1932

Abstract

It is tempting to believe that we now own the genome. The ability to read and rewrite it at will has ushered in a stunning period in the history of science. Nonetheless, there is an Achilles’ heel exposed by all of the genomic data that has accrued: We still do not know how to interpret them. Many genes are subject to sophisticated programs of transcriptional regulation, mediated by DNA sequences that harbor binding sites for transcription factors, which can up- or down-regulate gene expression depending upon environmental conditions. This gives rise to an input–output function describing how the level of expression depends upon the parameters of the regulated gene—for instance, on the number and type of binding sites in its regulatory sequence. In recent years, the ability to make precision measurements of expression, coupled with the ability to make increasingly sophisticated theoretical predictions, has enabled an explicit dialogue between theory and experiment that holds the promise of covering this genomic Achilles’ heel. The goal is to reach a predictive understanding of transcriptional regulation that makes it possible to calculate gene expression levels from DNA regulatory sequence. This review focuses on the canonical simple repression motif to ask how well the models that have been used to characterize it actually work. We consider a hierarchy of increasingly sophisticated experiments in which the minimal parameter set learned at one level is applied to make quantitative predictions at the next. We show that these careful quantitative dissections provide a template for a predictive understanding of the many more complex regulatory arrangements found across all domains of life.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-052118-115525
2019-05-06
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/biophys/48/1/annurev-biophys-052118-115525.html?itemId=/content/journals/10.1146/annurev-biophys-052118-115525&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ackers GK, Johnson AD, Shea MA 1982. Quantitative model for gene regulation by lambda phage repressor. PNAS 79:1129–33
    [Google Scholar]
  2. 2.
    Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J 2002. Molecular Biology of the Cell New York: W. W. Norton. 6th ed
  3. 3.
    Alekshun MN, Levy SB 1997. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. J. Mol. Biol. 41:2067–75
    [Google Scholar]
  4. 4.
    Bakk A, Metzler R, Sneppen K 2004. Sensitivity of OR in phage lambda. Biophys. J. 86:58–66
    [Google Scholar]
  5. 5.
    Barnes SL, Belliveau NM, Ireland WT, Kinney JB, Phillips R 2018. Mapping DNA sequence to transcription factor binding energy in vivo. bioRxiv 331124
  6. 6.
    Belliveau NM, Barnes SL, Ireland WT, Jones DL, Sweredoski MJ et al. 2018. Systematic approach for dissecting the molecular mechanisms of transcriptional regulation in bacteria. PNAS 115:E4796–805
    [Google Scholar]
  7. 7.
    Berg J, Willmann S, Lassig M 2004. Adaptive evolution of transcription factor binding sites. BMC Evol. Biol. 4:42
    [Google Scholar]
  8. 8.
    Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T et al. 2005. Transcriptional regulation by the numbers: applications. Curr. Opin. Genet. Dev. 15:125–35
    [Google Scholar]
  9. 9.
    Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T et al. 2005. Transcriptional regulation by the numbers: models. Curr. Opin. Genet. Dev. 15:116–24
    [Google Scholar]
  10. 10.
    Boedicker JQ, Garcia HG, Phillips R 2013. Theoretical and experimental dissection of DNA loop-mediated repression. Phys. Rev. Lett. 110:018101
    [Google Scholar]
  11. 11.
    Brewster RC, Jones DL, Phillips R 2012. Tuning promoter strength through RNA polymerase binding site design in Escherichia coli. PLOS Comput. Biol. 8:e1002811
    [Google Scholar]
  12. 12.
    Brewster RC, Weinert FM, Garcia HG, Song D, Rydenfelt M, Phillips R 2014. The transcription factor titration effect dictates level of gene expression. Cell 156:1312–23
    [Google Scholar]
  13. 13.
    Britten RJ, Davidson EH 1969. Gene regulation for higher cells: a theory. Science 165:349–57
    [Google Scholar]
  14. 14.
    Brooun A, Tomashek JJ, Lewis K 1999. Purification and ligand binding of EmrR, a regulator of a multidrug transporter. J. Bacteriol. 181:5131–33
    [Google Scholar]
  15. 15.
    Buchler NE, Gerland U, Hwa T 2003. On schemes of combinatorial transcription logic. PNAS 100:5136–41
    [Google Scholar]
  16. 16.
    Cataudella I, Sneppen K, Gerdes K, Mitarai N 2013. Conditional cooperativity of toxin-antitoxin regulation can mediate bistability between growth and dormancy. PLOS Comp. Bio. 9:e1003174
    [Google Scholar]
  17. 17.
    Cho WK, Jayanth N, English BP, Inoue T, Andrews JO et al. 2016. RNA polymerase II cluster dynamics predict mRNA output in living cells. eLife 5:e13617
    [Google Scholar]
  18. 18.
    Cui L, Murchland I, Shearwin KE, Dodd IB 2013. Enhancer-like long-range transcriptional activation by λ CI-mediated DNA looping. PNAS 110:2922–27
    [Google Scholar]
  19. 19.
    Daber R, Sochor MA, Lewis M 2011. Thermodynamic analysis of mutant lac repressors. J. Mol. Biol. 409:76–87
    [Google Scholar]
  20. 20.
    Dawid A, Kiviet DJ, Kogenaru M, de Vos M, Tans SJ 2010. Multiple peaks and reciprocal sign epistasis in an empirically determined genotype-phenotype landscape. Chaos 20:026105
    [Google Scholar]
  21. 21.
    Dekel E, Alon U 2005. Optimality and evolutionary tuning of the expression level of a protein. Nature 436:588–92
    [Google Scholar]
  22. 22.
    Dobzhansky T 1973. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach. 35:125–29
    [Google Scholar]
  23. 23.
    Dodd IB, Shearwin KE, Egan JB 2005. Revisited gene regulation in bacteriophage lambda. Curr. Opin. Genet. Dev. 15:145–52
    [Google Scholar]
  24. 24.
    Dodd IB, Shearwin KE, Perkins AJ, Burr T, Hochschild A, Egan JB 2004. Cooperativity in long-range gene regulation by the lambda CI repressor. Genes Dev. 18:344–54
    [Google Scholar]
  25. 25.
    Dunn TM, Hahn S, Ogden S, Schleif RF 1984. An operator at −280 base pairs that is required for repression of araBAD operon promoter: addition of DNA helical turns between the operator and promoter cyclically hinders repression. PNAS 81:5017–20
    [Google Scholar]
  26. 26.
    Elf J, Li GW, Xie XS 2007. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:1191–94
    [Google Scholar]
  27. 27.
    Emmer M, deCrombrugghe B, Pastan I, Perlman R 1970. Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. PNAS 66:480–87
    [Google Scholar]
  28. 28.
    Estrada J, Wong F, DePace A, Gunawardena J 2016. Information integration and energy expenditure in gene regulation. Cell 166:234–44
    [Google Scholar]
  29. 29.
    Fang X, Sastry A, Mih N, Kim D, Tan J et al. 2017. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities. PNAS 114:10286–91
    [Google Scholar]
  30. 30.
    Gama-Castro S, Salgado H, Santos-Zavaleta A, Ledezma-Tejeida D, Muñiz-Rascado L et al. 2016. RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond. Nucleic Acids Res. 44:D133–43
    [Google Scholar]
  31. 31.
    Garcia HG, Phillips R 2011. Quantitative dissection of the simple repression input-output function. PNAS 108:12173–78
    [Google Scholar]
  32. 32.
    Garcia HG, Sanchez A, Boedicker JQ, Osborne M, Gelles J et al. 2012. Operator sequence alters gene expression independently of transcription factor occupancy in bacteria. Cell Rep. 2:150–61
    [Google Scholar]
  33. 33.
    Garcia HG, Sanchez A, Kuhlman T, Kondev J, Phillips R 2010. Transcription by the numbers redux: experiments and calculations that surprise. Trends Cell Biol. 20:723–33
    [Google Scholar]
  34. 34.
    Garza de Leon F, Sellars L, Stracy M, Busby SJW, Kapanidis AN 2017. Tracking low-copy transcription factors in living bacteria: the case of the lac repressor. Biophys. J. 112:1316–27
    [Google Scholar]
  35. 35.
    Gerland U, Hwa T 2002. On the selection and evolution of regulatory DNA motifs. J. Mol. Evol. 55:386–400
    [Google Scholar]
  36. 36.
    Gerland U, Moroz JD, Hwa T 2002. Physical constraints and functional characteristics of transcription factor-DNA interaction. PNAS 99:12015–20
    [Google Scholar]
  37. 37.
    Gertz J, Siggia ED, Cohen BA 2009. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457:215–18
    [Google Scholar]
  38. 38.
    Giese KC, Michalowski CB, Little JW 2008. RecA-dependent cleavage of LexA dimers. J. Mol. Biol. 377:148–61
    [Google Scholar]
  39. 39.
    Golding I, Paulsson J, Zawilski SM, Cox EC 2005. Real-time kinetics of gene activity in individual bacteria. Cell 123:1025–36
    [Google Scholar]
  40. 40.
    Gunawardena J 2014. Models in biology: ‘accurate descriptions of our pathetic thinking’. BMC Bio. 12:29
    [Google Scholar]
  41. 41.
    Hammar P, Wallden M, Fange D, Persson F, Baltekin O et al. 2014. Direct measurement of transcription factor dissociation excludes a simple operator occupancy model for gene regulation. Nat. Genet. 46:405–8
    [Google Scholar]
  42. 42.
    Jacob F, Monod J 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318–56
    [Google Scholar]
  43. 43.
    Jones DL, Brewster RC, Phillips R 2014. Promoter architecture dictates cell-to-cell variability in gene expression. Science 346:1533–36
    [Google Scholar]
  44. 44.
    Jones DRH, Ashby MF 2012. Engineering Materials, Vol. 1: An Introduction to Properties, Applications and Design Waltham, MA: Butterworth-Heinemann. 4th ed
  45. 45.
    Kao-Huang Y, Revzin A, Butler AP, O'Conner P, Noble DW, von Hippel PH 1977. Nonspecific DNA binding of genome-regulating proteins as a biological control mechanism: measurement of DNA-bound Escherichia coli lac repressor in vivo. PNAS 74:4228–32
    [Google Scholar]
  46. 46.
    Kepler TB, Elston TC 2001. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J. 81:311636
    [Google Scholar]
  47. 47.
    Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S et al. 2010. EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res. 39:D583–90
    [Google Scholar]
  48. 48.
    Kinney JB, Murugan A, Callan CG, Cox EC 2010. Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence. PNAS 107:9158–63
    [Google Scholar]
  49. 49.
    Ko MS 1991. A stochastic model for gene induction. J. Theor. Biol. 153:181–94
    [Google Scholar]
  50. 50.
    Koshland DE Jr., Nemethy G, Filmer D 1966. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–85
    [Google Scholar]
  51. 51.
    Kosuri S, Goodman DB, Cambray G, Mutalik VK, Gao Y et al. 2013. Composability of regulatory sequences controlling transcription and translation in Escherichia coli. PNAS 110:14024–29
    [Google Scholar]
  52. 52.
    Kuhlman T, Zhang Z, Saier MH Jr., Hwa T 2007. Combinatorial transcriptional control of the lactose operon of Escherichia coli. PNAS 104:6043–48
    [Google Scholar]
  53. 53.
    Kuhlman TE, Cox EC 2013. DNA-binding-protein inhomogeneity in E. coli modeled as biphasic facilitated diffusion. Phys. Rev. E 88:022701
    [Google Scholar]
  54. 54.
    Lässig M 2007. From biophysics to evolutionary genetics: statistical aspects of gene regulation. BMC Bioinform. 8:S7–21
    [Google Scholar]
  55. 55.
    Laub MT, Goulian M 2007. Specificity in two-component signal transduction pathways. Annu. Rev. Genet. 41:121–45
    [Google Scholar]
  56. 56.
    Leung TH, Hoffmann A, Baltimore D 2004. One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. Cell 118:453–64
    [Google Scholar]
  57. 57.
    Li C, Cesbron F, Oehler M, Brunner M, Höfer T 2018. Frequency modulation of transcriptional bursting enables sensitive and rapid gene regulation. Cell Syst. 6:40923.e11
    [Google Scholar]
  58. 58.
    Li GW, Burkhardt D, Gross C, Weissman JS 2014. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell 157:624–35
    [Google Scholar]
  59. 59.
    Little JW, Mount DW 1982. The SOS regulatory system of Escherichia coli. Cell 29:11–22
    [Google Scholar]
  60. 60.
    Lynch M, Hagner K 2015. Evolutionary meandering of intermolecular interactions along the drift barrier. PNAS 112:E30–38
    [Google Scholar]
  61. 61.
    Malpica R, Sandoval GRP, Rodríguez C, Franco B, Georgellis D 2006. Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression. Antioxid. Redox Signal. 8:781–95
    [Google Scholar]
  62. 62.
    Martin RG, Bartlett ES, Rosner JL, Wall ME 2008. Activation of the Escherichia colimarA/soxS/rob regulon in response to transcriptional activator concentration. J. Mol. Biol. 380:278–84
    [Google Scholar]
  63. 63.
    Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR 2009. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324:407–10
    [Google Scholar]
  64. 64.
    Michel D 2010. How transcription factors can adjust the gene expression floodgates. Prog. Biophys. Mol. Biol. 102:16–37
    [Google Scholar]
  65. 65.
    Monod J, Changeux JP, Jacob F 1963. Allosteric proteins and cellular control systems. J. Mol. Biol. 6:306–29
    [Google Scholar]
  66. 66.
    Monod J, Jacob F 1961. General conclusions—teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26:389–401
    [Google Scholar]
  67. 67.
    Muller J, Oehler S, Müller-Hill B 1996. Repression of lac promoter as a function of distance, phase and quality of an auxiliary lac operator. J. Mol. Biol. 257:21–29
    [Google Scholar]
  68. 68.
    Müller-Hill B 1996. The Lac Operon: A Short History of a Genetic Paradigm Berlin: Walter de Gruyter
  69. 69.
    Oehler S, Alberti S, Müller-Hill B 2006. Induction of the lac promoter in the absence of DNA loops and the stoichiometry of induction. Nucleic Acids Res. 34:606–12
    [Google Scholar]
  70. 70.
    Oehler S, Amouyal M, Kolkhof P, von Wilcken Bergmann B, Hill BM 1994. Quality and position of the three lac operators of E. coli define efficiency of repression. EMBO J. 13:3348–55
    [Google Scholar]
  71. 71.
    Oehler S, Eismann ER, Krämer H, Hill BM 1990. The three operators of the lac operon cooperate in repression. EMBO J. 9:973–79
    [Google Scholar]
  72. 72.
    Ogden S, Haggerty D, Stoner CM, Kolodrubetz D, Schleif R 1980. The Echerichia coli L-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation. PNAS 77:3346–50
    [Google Scholar]
  73. 73.
    Overgaard M, Borch J, Gerdes K 2009. RelB and RelE of Escherichia coli form a tight complex that represses transcription via the ribbon-helix-helix motif in RelB. J. Mol. Biol. 394:183–96
    [Google Scholar]
  74. 74.
    Peccoud J, Ycart B 1995. Markovian modeling of gene-product synthesis. Theor. Popul. Biol. 48:222–34
    [Google Scholar]
  75. 75.
    Phillips R 2001. Crystals, Defects and Microstructures Cambridge, UK: Cambridge Univ. Press
  76. 76.
    Phillips R 2015. Napoleon is in equilibrium. Annu. Rev. Condens. Matter Phys. 6:85–111
    [Google Scholar]
  77. 77.
    Poelwijk FJ, de Vos MGJ, Tans SJ 2011. Tradeoffs and optimality in the evolution of gene regulation. Cell 146:462–70
    [Google Scholar]
  78. 78.
    Poelwijk FJ, Heyning PD, de Vos MG, Kiviet DJ, Tans SJ 2011. Optimality and evolution of transcriptionally regulated gene expression. BMC Syst. Biol. 5:128
    [Google Scholar]
  79. 79.
    Ptashne M 2004. A Genetic Switch: Phage Lambda Revisited Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press. 3rd ed
  80. 80.
    Razo-Mejia M, Barnes SL, Belliveau NM, Chure G, Einav T et al. 2018. Tuning transcriptional regulation through signaling: a predictive theory of allosteric induction. Cell Syst. 6:45669.e10
    [Google Scholar]
  81. 81.
    Razo-Mejia M, Boedicker J, Jones D, DeLuna A, Kinney J, Phillips R 2014. Comparison of the theoretical and real-world evolutionary potential of a genetic circuit. Phys. Biol. 11:026005
    [Google Scholar]
  82. 82.
    Record MT Jr., Reznikoff W, Craig M, McQuade K, Schlax P 1996. Escherichia coli RNA polymerase (), promoters, and the kinetics of the steps of transcription initiation. In Escherichia coli and Salmonella Cellular and Molecular Biology FC Neidhardt, R Curtis792821. Washington, DC: ASM Press
    [Google Scholar]
  83. 83.
    Rigden JS 2003. Hydrogen: The Essential Element Cambridge, MA: Harvard Univ. Press
  84. 84.
    Rogers JK, Guzman CD, Taylor ND, Raman S, Anderson K, Church GM 2015. Synthetic biosensors for precise gene control and real-time monitoring of metabolites. Nucleic Acids Res. 43:7648–59
    [Google Scholar]
  85. 85.
    Rohlhill J, Sandoval NR, Papoutsakis ET 2017. Sort-Seq approach to engineering a formaldehyde-inducible promoter for dynamically regulated Escherichia coli growth on methanol. ACS Synth. Biol. 6:1584–95
    [Google Scholar]
  86. 86.
    Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB 2005. Gene regulation at the single-cell level. Science 307:1962–65
    [Google Scholar]
  87. 87.
    Ruiz N, Silhavy TJ 2005. Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr. Opin. Microbiol. 8:122–26
    [Google Scholar]
  88. 88.
    Runzi W, Matzura H 1976. In vivo distribution of ribonucleic acid polymerase between cytoplasm and nucleoid in Escherichia coli. J. Bacteriol. 125:1237–39
    [Google Scholar]
  89. 89.
    Rydenfelt M, Garcia HG, Cox RS III, Phillips R 2014. The influence of promoter architectures and regulatory motifs on gene expression in Escherichia coli. PLOS ONE 9:e114347
    [Google Scholar]
  90. 90.
    Saiz L, Rubi JM, Vilar JM 2005. Inferring the in vivo looping properties of DNA. PNAS 102:17642–45
    [Google Scholar]
  91. 91.
    Saiz L, Vilar JM 2008. Ab initio thermodynamic modeling of distal multisite transcription regulation. Nucleic Acids Res. 36:726–31
    [Google Scholar]
  92. 92.
    Sanchez A, Kondev J 2008. Transcriptional control of noise in gene expression. PNAS 105:5081–86
    [Google Scholar]
  93. 93.
    Schleif R 2010. AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action. FEMS Microbiol. Rev. 34:779–96
    [Google Scholar]
  94. 94.
    Schleif R, Lis JT 1975. The regulatory region of the l-arabinose operon: a physical, genetic and physiological study. J. Mol. Biol. 95:417–31
    [Google Scholar]
  95. 95.
    Schmidt A, Kochanowski K, Vedelaar S, Ahrne E, Volkmer B et al. 2016. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotech. 34:104–11
    [Google Scholar]
  96. 96.
    Semsey S, Geanacopoulos M, Lewis DEA, Adhya S 2002. Operator-bound GalR dimers close DNA loops by direct interaction: tetramerization and inducer binding. EMBO J. 21:4349–56
    [Google Scholar]
  97. 97.
    Semsey S, Tolstorukov MY, Virnik K, Zhurkin VB, Adhya S 2004. DNA trajectory in the Gal repressosome. Genes Dev. 18:1898–907
    [Google Scholar]
  98. 98.
    Sengupta AM, Djordjevic M, Shraiman BI 2002. Specificity and robustness in transcription control networks. PNAS 99:2072–77
    [Google Scholar]
  99. 99.
    Sepulveda LA, Xu H, Zhang J, Wang M, Golding I 2016. Measurement of gene regulation in individual cells reveals rapid switching between promoter states. Science 351:1218–22
    [Google Scholar]
  100. 100.
    Setty Y, Mayo AE, Surette MG, Alon U 2003. Detailed map of a cis-regulatory input function. PNAS 100:7702–7
    [Google Scholar]
  101. 101.
    Shahrezaei V, Swain PS 2008. Analytical distributions for stochastic gene expression. PNAS 105:17256–61
    [Google Scholar]
  102. 102.
    Shea MA, Ackers GK 1985. The OR control system of bacteriophage lambda: a physical-chemical model for gene regulation. J. Mol. Biol. 181:211–30
    [Google Scholar]
  103. 103.
    Sherman MS, Cohen BA 2012. Thermodynamic state ensemble models of cis-regulation. PLOS Comput. Biol. 8:e1002407
    [Google Scholar]
  104. 104.
    So LH, Ghosh A, Zong C, Sepulveda LA, Segev R, Golding I 2011. General properties of transcriptional time series in Escherichia coli. Nat. Genet. 43:554–60
    [Google Scholar]
  105. 105.
    Swint-Kruse L, Matthews KS 2009. Allostery in the LacI/GalR family: variations on a theme. Curr. Opin. Microbiol. 12:129–37
    [Google Scholar]
  106. 106.
    Tuğrul M, Paixão T, Barton NH, Tkačik G 2015. Dynamics of transcription factor binding site evolution. PLOS Genet. 11:e1005639
    [Google Scholar]
  107. 107.
    Vilar JM, Guet CC, Leibler S 2003. Modeling network dynamics: the lac operon, a case study. J. Cell Biol. 161:471–76
    [Google Scholar]
  108. 108.
    Vilar JM, Leibler S 2003. DNA looping and physical constraints on transcription regulation. J. Mol. Biol. 331:981–89
    [Google Scholar]
  109. 109.
    Vilar JM, Saiz L 2005. DNA looping in gene regulation: from the assembly of macromolecular complexes to the control of transcriptional noise. Curr. Opin. Genet. Dev. 15:136–44
    [Google Scholar]
  110. 110.
    Vilar JM, Saiz L 2013. Reliable prediction of complex phenotypes from a modular design in free energy space: an extensive exploration of the lac operon. ACS Synth. Biol. 2:576–86
    [Google Scholar]
  111. 111.
    Wanner BL 1993. Gene regulation by phosphate in enteric bacteria. J. Cell Biochem. 51:47–54
    [Google Scholar]
  112. 112.
    Weinert FM, Brewster RC, Rydenfelt M, Phillips R, Kegel WK 2014. Scaling of gene expression with transcription-factor fugacity. Phys. Rev. Lett. 113:258101
    [Google Scholar]
  113. 113.
    Xu H, Sepulveda LA, Figard L, Sokac AM, Golding I 2015. Combining protein and mRNA quantification to decipher transcriptional regulation. Nat. Methods 12:739–42
    [Google Scholar]
  114. 114.
    Yang J, Gunasekera A, Lavoie TA, Jin L, Lewis DEA, Carey J 1996. In vivo and in vitro studies of TrpR-DNA interactions. J. Mol. Biol. 258:37–52
    [Google Scholar]
  115. 115.
    Zeng L, Skinner SO, Zong C, Sippy J, Feiss M, Golding I 2010. Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141:682–91
    [Google Scholar]
  116. 116.
    Zong C, So LH, Sepulveda LA, Skinner SO, Golding I 2010. Lysogen stability is determined by the frequency of activity bursts from the fate-determining gene. Mol. Syst. Biol. 6:440
    [Google Scholar]
  117. 117.
    Zubay G, Schwartz D, Beckwith J 1970. Mechanism of activation of catabolite-sensitive genes: a positive control system. PNAS 66:104–10
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-052118-115525
Loading
/content/journals/10.1146/annurev-biophys-052118-115525
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error