PNAS 91:10340–44
    [Google Scholar]
  51. 51.
    Kaddoum L, Magdeleine E, Waldo GS, Joly E, Cabantous S 2010. One-step split GFP staining for sensitive protein detection and localization in mammalian cells. BioTechniques 49:727–28
    [Google Scholar]
  52. 52.
    Kakimoto Y, Tashiro S, Kojima R, Morozumi Y, Endo T, Tamura Y 2018. Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system. Sci. Rep. 8:6175
    [Google Scholar]
  53. 53.
    Kamiyama D, Sekine S, Barsi-Rhyne B, Hu J, Chen B et al. 2016. Versatile protein tagging in cells with split fluorescent protein. Nat. Commun. 7:11046
    [Google Scholar]
  54. 54.
    Keem JO, Lee IH, Kim SY, Jung Y, Chung BH 2011. Splitting and self-assembling of far-red fluorescent protein with an engineered beta strand peptide: application for alpha-synuclein imaging in mammalian cells. Biomaterials 32:9051–58
    [Google Scholar]
  55. 55.
    Kellermann SJ, Rath AK, Rentmeister A 2013. Tetramolecular fluorescence complementation for detection of specific RNAs in vitro. ChemBioChem 14:200–4
    [Google Scholar]
  56. 56.
    Kellermann SJ, Rentmeister A 2016. A genetically encodable system for sequence-specific detection of RNAs in two colors. ChemBioChem 17:895–99
    [Google Scholar]
  57. 57.
    Kellermann SJ, Rentmeister A 2017. A FACS-based screening strategy to assess sequence-specific RNA-binding of Pumilio protein variants in E. coli. Biol. . Chem 398:69–75
    [Google Scholar]
  58. 58.
    Kent KP, Boxer SG 2011. Light-activated reassembly of split green fluorescent protein. J. Am. Chem. Soc. 133:4046–52
    [Google Scholar]
  59. 59.
    Kent KP, Childs W, Boxer SG 2008. Deconstructing green fluorescent protein. J. Am. Chem. Soc. 130:9664–65
    [Google Scholar]
  60. 60.
    Kent KP, Oltrogge LM, Boxer SG 2009. Synthetic control of green fluorescent protein. J. Am. Chem. Soc. 131:15988–89
    [Google Scholar]
  61. 61.
    Kerppola TK 2006. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat. Protoc. 1:1278–86
    [Google Scholar]
  62. 62.
    Kerppola TK 2006. Visualization of molecular interactions by fluorescence complementation. Nat. Rev. Mol. Cell Biol. 7:449–56
    [Google Scholar]
  63. 63.
    Kerppola TK 2009. Visualization of molecular interactions using bimolecular fluorescence complementation analysis: characteristics of protein fragment complementation. Chem. Soc. Rev. 38:2876–86
    [Google Scholar]
  64. 64.
    Kikuchi N, Kolpashchikov DM 2016. Split Spinach aptamer for highly selective recognition of DNA and RNA at ambient temperatures. ChemBioChem 17:1589–92
    [Google Scholar]
  65. 65.
    Kim YE, Kim Y-N, Kim JA, Kim HM, Jung Y 2015. Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency. Nat. Commun. 6:7134
    [Google Scholar]
  66. 66.
    Knapp A, Ripphahn M, Volkenborn K, Skoczinski P, Jaeger KE 2017. Activity-independent screening of secreted proteins using split GFP. J. Biotechnol. 258:110–16
    [Google Scholar]
  67. 67.
    Kodama Y, Hu CD 2012. Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. BioTechniques 53:285–98
    [Google Scholar]
  68. 68.
    Kodama Y, Wada M 2009. Simultaneous visualization of two protein complexes in a single plant cell using multicolor fluorescence complementation analysis. Plant Mol. Biol. 70:211–17
    [Google Scholar]
  69. 69.
    Kojima T, Karasawa S, Miyawaki A, Tsumuraya T, Fujii I 2011. Novel screening system for protein–protein interactions by bimolecular fluorescence complementation in Saccharomycescerevisiae. J. Biosci. Bioeng 111:397–401
    [Google Scholar]
  70. 70.
    Köker T, Fernandez A, Pinaud F 2018. Characterization of split fluorescent protein variants and quantitative analyses of their self-assembly process. Sci. Rep. 8:5344
    [Google Scholar]
  71. 71.
    Köker T, Tang N, Tian C, Zhang W, Wang X et al. 2018. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds. Nat. Commun. 9:607
    [Google Scholar]
  72. 72.
    Koraïchi F, Gence R, Bouchenot C, Grosjean S, Lajoie-Mazenc I et al. 2018. High-content tripartite split-GFP cell-based assays to screen for modulators of small GTPase activation. J. Cell Sci. 131:jcs210419
    [Google Scholar]
  73. 73.
    Kost LA, Putintseva EV, Pereverzeva AR, Chudakov DM, Lukyanov KA, Bogdanov AM 2017. Bimolecular fluorescence complementation based on the red fluorescent protein FusionRed. Russ. J. Bioorg. Chem. 42:619–23
    [Google Scholar]
  74. 74.
    Kudla J, Bock R 2016. Lighting the way to protein-protein interactions: recommendations on best practices for bimolecular fluorescence complementation analyses. Plant Cell 28:1002–8
    [Google Scholar]
  75. 75.
    Lee YR, Park J-H, Hahm S-H, Kang L-W, Chung JH et al. 2010. Development of bimolecular fluorescence complementation using Dronpa for visualization of protein–protein interactions in cells. Mol. Imaging Biol. 12:468–78
    [Google Scholar]
  76. 76.
    Leibly DJ, Arbing MA, Pashkov I, DeVore N, Waldo GS et al. 2015. A suite of engineered GFP molecules for oligomeric scaffolding. Structure 23:1754–68
    [Google Scholar]
  77. 77.
    Leonetti MD, Sekine S, Kamiyama D, Weissman JS, Huang B 2016. A scalable strategy for high-throughput GFP tagging of endogenous human proteins. PNAS 113:E3501–8
    [Google Scholar]
  78. 78.
    Lin CY, Both J, Do K, Boxer SG 2017. Mechanism and bottlenecks in strand photodissociation of split green fluorescent proteins (GFPs). PNAS 114:E2146–55
    [Google Scholar]
  79. 79.
    Lindman S, Hernandez-Garcia A, Szczepankiewicz O, Frohm B, Linse S 2010. In vivo protein stabilization based on fragment complementation and a split GFP system. PNAS 107:19826–31
    [Google Scholar]
  80. 80.
    Liu Z, Xing D, Su QP, Zhu Y, Zhang J et al. 2014. Super-resolution imaging and tracking of protein–protein interactions in sub-diffraction cellular space. Nat. Commun. 5:4443
    [Google Scholar]
  81. 81.
    Luker KE, Smith MCP, Luker GD, Gammon ST, Piwnica-Worms H, Piwnica-Worms D 2004. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. PNAS 101:12288–93
    [Google Scholar]
  82. 82.
    Magliery TJ, Wilson CGM, Pan W, Mishler D, Ghosh I et al. 2005. Detecting protein–protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J. Am. Chem. Soc. 127:146–57
    [Google Scholar]
  83. 83.
    Martell JD, Yamagata M, Deerinck TJ, Phan S, Kwa CG et al. 2016. A split horseradish peroxidase for the detection of intercellular protein–protein interactions and sensitive visualization of synapses. Nat. Biotechnol. 34:774–80
    [Google Scholar]
  84. 84.
    Massoud TF, Paulmurugan R, Gambhir SS 2010. A molecularly engineered split reporter for imaging protein-protein interactions with positron emission tomography. Nat. Med. 16:921–26
    [Google Scholar]
  85. 85.
    Michnick SW, Ear PH, Manderson EN, Remy I, Stefan E 2007. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat. Rev. Drug Discov. 6:569–82
    [Google Scholar]
  86. 86.
    Milech N, Longville BAC, Cunningham PT, Scobie MN, Bogdawa HM et al. 2015. GFP-complementation assay to detect functional CPP and protein delivery into living cells. Sci. Rep. 5:18329
    [Google Scholar]
  87. 87.
    Möglich A, Moffat K 2010. Engineered photoreceptors as novel optogenetic tools. Photochem. Photobiol. Sci. 9:1286–300
    [Google Scholar]
  88. 88.
    Morell M, Espargaró A, Avilés FX, Ventura S 2007. Detection of transient protein–protein interactions by bimolecular fluorescence complementation: the Abl-SH3 case. Proteomics 7:1023–36
    [Google Scholar]
  89. 89.
    Morell M, Ventura S, Avilés FX 2009. Protein complementation assays: approaches for the in vivo analysis of protein interactions. FEBS Lett 583:1684–91
    [Google Scholar]
  90. 90.
    Müller J, Johnsson N 2008. Split-ubiquitin and the split-protein sensors: chessman for the endgame. ChemBioChem 9:2029–38
    [Google Scholar]
  91. 91.
    Nguyen HB, Hung LW, Yeates TO, Terwilliger TC, Waldo GS 2013. Split green fluorescent protein as a modular binding partner for protein crystallization. Acta Crystallogr. Sect. D Biol. Crystallogr. 69:2513–23
    [Google Scholar]
  92. 92.
    Nickerson A, Huang T, Lin L-J, Nan X 2014. Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM) for nanoscale imaging of protein-protein interactions in cells. PLOS ONE 9:e100589
    [Google Scholar]
  93. 93.
    Nienhaus K, Nienhaus GU 2016. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family. J. Phys. Condens. Matter 28:443001
    [Google Scholar]
  94. 94.
    Ohashi K, Kiuchi T, Shoji K, Sampei K, Mizuno K 2012. Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments. BioTechniques 52:45–50
    [Google Scholar]
  95. 95.
    Oltrogge LM 2015. Using semi-synthetic fluorescent proteins to understand proton transfer PhD Thesis, Stanford Univ Stanford, CA:
    [Google Scholar]
  96. 96.
    Oltrogge LM, Wang Q, Boxer SG 2014. Ground-state proton transfer kinetics in green fluorescent protein. Biochemistry 53:5947–57
    [Google Scholar]
  97. 97.
    Ottmann C, Weyand M, Wolf A, Kuhlmann J, Ottmann C 2009. Applicability of superfolder YFP bimolecular fluorescence complementation in vitro. Biol. Chem. 390:81–90
    [Google Scholar]
  98. 98.
    Ozawa T, Natori Y, Sato M, Umezawa Y 2007. Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat. Methods 4:413–19
    [Google Scholar]
  99. 99.
    Paige JS, Wu KY, Jaffrey SR 2011. RNA mimics of green fluorescent protein. Science 333:642–46
    [Google Scholar]
  100. 100.
    Pakhomov AA, Martynov VI 2008. GFP family: structural insights into spectral tuning. Chem. Biol. 15:755–64
    [Google Scholar]
  101. 101.
    Park E, Lee H-Y, Woo J, Choi D, Dinesh-Kumar SP 2017. Spatiotemporal monitoring of Pseudomonassyringae effectors via type III secretion using split fluorescent protein fragments. Plant Cell 29:1571–84
    [Google Scholar]
  102. 102.
    Park K-H, Berrier C, Martinac B, Ghazi A 2004. Purification and functional reconstitution of N- and C-halves of the MscL channel. Biophys. J. 86:2129–36
    [Google Scholar]
  103. 103.
    Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS 2006. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24:79–88
    [Google Scholar]
  104. 104.
    Pelletier JN, Campbell-Valois F-X, Michnick SW 1998. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. PNAS 95:12141–46
    [Google Scholar]
  105. 105.
    Pinaud F, Dahan M 2011. Targeting and imaging single biomolecules in living cells by complementation-activated light microscopy with split-fluorescent proteins. PNAS 108:E201–10
    [Google Scholar]
  106. 106.
    Pu J, Zinkus-Boltz J, Dickinson BC 2017. Evolution of a split RNA polymerase as a versatile biosensor platform. Nat. Chem. Biol. 13:432–38
    [Google Scholar]
  107. 107.
    Pudasaini A, El-Arab KK, Zoltowski BD 2015. LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Front. Mol. Biosci. 2:18
    [Google Scholar]
  108. 108.
    Rackham O, Brown CM 2004. Visualization of RNA–protein interactions in living cells: FMRP and IMP1 interact on mRNAs. EMBO J 23:3346–55
    [Google Scholar]
  109. 109.
    Reid BG, Flynn GC 1997. Chromophore formation in green fluorescent protein. Biochemistry 36:6786–91
    [Google Scholar]
  110. 110.
    Remington SJ 2006. Fluorescent proteins: maturation, photochemistry and photophysics. Curr. Opin. Struct. Biol. 16:714–21
    [Google Scholar]
  111. 111.
    Remington SJ 2011. Green fluorescent protein: a perspective. Protein Sci 20:1509–19
    [Google Scholar]
  112. 112.
    Remy I, Michnick SW 2004. A cDNA library functional screening strategy based on fluorescent protein complementation assays to identify novel components of signaling pathways. Methods 32:381–88
    [Google Scholar]
  113. 113.
    Richards FM 1957. On the enzymatic activity of subtilisin-modified ribonuclease. PNAS 44:162–66
    [Google Scholar]
  114. 114.
    Robida AM, Kerppola TK 2009. Bimolecular fluorescence complementation analysis of inducible protein interactions: effects of factors affecting protein folding on fluorescent protein fragment association. J. Mol. Biol. 394:391–409
    [Google Scholar]
  115. 115.
    Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A et al. 2017. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem. Sci. 42:111–29
    [Google Scholar]
  116. 116.
    Rogers TA, Andrews GE, Jaeger L, Grabow WW 2015. Fluorescent monitoring of RNA assembly and processing using the split-spinach aptamer. ACS Synth. Biol. 4:162–66
    [Google Scholar]
  117. 117.
    Rosenow MA, Huffman HA, Phail ME, Wachter RM 2004. The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Biochemistry 43:4464–72
    [Google Scholar]
  118. 118.
    Rossi F, Charlton CA, Blau HM 1997. Monitoring protein–protein interactions in intact eukaryotic cells by β-galactosidase complementation. PNAS 94:8405–10
    [Google Scholar]
  119. 119.
    Sakamoto S, Terauchi M, Hugo A, Kim T, Araki Y, Wada T 2013. Creation of a caspase-3 sensing system using a combination of split-GFP and split-intein. Chem. Commun. 49:10323–25
    [Google Scholar]
  120. 120.
    Saldaña C, Naranjo D, Coria R, Peña A, Vaca L 2002. Splitting the two pore domains from TOK1 results in two cationic channels with novel functional properties. J. Biol. Chem. 277:4797–805
    [Google Scholar]
  121. 121.
    Santos-Aberturas J, Dörr M, Waldo GS, Bornscheuer UT 2015. In-depth high-throughput screening of protein engineering libraries by split-GFP direct crude cell extract data normalization. Chem. Biol. 22:1406–14
    [Google Scholar]
  122. 122.
    Sarkar M, Magliery TJ 2008. Re-engineering a split-GFP reassembly screen to examine RING-domain interactions between BARD1 and BRCA1 mutants observed in cancer patients. Mol. Biosyst. 4:599–605
    [Google Scholar]
  123. 123.
    Schmidt S, Adjobo-Hermans MJ, Wallbrecher R, Verdurmen WP, Bovée-Geurts PH et al. 2015. Detecting cytosolic peptide delivery with the GFP complementation assay in the low micromolar range. Angew. Chem. Int. Ed. 54:15105–8
    [Google Scholar]
  124. 124.
    Shaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ et al. 2013. A bright monomeric green fluorescent protein derived from Branchiostomalanceolatum. Nat. . Methods 10:407–9
    [Google Scholar]
  125. 125.
    Shaner NC, Patterson GH, Davidson MW 2007. Advances in fluorescent protein technology. J. Cell Sci. 120:4247–60
    [Google Scholar]
  126. 126.
    Shcherbakova DM, Baloban M, Emelyanov AV, Brenowitz M, Guo P, Verkhusha VV 2016. Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nat. Commun. 7:12405
    [Google Scholar]
  127. 127.
    Shekhawat SS, Ghosh I 2011. Split-protein systems: beyond binary protein–protein interactions. Curr. Opin. Chem. Biol. 15:789–97
    [Google Scholar]
  128. 128.
    Shen Y, Lai T, Campbell RE 2015. Red fluorescent proteins (RFPs) and RFP-based biosensors for neuronal imaging applications. Neurophotonics 2:031203
    [Google Scholar]
  129. 129.
    Shiba K, Shimmel P 1992. Functional assembly of a randomly cleaved protein. PNAS 89:1880–84
    [Google Scholar]
  130. 130.
    Shyu YJ, Hu CD 2008. Fluorescence complementation: an emerging tool for biological research. Trends Biotechnol 26:622–30
    [Google Scholar]
  131. 131.
    Shyu YJ, Liu H, Deng X, Hu CD 2006. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. BioTechniques 40:61–66
    [Google Scholar]
  132. 132.
    Taniuchi H, Anfinsen CB, Sodja A 1967. Nuclease-T: an active derivative of staphylococcal nuclease composed of two noncovalently bonded peptide fragments. PNAS 58:1235–42
    [Google Scholar]
  133. 133.
    Tchekanda E, Sivanesan D, Michnick SW 2014. An infrared reporter to detect spatiotemporal dynamics of protein-protein interactions. Nat. Methods 11:641–44
    [Google Scholar]
  134. 134.
    Thomas EE, Pandey N, Knudsen S, Ball ZT, Silberg JJ 2017. Programming post-translational control over the metabolic labeling of cellular proteins with a noncanonical amino acid. ACS Synth. Biol. 6:1572–83
    [Google Scholar]
  135. 135.
    Tilsner J, Linnik O, Christensen NM, Bell K, Roberts IM et al. 2009. Live-cell imaging of viral RNA genomes using a Pumilio-based reporter. Plant J 57:758–70
    [Google Scholar]
  136. 136.
    Tischer D, Weiner OD 2014. Illuminating cell signalling with optogenetic tools. Nat. Rev. Mol. Cell Biol 15:551–58
    [Google Scholar]
  137. 137.
    To TL, Schepis A, Ruiz-Gonzalez R, Zhang Q, Yu D et al. 2016. Rational design of a GFP-based fluorogenic caspase reporter for imaging apoptosis in vivo. Cell Chem. Biol. 23:875–82
    [Google Scholar]
  138. 138.
    To TL, Zhang Q, Shu X 2016. Structure-guided design of a reversible fluorogenic reporter of protein-protein interactions. Protein Sci 25:748–53
    [Google Scholar]
  139. 139.
    Topell S, Hennecke J, Glockshuber R 1999. Circularly permuted variants of the green fluorescent protein. FEBS Lett 457:283–89
    [Google Scholar]
  140. 140.
    Tsien RY 1998. The green fluorescent protein. Annu. Rev. Biochem. 67:509–44
    [Google Scholar]
  141. 141.
    Ueyama T, Kusakabe T, Karasawa S, Kawasaki T, Shimizu A et al. 2008. Sequential binding of cytosolic phox complex to phagosomes through regulated adaptor proteins: evaluation using the novel monomeric Kusabira-Green system and live imaging of phagocytosis. J. Immunol. 181:629–40
    [Google Scholar]
  142. 142.
    Ullmann A, Jacob F, Monod J 1967. Characterization by in vitro complementation of a peptide corresponding to an operator-proximal segment of the β-galactosidase structural gene of Escherichia coli. J. Mol. Biol 24:339–43
    [Google Scholar]
  143. 143.
    Valencia-Burton M, McCullough RM, Cantor CR, Broude NE 2007. RNA visualization in live bacterial cells using fluorescent protein complementation. Nat. Methods 4:421–27
    [Google Scholar]
  144. 144.
    Vidi P-A, Watts VJ 2009. Fluorescent and bioluminescent protein-fragment complementation assays in the study of G protein-coupled receptor oligomerization and signaling. Mol. Pharmacol. 75:733–39
    [Google Scholar]
  145. 145.
    Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J 2008. Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J 56:505–16
    [Google Scholar]
  146. 146.
    Walter M, Chaban C, Schütze K, Batistic O, Weckermann K et al. 2004. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–38
    [Google Scholar]
  147. 147.
    Wang L, Brock A, Herberich B, Schultz PG 2001. Expanding the genetic code of Escherichia coli. . Science 292:498–500
    [Google Scholar]
  148. 148.
    Wang S, Chen X, Chang L, Ding M, Xue R et al. 2018. GMars-T enabling multimodal subdiffraction structural and functional fluorescence imaging in live cells. Anal. Chem. 90:6626–34
    [Google Scholar]
  149. 149.
    Wang S, Ding M, Chen X, Chang L, Sun Y 2017. Development of bimolecular fluorescence complementation using rsEGFP2 for detection and super-resolution imaging of protein-protein interactions in live cells. Biomed. Opt. Express 8:3119–31
    [Google Scholar]
  150. 150.
    Wang S, Ding M, Xue B, Hou Y, Sun Y 2018. Live cell visualization of multiple protein–protein interactions with BiFC rainbow. ACS Chem. Biol. 13:1180–88
    [Google Scholar]
  151. 151.
    Wang S, Ding M, Xue B, Hou Y, Sun Y 2018. Spying on protein interactions in living cells with reconstituted scarlet light. Analyst 143:5161–69
    [Google Scholar]
  152. 152.
    Wehr MC, Laage R, Bolz U, Fischer TM, Grünewald S et al. 2006. Monitoring regulated protein-protein interactions using split TEV. Nat. Methods 3:985–93
    [Google Scholar]
  153. 153.
    Wehr MC, Rossner MJ 2016. Split protein biosensor assays in molecular pharmacological studies. Drug Discov. Today 21:415–29
    [Google Scholar]
  154. 154.
    Wiens MD, Campbell RE 2018. Surveying the landscape of optogenetic methods for detection of protein–protein interactions. Wiley Interdiscip. Rev. Syst. Biol. Med. 10:e1415
    [Google Scholar]
  155. 155.
    Wu B, Chen J, Singer RH 2014. Background free imaging of single mRNAs in live cells using split fluorescent proteins. Sci. Rep. 4:3615
    [Google Scholar]
  156. 156.
    Wyckoff HW, Hardman KD, Allewell NM, Inagami T, Johnson LN, Richards FM 1967. The structure of ribonuclease-S at 3.5 Å resolution. J. Biol. Chem. 242:3984–88
    [Google Scholar]
  157. 157.
    Xia P, Liu X, Wu B, Zhang S, Song X et al. 2014. Superresolution imaging reveals structural features of EB1 in microtubule plus-end tracking. Mol. Biol. Cell 25:4166–73
    [Google Scholar]
  158. 158.
    Yin C, Wang M, Lei C, Wang Z, Li P et al. 2015. Phosphorylation-mediated assembly of a semisynthetic fluorescent protein for label-free detection of protein kinase activity. Anal. Chem. 87:6311–18
    [Google Scholar]
  159. 159.
    Yiu H-W, Demidov VV, Toran P, Cantor CR, Broude NE 2011. RNA detection in live bacterial cells using fluorescent protein complementation triggered by interaction of two RNA aptamers with two RNA-binding peptides. Pharmaceuticals 4:494–508
    [Google Scholar]
  160. 160.
    Zetsche B, Volz SE, Zhang F 2015. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33:139–42
    [Google Scholar]
  161. 161.
    Zhang J, Wang M, Tang R, Liu Y, Lei C et al. 2018. Transpeptidation-mediated assembly of tripartite split green fluorescent protein for label-free assay of sortase activity. Anal. Chem. 90:3245–52
    [Google Scholar]
  162. 162.
    Zhang W, Lohman AW, Zhuravlova Y, Lu X, Wiens MD et al. 2017. Optogenetic control with a photocleavable protein, PhoCl. Nat. Methods 14:391–94
    [Google Scholar]
  163. 163.
    Zhou XX, Chung HK, Lam AJ, Lin MZ 2012. Optical control of protein activity by fluorescent protein domains. Science 338:810–14
    [Google Scholar]
  164. 164.
    Zimmer M 2002. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem. Rev. 102:759–81
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-051013-022846
Loading
/content/journals/10.1146/annurev-biophys-051013-022846
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error