1932

Abstract

The author first describes his childhood in the South and the ways in which it fostered the values he has espoused throughout his life, his development of a keen fascination with science, and the influences that supported his progress toward higher education. His experiences in ROTC as a student, followed by two years in the US Army during the Vietnam War, honed his leadership skills. The bulk of the autobiography is a chronological journey through his scientific career, beginning with arrival at the University of California, Irvine in 1972, with an emphasis on the postdoctoral students and colleagues who have contributed substantially to each phase of his lab's progress. White's fundamental findings played a key role in the development of membrane biophysics, helping establish it as fertile ground for research. A story gradually unfolds that reveals the deeply collaborative and painstakingly executed work necessary for a successful career in science.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-051622-112341
2023-05-09
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/biophys/52/1/annurev-biophys-051622-112341.html?itemId=/content/journals/10.1146/annurev-biophys-051622-112341&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Almeida PF, Ladokhin AS, White SH. 2012. Hydrogen-bond energetics drive helix formation in membrane interfaces. Biochim. Biophys. Acta 1818:178–82
    [Google Scholar]
  2. 2.
    Alpha Kappa Alpha Sorority Health Comm 1938. The 1938 Mississippi Health Project: 4th annual report of the Alpha Kappa Alpha Sorority, December 1938 AKA Publ. 5 Alpha Kappa Alpha Sorority Chicago:
    [Google Scholar]
  3. 3.
    Andersson H, von Heijne G. 1993. Sec dependent and sec independent assembly of E. coli inner membrane proteins: the topological rules depend on chain length. EMBO J. 12:683–91
    [Google Scholar]
  4. 4.
    Andersson M, Ulmschneider JP, Ulmschneider MB, White SH. 2013. Conformational states of melittin at a bilayer interface. Biophys. J. 104:L12–14
    [Google Scholar]
  5. 5.
    Andrews DM, Manev ED, Haydon DA. 1970. Composition and energy relationships for some thin lipid films, and the chain conformation in monolayers at liquid-liquid interfaces. Spec. Discuss. Faraday Soc. 1:46–56
    [Google Scholar]
  6. 6.
    Ben-Tal N, Ben-Shaul A, Nicholls A, Honig B. 1996. Free-energy determinants of alpha-helix insertion into lipid bilayers. Biophys. J. 70:1803–12
    [Google Scholar]
  7. 7.
    Benz RW, Castro-Román F, Tobias DJ, White SH. 2005. Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach. Biophys. J. 88:805–17
    [Google Scholar]
  8. 8.
    Berger O, Edholm O, Jähnig F. 1997. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 72:2002–13
    [Google Scholar]
  9. 9.
    Beschiaschvili G, Baeuerle H-D. 1991. Effective charge of melittin upon interaction with POPC vesicles. Biochim. Biophys. Acta 1068:195–200
    [Google Scholar]
  10. 10.
    Blaurock AE. 1975. Bacteriorhodopsin: a trans-membrane pump containing alpha-helix. J. Mol. Biol. 93:139–58
    [Google Scholar]
  11. 11.
    Bondar A-N, del Val C, Freites JA, Tobias DJ, White SH. 2010. Dynamics of SecY translocons with translocation-defective mutations. Structure 18:847–57
    [Google Scholar]
  12. 12.
    Bondar A-N, del Val C, White SH. 2009. Rhomboid protease dynamics and lipid interactions. Structure 17:395–405
    [Google Scholar]
  13. 13.
    Bondar A-N, White SH. 2012. Hydrogen bond dynamics in membrane protein function. Biochim. Biophys. Acta 1818:942–50
    [Google Scholar]
  14. 14.
    Bridgforth LR. 1984. The politics of public health reform: Felix J. Underwood and the Mississippi State Board of Health, 1924–58. Public Hist. 6:5–26
    [Google Scholar]
  15. 15.
    Brooks DE, Levine YK, Requena J, Haydon DA. 1975. Van der Waals forces in oil-water systems from the study of thin lipid films—III. Comparison of experimental results with Hamaker coefficients calculated from Lifshitz theory. Proc. R. Soc. Lond. A 347:179–94
    [Google Scholar]
  16. 16.
    Büldt G, Gally HU, Seelig A, Seelig J, Zaccai G. 1978. Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature 271:182–84
    [Google Scholar]
  17. 17.
    Capponi S, Heyden M, Bondar A-N, Tobias DJ, White SH. 2015. Anomalous behavior of water inside the SecY translocon. PNAS 112:9016–21
    [Google Scholar]
  18. 18.
    Castro-Román F, Fernandez-Vidal M, Mihailescu M, White SH. 2007. Neutron diffraction and oriented circular dichroism studies of the membrane insertion of a S4 potassium channel voltage sensor. Biophys. J. 92:294a
    [Google Scholar]
  19. 19.
    Chothia C. 1974. Hydrophobic bonding and accessible surface area in proteins. Nature 248:338–39
    [Google Scholar]
  20. 20.
    Cohn EJ, Edsall JT. 1943. Proteins, Amino Acids, and Peptides New York: Hafner Publ. Co.
    [Google Scholar]
  21. 21.
    Cornette JL, Cease KB, Margalit H, Spouge JL, Berzofsky JA, DeLisi C. 1987. Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J. Mol. Biol. 195:659–85
    [Google Scholar]
  22. 22.
    Crane JM, Randall LL. 2017. The Sec system: protein export in Escherichia coli. . EcoSal Plus 7:2
    [Google Scholar]
  23. 23.
    Cymer F, von Heijne G, White SH. 2015. Mechanisms of integral membrane protein insertion and folding. J. Mol. Biol. 427:999–1022
    [Google Scholar]
  24. 24.
    Davson H, Danielli JF. 1952. The Permeability of Natural Membranes Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  25. 25.
    Deisenhofer J, Epp O, Miki K, Huber R, Michel H. 1985. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis a 3Å resolution. Nature 318:618–24
    [Google Scholar]
  26. 26.
    Dura JA, Pierce DJ, Majkrzak CF, Maliszewskyj NC, McGillivray DJ et al. 2006. AND/R: advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences. Rev. Sci. Instrum. 77:074301
    [Google Scholar]
  27. 27.
    Egea PF, Stroud RM. 2010. Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. PNAS 107:17182–87
    [Google Scholar]
  28. 28.
    Engelman DM, Steitz TA, Goldman A. 1986. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Biophys. Chem. 15:321–53
    [Google Scholar]
  29. 29.
    Feller SE, Yin DX, Pastor RW, MacKerell AD Jr. 1997. Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. Biophys. J. 73:2269–79
    [Google Scholar]
  30. 30.
    Fernández-Vidal M, Castro-Román F, White SH. 2006. Membrane insertion of a S4 potassium channel voltage sensor: an experimental study. Biophys. J. 90:241a
    [Google Scholar]
  31. 31.
    Fernández-Vidal M, Jayasinghe S, Ladokhin AS, White SH. 2007. Folding amphipathic helices into membranes: amphiphilicity trumps hydrophobicity. J. Mol. Biol. 370:459–70
    [Google Scholar]
  32. 32.
    Fernández-Vidal M, White SH, Ladokhin AS. 2011. Membrane partitioning: “classical” and “nonclassical” hydrophobic effects. J. Membr. Biol. 239:5–14
    [Google Scholar]
  33. 33.
    Freites JA, Tobias DJ, von Heijne G, White SH. 2005. Interface connections of a transmembrane voltage sensor. PNAS 102:15059–64
    [Google Scholar]
  34. 34.
    Gennis RB. 1989. Biomembranes: Molecular Structure and Function Berlin: Springer
    [Google Scholar]
  35. 35.
    George DG, Barker WC, Hunt LT. 1986. The Protein Identification Resource (PIR). Nucleic Acids Res. 14:11–15
    [Google Scholar]
  36. 36.
    Green DE. 1966. Membranes as expressions of repeating units. PNAS 55:1295–302
    [Google Scholar]
  37. 37.
    Gruen DWR, de Lacey EHB. 1984. The packing of amphiphile chains in micelles and bilayers. Surfactants in Solution, Vol. 1 KL Mittal, B Lindman 279–306. New York: Plenum Press
    [Google Scholar]
  38. 38.
    Haydon DA, Taylor J. 1963. The stability and properties of biomolecular lipid leaflets in aqueous solutions. J. Theor. Biol. 4:281–96
    [Google Scholar]
  39. 39.
    Haydon DA, Taylor J. 1964. An investigation by electrical methods of lecithin-in-hydrocarbon films in aqueous solutions. Proc. R. Soc. Lond. A 281:377–91
    [Google Scholar]
  40. 40.
    Heinrich SU, Mothes W, Brunner J, Rapoport TA. 2000. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102:233–44
    [Google Scholar]
  41. 41.
    Heller H, Schaefer M, Schulten K. 1993. Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid-crystal phases. J. Phys. Chem. 97:8343–60
    [Google Scholar]
  42. 42.
    Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J et al. 2005. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:377–81
    [Google Scholar]
  43. 43.
    Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y et al. 2007. Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450:1026–30
    [Google Scholar]
  44. 44.
    Hessa T, White SH, von Heijne G. 2005. Membrane insertion of a potassium-channel voltage sensor. Science 307:1427
    [Google Scholar]
  45. 45.
    Hitchcock PB, Mason R, Thomas KM, Shipley GG. 1974. Structural chemistry of 1,2 dilauroyl-DL-phosphatidylethanolamine: molecular conformation and intermolecular packing of phospholipids. PNAS 71:3036–40
    [Google Scholar]
  46. 46.
    Hosemann R, Bagchi SN. 1962. Direct Analysis of Diffraction by Matter Amsterdam: North-Holland
    [Google Scholar]
  47. 47.
    Hristova K, Dempsey CE, White SH. 2001. Structure, location, and lipid perturbations of melittin at the membrane interface. Biophys. J. 80:801–11
    [Google Scholar]
  48. 48.
    Hristova K, Selsted ME, White SH. 1996. Interactions of monomeric rabbit neutrophil defensins with bilayers: comparison with dimeric human defensin HNP-2. Biochemistry 35:11888–94
    [Google Scholar]
  49. 49.
    Hristova K, Selsted ME, White SH. 1997. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J. Biol. Chem. 272:24224–33
    [Google Scholar]
  50. 50.
    Hristova K, White SH. 1998. Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by X-ray diffraction using specific bromination of the double-bonds: effect of hydration. Biophys. J. 74:2419–33
    [Google Scholar]
  51. 51.
    Hristova K, White SH. 2005. An experiment-based algorithm for predicting the partitioning of unfolded peptides into phosphatidylcholine bilayer interfaces. Biochemistry 44:12614–19
    [Google Scholar]
  52. 52.
    Hristova K, Wimley WC, Mishra VK, Anantharamaiah GM, Segrest JP, White SH. 1999. An amphipathic alpha-helix at a membrane interface: a structural study using a novel X-ray diffraction method. J. Mol. Biol. 290:99–117
    [Google Scholar]
  53. 53.
    Jacobs RE, White SH. 1984. Behavior of hexane dissolved in dimyristoylphosphatidylcholine bilayers: an NMR and calorimetric study. J. Am. Chem. Soc. 106:915–20
    [Google Scholar]
  54. 54.
    Jacobs RE, White SH. 1984. Behavior of hexane dissolved in dioleoylphosphatidylcholine bilayers: an NMR and calorimetric study. J. Am. Chem. Soc. 106:6909–12
    [Google Scholar]
  55. 55.
    Jacobs RE, White SH. 1986. Mixtures of a series of homologous hydrophobic peptides with lipid bilayers: a simple model system for examining the protein-lipid interface. Biochemistry 25:2605–12
    [Google Scholar]
  56. 56.
    Jacobs RE, White SH. 1987. Lipid bilayer perturbations induced by simple hydrophobic peptides. Biochemistry 26:6127–34
    [Google Scholar]
  57. 57.
    Jacobs RE, White SH. 1989. The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry 28:3421–37
    [Google Scholar]
  58. 58.
    Janin J. 1979. Surface and inside volumes in globular proteins. Nature 277:491–92
    [Google Scholar]
  59. 59.
    Jaud S, Fernández-Vidal M, Nillson I, Meindl-Beinker NM, Hübner NC et al. 2009. Insertion of short transmembrane helices by the Sec61 translocon. PNAS 106:11588–93
    [Google Scholar]
  60. 60.
    Jayasinghe S, Barranger-Mathys M, Ellena JF, Franklin C, Cafiso DS. 1998. Structural features that modulate the transmembrane migration of a hydrophobic peptide in lipid vesicles. Biophys. J. 74:3023–30
    [Google Scholar]
  61. 61.
    Jayasinghe S, Hristova K, White SH. 2001. Energetics, stability, and prediction of transmembrane helices. J. Mol. Biol. 312:927–34
    [Google Scholar]
  62. 62.
    Jayasinghe S, Hristova K, White SH. 2001. MPtopo: a database of membrane protein topology. Protein Sci. 10:455–8
    [Google Scholar]
  63. 63.
    Jiang YX, Lee A, Chen JY, Ruta V, Cadene M et al. 2003. X-ray structure of a voltage-dependent K+ channel. Nature 423:33–41
    [Google Scholar]
  64. 64.
    Jiang YX, Ruta V, Chen JY, Lee A, MacKinnon R. 2003. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:42–48
    [Google Scholar]
  65. 65.
    Killian JA, von Heijne G. 2000. How proteins adapt to a membrane-wafer interface. Trends Biochem. Sci. 25:429–34
    [Google Scholar]
  66. 66.
    King GI, White SH. 1986. Determining bilayer hydrocarbon thickness from neutron diffraction measurements using strip-function models. Biophys. J. 49:1047–54
    [Google Scholar]
  67. 67.
    Krepkiy D, Mihailescu M, Freites JA, Schow EV, Worcester DL et al. 2009. Structure and hydration of membranes embedded with voltage-sensing domains. Nature 462:473–79
    [Google Scholar]
  68. 68.
    Kreutzberger AJB, Ji M, Aaron J, Mihaljević L, Urban S 2019. Rhomboid distorts lipids to break the viscosity-imposed speed limit of membrane diffusion. Science 363:eaao0076
    [Google Scholar]
  69. 69.
    Krishnamani V, Capponi S, White SH. 2017. Water dynamics at the bilayer interface is similar to that within the SecY translocon. Biophys. J. 112:378a
    [Google Scholar]
  70. 70.
    Kučerka N, Nagle JF, Sachs JN, Feller SE, Pencer J et al. 2008. Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys. J. 95:2356–67
    [Google Scholar]
  71. 71.
    Kyte J, Doolittle RF. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–32
    [Google Scholar]
  72. 72.
    Ladokhin AS, Fernández-Vidal M, White SH. 2010. CD spectroscopy of peptides and proteins bound to large unilamellar vesicles. J. Membr. Biol. 236:247–53
    [Google Scholar]
  73. 73.
    Ladokhin AS, Holloway PW. 1995. Fluorescence quenching study of melittin-membrane interactions. Ukr. Biokhim. Zh. 67:34–40
    [Google Scholar]
  74. 74.
    Ladokhin AS, Jayasinghe S, White SH. 2000. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother?. Anal. Biochem. 285:235–45
    [Google Scholar]
  75. 75.
    Ladokhin AS, Selsted ME, White SH. 1996. Interaction of antimicrobial peptide indolicidin with membranes. Biophys. J. 70:A447
    [Google Scholar]
  76. 76.
    Ladokhin AS, Selsted ME, White SH. 1997. Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophys. J. 72:794–805
    [Google Scholar]
  77. 77.
    Ladokhin AS, Selsted ME, White SH. 1997. Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin. Biophys. J. 72:1762–66
    [Google Scholar]
  78. 78.
    Ladokhin AS, Selsted ME, White SH. 1999. CD spectra of indolicidin antimicrobial peptides suggest turns, not polyproline helix. Biochemistry 38:12313–19
    [Google Scholar]
  79. 79.
    Ladokhin AS, White SH. 1999. Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin. J. Mol. Biol. 285:1363–69
    [Google Scholar]
  80. 80.
    Ladokhin AS, White SH. 2001. Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions. J. Mol. Biol. 309:543–52
    [Google Scholar]
  81. 81.
    Ladokhin AS, Wimley WC, Hristova K, White SH. 1997. Mechanism of leakage of contents of membrane vesicles determined by fluorescence requenching. Methods Enzymol. 278:474–86
    [Google Scholar]
  82. 82.
    Ladokhin AS, Wimley WC, White SH. 1995. Leakage of membrane vesicle contents: determination of mechanism using fluorescence requenching. Biophys. J. 69:1964–71
    [Google Scholar]
  83. 83.
    Langosch D, Brosig B, Kolmar H, Fritz H-J. 1996. Dimerisation of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. J. Mol. Biol. 263:525–30
    [Google Scholar]
  84. 84.
    Lau KF, Dill KA. 1990. Theory for protein mutability and biogenesis. PNAS 87:638–42
    [Google Scholar]
  85. 85.
    Levine YK, Wilkins MHF. 1971. Structure of oriented lipid bilayers. Nat. New Biol. 230:69–76
    [Google Scholar]
  86. 86.
    Lindner E, White SH. 2014. Topology, dimerization, and stability of the single-span membrane protein CadC. J. Mol. Biol. 426:2942–57
    [Google Scholar]
  87. 87.
    Lindner E, White SH. 2019. Dropping out and other fates of transmembrane segments inserted by the SecA ATPase. J. Mol. Biol. 431:2006–19
    [Google Scholar]
  88. 88.
    Lucy JA. 1964. Globular lipid micelles and cell membranes. J. Theor. Biol. 7:360–73
    [Google Scholar]
  89. 89.
    Luzzati V, Reiss-Husson F, Rivas E, Gulik-Krzywicki T. 1966. Structure and polymorphism in lipid-water systems, and their possible biological implications. Ann. N. Y. Acad. Sci. 137:409–13
    [Google Scholar]
  90. 90.
    Maiman TH. 1960. Stimulated optical radiation in ruby. Nature 187:493–94
    [Google Scholar]
  91. 91.
    Marx DC, Fleming KG. 2021. Local bilayer hydrophobicity modulates membrane protein stability. J. Am. Chem. Soc. 143:764–72
    [Google Scholar]
  92. 92.
    Mihailescu M, Vaswani RG, Jardón-Valadez E, Castro-Román F, Freites JA et al. 2011. Acyl-chain methyl distributions of liquid-ordered and -disordered membranes. Biophys. J. 100:1455–62
    [Google Scholar]
  93. 93.
    Mueller P, Rudin DO, Tien HT, Wescott WC. 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194:979–80
    [Google Scholar]
  94. 94.
    Neyman P. 2019. Columbus and Lowndes County Mississippi in the 20th Century Columbus, MS: USAphn
    [Google Scholar]
  95. 95.
    Nilsson IM, Sääf A, Whitley P, Gafvelin G, Waller C, von Heijne G. 1998. Proline-induced disruption of a transmembrane α-helix in its natural environment. J. Mol. Biol. 284:1165–75
    [Google Scholar]
  96. 96.
    Nozaki Y, Tanford C. 1971. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J. Biol. Chem. 246:2211–17
    [Google Scholar]
  97. 97.
    Öjemalm K, Higuchi T, Jiang Y, Langel Ü, Nilsson I et al. 2011. Apolar surface area determines the efficiency of translocon-mediated membrane-protein integration into the endoplasmic reticulum. PNAS 108:E359–64
    [Google Scholar]
  98. 98.
    Oren Z, Shai Y. 1997. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Biochemistry 36:1826–35
    [Google Scholar]
  99. 99.
    Pan J, Heberle FA, Tristram-Nagle S, Szymanski M, Koepfinger M et al. 2012. Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering. Biochim. Biophys. Acta 1818:2135–48
    [Google Scholar]
  100. 100.
    Portlock SH, Lee Y, Tomich JM, Tamm LK. 1992. Insertion and folding of the amino-terminal amphiphilic signal sequences of the mannitol and glucitol permeases of Escherichia coli. J. Biol. Chem. 267:11017–22
    [Google Scholar]
  101. 101.
    Rapoport TA, Goder V, Heinrich SU, Matlack KES. 2004. Membrane-protein integration and the role of the translocation channel. Trends Cell Biol. 14:568–75
    [Google Scholar]
  102. 102.
    Rawat S, Zhu L, Lindner E, Dalbey R, White SH. 2015. SecA drives transmembrane insertion of RodZ, an unusual single-span membrane protein. J. Mol. Biol. 427:1023–37
    [Google Scholar]
  103. 103.
    Reynolds JA, Gilbert DB, Tanford C. 1974. Empirical correlation between hydrophobic free energy and aqueous cavity surface area. PNAS 71:2925–27
    [Google Scholar]
  104. 104.
    Roberts ER, Reeb RM. 1994. Mississippi public health nurses and midwives: a partnership that worked. Public Health Nurs. 11:57–63
    [Google Scholar]
  105. 105.
    Robertson JD 1966. Design principles of the unit membrane. Principles of Biomolecular Organization GEW Wolstenholme, M O'Connor 357–418. Boston: Little, Brown
    [Google Scholar]
  106. 106.
    Roussel G, Lindner E, White SH. 2019. Stabilization of SecA ATPase by the primary cytoplasmic salt of Escherichia coli. . Protein Sci. 28:984–89
    [Google Scholar]
  107. 107.
    Roussel G, Lindner E, White SH. 2022. The topology of the SecA ATPase bound to large unilamellar vesicles. J. Mol. Biol. 434:167607
    [Google Scholar]
  108. 108.
    Roussel G, White SH. 2020. Binding of SecA ATPase monomers and dimers to lipid vesicles. Biochim. Biophys. Acta Biomembr. 1862:183112
    [Google Scholar]
  109. 109.
    Roussel G, White SH. 2020. The SecA ATPase motor protein binds to Escherichia coli liposomes only as monomers. Biochim. Biophys. Acta Biomembr. 1862:183358
    [Google Scholar]
  110. 110.
    Russ WP, Engelman DM. 1999. TOXCAT: a measure of transmembrane helix association in a biological membrane. PNAS 96:863–68
    [Google Scholar]
  111. 111.
    Sääf A, Wallin E, von Heijne G. 1998. Stop-transfer function of pseudo-random amino acid segments during translocation across prokaryotic and eukaryotic membranes. Eur. J. Biochem. 251:821–29
    [Google Scholar]
  112. 112.
    Sano YE. 2010. Health Care for African Americans in Mississippi, 18771946 Columbus: OH: Ohio State Univ.
    [Google Scholar]
  113. 113.
    Schiffer M, Chang CH, Stevens FJ. 1992. The function of tryptophan residues in membrane proteins. Protein Eng. 5:213–14
    [Google Scholar]
  114. 114.
    Schlenkrich M, Brickmann J, MacKerell AD Jr., Karplus M 1996. An empirical potential energy function for phospholipids: criteria for parameter optimization and applications. Biological Membranes KM Merz Jr., B Roux 31–81. Boston: Birkhäuser
    [Google Scholar]
  115. 115.
    Schmidt D, Jiang Q-X, MacKinnon R. 2006. Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444:775–79
    [Google Scholar]
  116. 116.
    Schow EV, Freites JA, Cheng P, Bernsel A, von Heijne G et al. 2011. Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments. J. Membr. Biol. 239:35–48
    [Google Scholar]
  117. 117.
    Schwartz S, Cain JE, Dratz EA, Blasie JK. 1975. An analysis of lamellar X-ray diffraction from disordered membrane multilayers with application to data from retinal rod outer segments. Biophys. J. 15:1201–33
    [Google Scholar]
  118. 118.
    Seelig A, Seelig J. 1974. The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13:4839–45
    [Google Scholar]
  119. 119.
    Segrest JP. 1977. Amphipathic helixes and plasma lipoproteins: thermodynamic and geometric considerations. Chem. Phys. Lipids 18:7–22
    [Google Scholar]
  120. 120.
    Shakhnovich EI, Gutin AM. 1990. Implications of thermodynamics of protein folding for evolution of primary sequences. Nature 346:773–75
    [Google Scholar]
  121. 121.
    Singer SJ, Nicolson GL. 1972. The fluid mosaic model of the structure of cell membranes. Science 175:720–31
    [Google Scholar]
  122. 122.
    Small DM. 1967. Phase equilibria and structure of dry and hydrated egg lecithin. J. Lipid Res. 8:551–57
    [Google Scholar]
  123. 123.
    Smith SL. 1995. Sick and Tired of Being Sick and Tired: Black Women's Health Activism in America Philadelphia: Univ. Pa. Press
    [Google Scholar]
  124. 124.
    Snider C, Jayasinghe S, Hristova K, White SH. 2009. MPEx: a tool for exploring membrane proteins. Protein Sci. 18:2624–28
    [Google Scholar]
  125. 125.
    Sunflower Cty. Health Dept 1940. Sunflower County Health Department narrative, March, 1940 Rep. Sunflower Cty. Health Dept. Indianola, MI:
    [Google Scholar]
  126. 126.
    Suwalsky M, Duk L. 1987. X-ray studies on phospholipid bilayers, 7. Structure determination of oriented films of L-α-dimyristoylphosphatidylethanolamine (DMPE). Makromol. Chem. 188:599–606
    [Google Scholar]
  127. 127.
    Tanford C. 1978. The hydrophobic effect and the organization of living matter. Science 200:1012–18
    [Google Scholar]
  128. 128.
    Tretyachenko V, Vymětal J, Bednárová L, Kopecký V Jr., Hofbauerová K et al. 2017. Random protein sequences can form defined secondary structures and are well-tolerated in vivo. . Sci. Rep. 7:15449
    [Google Scholar]
  129. 129.
    Ulmschneider JP, Smith JC, White SH, Ulmschneider MB. 2011. In silico partitioning and transmembrane insertion of hydrophobic peptides under equilibrium conditions. J. Am. Chem. Soc. 133:15487–95
    [Google Scholar]
  130. 130.
    Ulmschneider JP, Smith JC, White SH, Ulmschneider MB. 2018. The importance of the membrane interface as the reference state for membrane protein stability. Biochim. Biophys. Acta Biomembr. 1860:2539–48
    [Google Scholar]
  131. 131.
    Ulmschneider MB, Sansom MSP, Di Nola A. 2005. Properties of integral membrane protein structures: derivation of an implicit membrane potential. Proteins 59:252–65
    [Google Scholar]
  132. 132.
    Ulmschneider MB, Ulmschneider JP, Schiller N, Wallace BA, von Heijne G, White SH. 2014. Spontaneous transmembrane helix insertion thermodynamically mimics translocon-guided insertion. Nat. Commun. 5:4863
    [Google Scholar]
  133. 133.
    van Abel RJ, Tang YQ, Rao VS, Dobbs CH, Tran D et al. 1995. Synthesis and characterization of indolicidin, a tryptophan-rich antimicrobial peptide from bovine neutrophils. Int. J. Pept. Protein Res. 45:401–9
    [Google Scholar]
  134. 134.
    van den Berg B, Black PN, Clemons WM Jr., Rapoport TA 2004. Crystal structure of the long-chain fatty acid transporter FadL. Science 304:1506–9
    [Google Scholar]
  135. 135.
    van den Berg B, Clemons WM Jr., Collinson I, Modis Y, Hartmann E et al. 2004. X-ray structure of a protein-conducting channel. Nature 427:36–44
    [Google Scholar]
  136. 136.
    Vogel H. 1981. Incorporation of melittin into phosphatidylcholine bilayers. FEBS Lett. 134:37–42
    [Google Scholar]
  137. 137.
    von Heijne G. 1985. Signal sequences. The limits of variation. J. Mol. Biol. 184:99–105
    [Google Scholar]
  138. 138.
    von Heijne G. 1989. Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341:456–58
    [Google Scholar]
  139. 139.
    von Heijne G. 2018. Membrane protein serendipity. J. Biol. Chem. 293:3470–76
    [Google Scholar]
  140. 140.
    Wewoka High School Journal. Dept 1960. Barking Water: The Story of Wewoka Wewoka, OK: Wewoka Chapter Am. Assoc. Univ. Women
    [Google Scholar]
  141. 141.
    White SH. 1970. A study of lipid bilayer membrane stability using precise measurements of specific capacitance. Biophys. J. 10:1127–48
    [Google Scholar]
  142. 142.
    White SH. 1970. Thickness changes in lipid bilayer membranes. Biochim. Biophys. Acta 196:354–57
    [Google Scholar]
  143. 143.
    White SH. 1972. Analysis of the torus surrounding planar lipid bilayer membranes. Biophys. J. 12:432–45
    [Google Scholar]
  144. 144.
    White SH. 1973. The surface charge and double layers of thin lipid films formed from neutral lipids. Biochim. Biophys. Acta 323:343–50
    [Google Scholar]
  145. 145.
    White SH. 1974. Comments on “Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. ”. Biophys. J. 14:155–58
    [Google Scholar]
  146. 146.
    White SH. 1974. Temperature-dependent structural changes in planar bilayer membranes: solvent “freeze-out. ”. Biochim. Biophys. Acta 356:8–16
    [Google Scholar]
  147. 147.
    White SH. 1975. Phase transitions in planar bilayer membranes. Biophys. J. 15:95–117
    [Google Scholar]
  148. 148.
    White SH. 1976. The lipid bilayer as a “solvent” for small hydrophobic molecules. Nature 262:421–22
    [Google Scholar]
  149. 149.
    White SH. 1977. Studies of the physical chemistry of planar bilayer membranes using high-precision measurements of specific capacitance. Ann. N. Y. Acad. Sci. 303:243–65
    [Google Scholar]
  150. 150.
    White SH. 1978. Formation of “solvent-free” black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophys. J. 23:337–47
    [Google Scholar]
  151. 151.
    White SH. 1980. How electric fields modify alkane solubility in lipid bilayers. Science 207:1075–77
    [Google Scholar]
  152. 152.
    White SH. 1986. The physical nature of planar bilayer membranes. Ion Channel Reconstitution C Miller 3–35. New York: Plenum Press
    [Google Scholar]
  153. 153.
    White SH. 1994. Global statistics of protein sequences: implications for the origin, evolution, and prediction of structure. Annu. Rev. Biophys. Biomol. Struct. 23:407–39
    [Google Scholar]
  154. 154.
    White SH. 1994. Membrane Protein Structure: Experimental Approaches Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  155. 155.
    White SH. 2003. Translocons, thermodynamics, and the folding of membrane proteins. FEBS Lett 555:116–21
    [Google Scholar]
  156. 156.
    White SH. 2004. The progress of membrane protein structure determination. Protein Sci. 13:1948–49
    [Google Scholar]
  157. 157.
    White SH. 2005. How hydrogen bonds shape membrane protein structure. Adv. Protein Chem. 72:157–72
    [Google Scholar]
  158. 158.
    White SH. 2006. Rhomboid intramembrane protease structures galore!. Nat. Struct. Mol. Biol. 13:1049–51
    [Google Scholar]
  159. 159.
    White SH. 2007. Membrane protein insertion: the biology-physics nexus. J. Gen. Physiol. 129:363–69
    [Google Scholar]
  160. 160.
    White SH, Blessum DN. 1975. High precision capacitance bridge for studying lipid bilayer membranes. Rev. Sci. Instrum. 46:1462–66
    [Google Scholar]
  161. 161.
    White SH, Jacobs RE. 1990. Statistical distribution of hydrophobic residues along the length of protein chains. Implications for protein folding and evolution. Biophys. J. 57:911–21
    [Google Scholar]
  162. 162.
    White SH, Jacobs RE. 1993. The evolution of proteins from random amino acid sequences. I. Evidence from the lengthwise distribution of amino acids in modern protein sequences. J. Mol. Evol. 36:79–95
    [Google Scholar]
  163. 163.
    White SH, King GI, Cain JE. 1981. Location of hexane in lipid bilayers determined by neutron diffraction. Nature 290:161–63
    [Google Scholar]
  164. 164.
    White SH, Petersen DC, Simon S, Yafuso M. 1976. Formation of planar bilayer membranes from lipid monolayers: a critique. Biophys. J. 16:481–89
    [Google Scholar]
  165. 165.
    White SH, Thompson TE. 1973. Capacitance, area, and thickness variations in thin lipid films. Biochim. Biophys. Acta 323:7–22
    [Google Scholar]
  166. 166.
    White SH, von Heijne G, Engelman D. 2022. Cell Boundaries: How Membranes and Their Proteins Work Boca Raton, FL: CRC Press
    [Google Scholar]
  167. 167.
    White SH, Wimley WC. 1999. Membrane protein folding and stability: physical principles. Annu. Rev. Biophys. Biomol. Struct. 28:319–65
    [Google Scholar]
  168. 168.
    White SH, Wimley WC, Ladokhin AS, Hristova K. 1998. Protein folding in membranes: determining energetics of peptide-bilayer interactions. Methods Enzymol. 295:62–87
    [Google Scholar]
  169. 169.
    Wiener MC, King GI, White SH. 1991. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. I. Scaling of neutron data and the distributions of double bonds and water. Biophys. J. 60:568–76
    [Google Scholar]
  170. 170.
    Wiener MC, White SH. 1991. Fluid bilayer structure determination by the combined use of X-ray and neutron diffraction. I. Fluid bilayer models and the limits of resolution. Biophys. J. 59:162–73
    [Google Scholar]
  171. 171.
    Wiener MC, White SH. 1991. Fluid bilayer structure determination by the combined use of X-ray and neutron diffraction. II. “Composition-space” refinement method. Biophys. J. 59:174–85
    [Google Scholar]
  172. 172.
    Wiener MC, White SH. 1991. Transbilayer distribution of bromine in fluid bilayers containing a specifically brominated analogue of dioleoylphosphatidylcholine. Biochemistry 30:6997–7008
    [Google Scholar]
  173. 173.
    Wiener MC, White SH. 1992. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. II. Distribution and packing of terminal methyl groups. Biophys. J. 61:428–33
    [Google Scholar]
  174. 174.
    Wiener MC, White SH. 1992. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of X-ray and neutron diffraction data. III. Complete structure. Biophys. J. 61:434–47
    [Google Scholar]
  175. 175.
    Wimley WC, Creamer TP, White SH. 1996. Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides. Biochemistry 35:5109–24
    [Google Scholar]
  176. 176.
    Wimley WC, Gawrisch K, Creamer TP, White SH. 1996. Direct measurement of salt-bridge solvation energies using a peptide model system: implications for protein stability. PNAS 93:2985–90
    [Google Scholar]
  177. 177.
    Wimley WC, Hristova K, Ladokhin AS, Silvestro L, Axelsen PH, White SH. 1998. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model. J. Mol. Biol. 277:1091–110
    [Google Scholar]
  178. 178.
    Wimley WC, Selsted ME, White SH. 1994. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci. 3:1362–73
    [Google Scholar]
  179. 179.
    Wimley WC, White SH. 1992. Partitioning of tryptophan side-chain analogs between water and cyclohexane. Biochemistry 31:12813–18
    [Google Scholar]
  180. 180.
    Wimley WC, White SH. 1993. Membrane partitioning: distinguishing bilayer effects from the hydrophobic effect. Biochemistry 32:6307–12
    [Google Scholar]
  181. 181.
    Wimley WC, White SH. 1993. Partitioning of tryptophan side-chain analogs between water and cyclohexane. Biochemistry 32:9262
    [Google Scholar]
  182. 182.
    Wimley WC, White SH. 1993. Quantitation of electrostatic and hydrophobic membrane interactions by equilibrium dialysis and reverse-phase HPLC. Anal. Biochem. 213:213–17
    [Google Scholar]
  183. 183.
    Wimley WC, White SH. 1996. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 3:842–48
    [Google Scholar]
  184. 184.
    Woodbury JW, White SH, Mackey MC, Hardy WL, Chang DB 1970. Bioelectrochemistry. Physical Chemistry: An Advanced Treatise, Vol. IXB H Eyring, D Henderson, W Jost 903–83. New York: Academic
    [Google Scholar]
  185. 185.
    Worcester DL, Franks NP. 1976. Structural analysis of hydrated egg lecithin and cholesterol bilayers. II. Neutron diffraction. J. Mol. Biol. 100:359–78
    [Google Scholar]
  186. 186.
    Worthington CR, King GI. 1971. Electron density profiles of nerve myelin. Nature 234:143–45
    [Google Scholar]
  187. 187.
    Worthington CR, King GI, McIntosh TJ. 1973. Direct structure determination of multilayered membrane-type systems which contain fluid layers. Biophys. J. 13:480–94
    [Google Scholar]
  188. 188.
    Wu X, Cabanos C, Rapoport TA. 2019. Structure of the post-translational protein translocation machinery of the ER membrane. Nature 566:136–39
    [Google Scholar]
  189. 189.
    Yau W-M, Wimley WC, Gawrisch K, White SH. 1998. The preference of tryptophan for membrane interfaces. Biochemistry 37:14713–18
    [Google Scholar]
  190. 190.
    Young R, Bremer H. 1976. Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate. Biochem. J. 160:185–94
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-051622-112341
Loading
/content/journals/10.1146/annurev-biophys-051622-112341
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error