1932

Abstract

Cell signaling controls essentially all cellular processes. While it is often assumed that proteins are the key architects coordinating cell signaling, recent studies have shown more and more clearly that lipids are also involved in signaling processes in a number of ways. Lipids do, for instance, act as messengers, modulate membrane receptor conformation and dynamics, and control membrane receptor partitioning. Further, through structural modifications such as oxidation, the functions of lipids as part of signaling processes can be modified. In this context, in this article we discuss the understanding recently revealed by atomistic and coarse-grained computer simulations of nanoscale processes and underlying physicochemical principles related to lipids’ functions in cellular signaling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-052118-115553
2019-05-06
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/biophys/48/1/annurev-biophys-052118-115553.html?itemId=/content/journals/10.1146/annurev-biophys-052118-115553&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Allhusen JS, Conboy JC 2016. The ins and outs of lipid flip-flop. Acc. Chem. Res. 50:58–65
    [Google Scholar]
  2. 2.
    Aponte-Santamaría C, Briones R, Schenk AD, Walz T, de Groot BL 2012. Molecular driving forces defining lipid positions around aquaporin-0. PNAS 109:9887–92
    [Google Scholar]
  3. 3.
    Baenziger JE, Morris ML, Darsaut TE, Ryan SE 2000. Effect of membrane lipid composition on the conformational equilibria of the nicotinic acetylcholine receptor. J. Biol. Chem. 275:777–84
    [Google Scholar]
  4. 4.
    Balasubramanian K, Schroit AJ 2003. Amino phospholipid asymmetry: a matter of life and death. Annu. Rev. Physiol. 65:701–34
    [Google Scholar]
  5. 5.
    Benned-Jensen T, Norn C, Laurent S, Madsen CM, Larsen HM et al. 2012. Molecular characterization of oxysterol binding to the Epstein-Barr virus-induced gene 2 (GPR183). J. Biol. Chem. 287:35470–83
    [Google Scholar]
  6. 6.
    Bennett WFD, Hong CK, Wang Y, Tieleman DP 2016. Antimicrobial peptide simulations and the influence of force field on the free energy for pore formation in lipid bilayers. J. Chem. Theory Comput. 12:4524–33
    [Google Scholar]
  7. 7.
    Bennett WFD, MacCallum JL, Hinner MJ, Marrink SJ, Tieleman DP 2009. Molecular view of cholesterol flip-flop and chemical potential in different membrane environments. J. Am. Chem. Soc. 131:12714–20
    [Google Scholar]
  8. 8.
    Bethel NP, Grabe M 2016. Atomistic insight into lipid translocation by a TMEM16 scramblase. PNAS 113:14049–54
    [Google Scholar]
  9. 9.
    Bevers EM, Williamson PL 2016. Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane. Physiol. Rev. 96:605–45
    [Google Scholar]
  10. 10.
    Boonnoy P, Jarerattanachat V, Karttunen M, Wong-ekkabut J 2015. Bilayer deformation, pores, and micellation induced by oxidized lipids. J. Phys. Chem. Lett. 6:48844–48
    [Google Scholar]
  11. 11.
    Brenna JT, Carlson SE 2014. Docosahexaenoic acid and human brain development: evidence that a dietary supply is needed for optimal development. J. Hum. Evol. 77:99–106
    [Google Scholar]
  12. 12.
    Brunner JD, Lim NK, Schenck S, Duerst A, Dutzler R 2014. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516:207
    [Google Scholar]
  13. 13.
    Bruzzese A, Gil C, Dalton JA, Giraldo J 2018. Structural insights into positive and negative allosteric regulation of a G protein-coupled receptor through protein-lipid interactions. Sci. Rep. 8:4456
    [Google Scholar]
  14. 14.
    Byrne EF, Sircar R, Miller PS, Hedger G, Luchetti G et al. 2016. Structural basis of Smoothened regulation by its extracellular domains. Nature 535:517–22
    [Google Scholar]
  15. 15.
    Caliman AD, Miao Y, McCammon JA 2017. Activation mechanisms of the first sphingosine-1-phosphate receptor. Protein Sci 26:1150–60
    [Google Scholar]
  16. 16.
    Casiraghi M, Damian M, Lescop E, Point E, Moncoq K et al. 2016. Functional modulation of a G protein-coupled receptor conformational landscape in a lipid bilayer. J. Am. Chem. Soc. 138:11170–75
    [Google Scholar]
  17. 17.
    Choubey A, Kalia RK, Malmstadt N, Nakano A, Vashishta P 2013. Cholesterol translocation in a phospholipid membrane. Biophys. J. 104:2429–36
    [Google Scholar]
  18. 18.
    Collins MD, Keller SL 2008. Tuning lipid mixtures to induce or suppress domain formation across leaflets of unsupported asymmetric bilayers. PNAS 105:124–28
    [Google Scholar]
  19. 19.
    Dawaliby R, Trubbia C, Delporte C, Masureel M, van Antwerpen P et al. 2016. Allosteric regulation of G protein–coupled receptor activity by phospholipids. Nat. Chem. Biol. 12:35–39
    [Google Scholar]
  20. 20.
    Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC et al. 2011. Activation mechanism of the β2-adrenergic receptor. PNAS 108:18684–89
    [Google Scholar]
  21. 21.
    Ernst OP, Menon AK 2015. Phospholipid scrambling by rhodopsin. Photochem. Photobiol. Sci. 14:1922–31
    [Google Scholar]
  22. 22.
    Fadeel B, Xue D 2009. The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit. Rev. Biochem. Mol. Biol. 44:264–77
    [Google Scholar]
  23. 23.
    Fernandis AZ, Wenk MR 2007. Membrane lipids as signaling molecules. Curr. Opin. Lipidol. 18:121–28
    [Google Scholar]
  24. 24.
    Garrec J, Monari A, Assfeld X, Mir LM, Tarek M 2014. Lipid peroxidation in membranes: The peroxyl radical does not “float. J. Phys. Chem. Lett. 5:1653–58
    [Google Scholar]
  25. 25.
    Gimpl G 2016. Interaction of G protein coupled receptors and cholesterol. Chem. Phys. Lipids 199:61–73
    [Google Scholar]
  26. 26.
    Gimpl G, Burger K, Fahrenholz F 1997. Cholesterol as modulator of receptor function. Biochemistry 36:10959–74
    [Google Scholar]
  27. 27.
    Goren MA, Morizumi T, Menon I, Joseph JS, Dittman JS 2014. Constitutive phospholipid scramblase activity of a G protein-coupled receptor. Nat. Commun. 5:5115
    [Google Scholar]
  28. 28.
    Guixà-González R, Albasanz JL, Rodriguez-Espigares I, Pastor M, Sanz F et al. 2017. Membrane cholesterol access into a G-protein-coupled receptor. Nat. Commun. 8:14505
    [Google Scholar]
  29. 29.
    Gurtovenko AA, Anwar J, Vattulainen I 2010. Defect-mediated trafficking across cell membranes: insights from in silico modeling. Chem. Rev. 110:6077–103
    [Google Scholar]
  30. 30.
    Gurtovenko AA, Vattulainen I 2007. Molecular mechanism for lipid flip-flops. J. Phys. Chem. B 111:13554–59
    [Google Scholar]
  31. 31.
    Hansen SB, Tao X, MacKinnon R 2011. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477:495–98
    [Google Scholar]
  32. 32.
    Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola V-P et al. 2008. A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16:897–905
    [Google Scholar]
  33. 33.
    Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL et al. 2012. Crystal structure of a lipid G protein–coupled receptor. Science 335:851–55
    [Google Scholar]
  34. 34.
    Hedger G, Sansom MS 2016. Lipid interaction sites on channels, transporters and receptors: recent insights from molecular dynamics simulations. Biochem. Biophys. Acta 1858:2390–400
    [Google Scholar]
  35. 35.
    Hu Q, Joshi RP, Schoenbach KH 2005. Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. Phys. Rev. E 72:031902
    [Google Scholar]
  36. 36.
    Kaszuba K, Grzybek M, Orłowski A, Danne R, Róg T et al. 2015. N-glycosylation as determinant of epidermal growth factor receptor conformation in membranes. PNAS 112:4334–39
    [Google Scholar]
  37. 37.
    Knobloch JJ, Nelson AR, Köper I, James M, McGillivray DJ 2015. Oxidative damage to biomimetic membrane systems: in situ Fe (II)/ascorbate initiated oxidation and incorporation of synthetic oxidized phospholipids. Langmuir 31:12679–87
    [Google Scholar]
  38. 38.
    Kobayashi T, Menon AK 2018. Transbilayer lipid asymmetry. Curr. Biol. 28:R386–91
    [Google Scholar]
  39. 39.
    Kol MA, van Laak AN, Rijkers DT, Killian JA, de Kroon AI, de Kuijff B 2003. Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition. Biochemistry 42:231–37
    [Google Scholar]
  40. 40.
    Kulig W, Cwiklik L, Jurkiewicz P, Rog T, Vattulainen I 2016. Cholesterol oxidation products and their biological importance. Chem. Phys. Lipids 199:144–60
    [Google Scholar]
  41. 41.
    Kulig W, Mikkolainen H, Olżyńska A, Jurkiewicz P, Cwiklik L et al. 2018. Bobbing of oxysterols: molecular mechanism for translocation of tail-oxidized sterols through biological membranes. J. Phys. Chem. Lett. 9:1118–23
    [Google Scholar]
  42. 42.
    Kulig W, Olżyńska A, Jurkiewicz P, Kantola AM, Komulainen S et al. 2015. Cholesterol under oxidative stress—how lipid membranes sense oxidation as cholesterol is being replaced by oxysterols. Free Radic. Biol. Med. 84:30–41
    [Google Scholar]
  43. 43.
    Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT et al. 2014. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510:172–75
    [Google Scholar]
  44. 44.
    Landreh M, Marty MT, Gault J, Robinson CV 2016. A sliding selectivity scale for lipid binding to membrane proteins. Curr. Opin. Struct. Biol. 39:54–60
    [Google Scholar]
  45. 45.
    Lange Y, Ye J, Rigney M, Steck TL 1999. Regulation of endoplasmic reticulum cholesterol by plasma membrane cholesterol. J. Lipid Res. 40:2264–70
    [Google Scholar]
  46. 46.
    Lange Y, Ye J, Strebel F 1995. Movement of 25-hydroxycholesterol from the plasma membrane to the rough endoplasmic reticulum in cultured hepatoma cells. J. Lipid Res. 36:1092–97
    [Google Scholar]
  47. 47.
    Langer M, Sah R, Veser A, Gütlich M, Langosch D 2013. Structural properties of model phosphatidylcholine flippases. Chem. Biol. 20:63–72
    [Google Scholar]
  48. 48.
    Latorraca NR, Venkatakrishnan AJ, Dror RO 2016. GPCR dynamics: structures in motion. Chem. Rev. 117:139–55
    [Google Scholar]
  49. 49.
    Leontiadou H, Mark AE, Marrink SJ 2006. Antimicrobial peptides in action. J. Am. Chem. Soc. 128:12156–61
    [Google Scholar]
  50. 50.
    Lingwood D, Binnington B, Rog T, Vattulainen I, Grzybek M et al. 2011. Cholesterol modulates glycolipid conformation and receptor activity. Nat. Chem. Biol. 7:260–62
    [Google Scholar]
  51. 51.
    Lis M, Wizert A, Przybylo M, Langner M, Swiatek J et al. 2011. The effect of lipid oxidation on the water permeability of phospholipids bilayers. Phys. Chem. Chem. Phys. 13:17555–63
    [Google Scholar]
  52. 52.
    Liu J, Brown KL, Conboy JC 2013. The effect of cholesterol on the intrinsic rate of lipid flip–flop as measured by sum-frequency vibrational spectroscopy. Faraday Disc 161:45–61
    [Google Scholar]
  53. 53.
    Manna M, Javanainen M, Monne HM-S, Gabius H-J, Rog T, Vattulainen I 2017. Long-chain GM1 gangliosides alter transmembrane domain registration through interdigitation. Biochim. Biophys. Acta 1859:870–78
    [Google Scholar]
  54. 54.
    Manna M, Kulig W, Javanainen M, Tynkkynen J, Hensen U et al. 2015. How to minimize artifacts in atomistic simulations of membrane proteins, whose crystal structure is heavily engineered: β2-adrenergic receptor in the spotlight. J. Chem. Theory Comput. 11:3432–45
    [Google Scholar]
  55. 55.
    Manna M, Mukhopadhyay C 2011. Cholesterol driven alteration of the conformation and dynamics of phospholamban in model membranes. Phys. Chem. Chem. Phys. 13:20188–98
    [Google Scholar]
  56. 56.
    Manna M, Niemelä M, Tynkkynen J, Javanainen M, Kulig W et al. 2016. Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol. eLife 5:e18432
    [Google Scholar]
  57. 57.
    Manna M, Róg T, Vattulainen I 2014. The challenges of understanding glycolipid functions: An open outlook based on molecular simulations. Biochim. Biophys. Acta 1841:1130–45
    [Google Scholar]
  58. 58.
    May S. 2009. Trans-monolayer coupling of fluid domains in lipid bilayers. Soft Matter 5:3148–56
    [Google Scholar]
  59. 59.
    Meaney S, Bodin K, Diczfalusy U, Bjorkhem I 2002. On the rate of translocation in vitro and kinetics in vivo of the major oxysterols in human circulation: critical importance of the position of the oxygen function. J. Lipid Res. 43:2130–35
    [Google Scholar]
  60. 60.
    Mendes Ferreira T, Sood R, Bärenwald R, Carlström G, Topgaard D et al. 2016. Acyl chain disorder and azelaoyl orientation in lipid membranes containing oxidized lipids. Langmuir 32:6524–33
    [Google Scholar]
  61. 61.
    Menon I, Huber T, Sanyal S, Banerjee S, Barré P et al. 2011. Opsin is a phospholipid flippase. Curr. Biol. 21:149–53
    [Google Scholar]
  62. 62.
    Michailidis IE, Rusinova R, Georgakopoulos A, Chen Y, Iyengar R et al. 2011. Phosphatidylinositol-4,5-bisphosphate regulates epidermal growth factor receptor activation. Pflügers Arch 461:387–97
    [Google Scholar]
  63. 63.
    Morra G, Razavi AM, Pandey K, Weinstein H, Menon AK, Khelashvili G 2018. Mechanisms of lipid scrambling by the G protein-coupled receptor opsin. Structure 26:356–67
    [Google Scholar]
  64. 64.
    Muller CP, Reichel M, Muhle C, Rhein C, Gulbins E, Komhuber J 2015. Brain membrane lipids in major depression and anxiety disorders. Biochim. Biophys. Acta 1851:1051–65
    [Google Scholar]
  65. 65.
    Muth S, Fries A, Gimpl G 2011. Cholesterol-induced conformational changes in the oxytocin receptor. Biochem. J. 437:541–53
    [Google Scholar]
  66. 66.
    Nagata S, Suzuki J, Segawa K, Fujii T 2016. Exposure of phosphatidylserine on the cell surface. Cell Death Differ 23:952–61
    [Google Scholar]
  67. 67.
    Nakao H, Hayashi C, Ikeda K, Saito H, Nagao H, Nakano M 2018. Effect of hydrophilic residues and hydrophobic length on flip-flop promotion by transmembrane peptides. J. Phys. Chem. B 122:4318–24
    [Google Scholar]
  68. 68.
    Neale C, Herce HD, Pomès R, García AE 2015. Can specific protein-lipid interactions stabilize an active state of the beta 2 adrenergic receptor. ? Biophys. J. 109:1652–62
    [Google Scholar]
  69. 69.
    Neto AJ, Cordeiro RM 2016. Molecular simulations of the effects of phospholipid and cholesterol peroxidation on lipid membrane properties. Biochim. Biophys. Acta 1858:2191–98
    [Google Scholar]
  70. 70.
    Neuvonen M, Manna M, Mokkila S, Javanainen M, Rog T et al. 2014. Enzymatic oxidation of cholesterol: properties and functional effects of cholestenone in cell membranes. PLOS ONE 9:e103743
    [Google Scholar]
  71. 71.
    Nickels JD, Smith JC, Cheng X 2015. Lateral organization, bilayer asymmetry, and inter-leaflet coupling of biological membranes. Chem. Phys. Lipids 192:87–99
    [Google Scholar]
  72. 72.
    Oates J, Watts A 2011. Uncovering the intimate relationship between lipids, cholesterol and GPCR activation. Curr. Opin. Struct. Biol. 21:802–7
    [Google Scholar]
  73. 73.
    Okazaki Y, Saito K 2014. Roles of lipids as signaling molecules and mitigators during stress response in plants. Plant J 79:584–96
    [Google Scholar]
  74. 74.
    Olsen BN, Schlesinger PH, Baker NA 2009. Perturbations of membrane structure by cholesterol and cholesterol derivatives are determined by sterol orientation. J. Am. Chem. Soc. 131:4854–65
    [Google Scholar]
  75. 75.
    Owen MC, Kulig W, Rog T, Vattulainen I, Strodel B 2018. Cholesterol protects the oxidized lipid bilayer from water injury: an all-atom molecular dynamics study. J. Membr. Biol. 17:1–4
    [Google Scholar]
  76. 76.
    Paila YD, Chattopadhyay A 2009. The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction. ? Glycoconj. J. 26:711–20
    [Google Scholar]
  77. 77.
    Paila YD, Jindal E, Goswami SK, Chattopadhyay A 2011. Cholesterol depletion enhances adrenergic signaling in cardiac myocytes. Biochem. Biophys. Acta 1808:461–65
    [Google Scholar]
  78. 78.
    PatrickJ W, Boone CD, Liu W, Conover GM, Liu Y et al. 2018. Allostery revealed within lipid binding events to membrane proteins. PNAS 115:2976–81
    [Google Scholar]
  79. 79.
    Periole X. 2016. Interplay of G protein-coupled receptors with the membrane: insights from supra-atomic coarse grain molecular dynamics simulations. Chem. Rev. 117:156–85
    [Google Scholar]
  80. 80.
    Perlmutter JD, Sachs JN 2011. Interleaflet interaction and asymmetry in phase separated lipid bilayers: molecular dynamics simulations. J. Am. Chem. Soc. 133:6563–77
    [Google Scholar]
  81. 81.
    Pontier SM, Percherancier Y, Galandrin S, Breit A, Galés C, Bouvier M 2008. Cholesterol-dependent separation of the β2-adrenergic receptor from its partners determines signaling efficacy: insight into nanoscale organization of signal transduction. J. Biol. Chem. 283:24659–72
    [Google Scholar]
  82. 82.
    Pucadyil TJ, Chattopadhyay A 2006. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog. Lipid Res. 45:295–333
    [Google Scholar]
  83. 83.
    Razzokov J, Yusupov M, Vanuytsel S, Neyts EC, Bogaerts A 2017. Phosphatidylserine flip-flop induced by oxidation of the plasma membrane: a better insight by atomic scale modeling. Plasma Processes Polym 14:e1700013
    [Google Scholar]
  84. 84.
    Rissanen S, Grzybek M, Orlowski A, Rog T, Cramariuc O et al. 2017. Phase partitioning of GM1 and its bodipy-labeled analog determine their different binding to Cholera Toxin. Front. Physiol. 8:252
    [Google Scholar]
  85. 85.
    Róg T, Orłowski A, Llorente A, Skotland T, Sylvänne T et al. 2016. Interdigitation of long-chain sphingomyelin induces coupling of membrane leaflets in a cholesterol dependent manner. Biochim. Biophys. Acta 1858:281–88
    [Google Scholar]
  86. 86.
    Róg T, Stimson LM, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M 2008. Replacing the cholesterol hydroxyl group with the ketone group facilitates sterol flip-flop and promotes membrane fluidity. J. Phys. Chem. B 112:1946–52
    [Google Scholar]
  87. 87.
    Runas KA, Malmstadt N 2015. Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers. Soft Matter 11:499–505
    [Google Scholar]
  88. 88.
    Salas-Estrada LA, Leioatts N, Romo TD, Grossfield A 2018. Lipids alter rhodopsin function via ligand-like and solvent-like interactions. Biophys. J. 114:355–67
    [Google Scholar]
  89. 89.
    Sapay N, Bennett WD, Tieleman DP 2009. Thermodynamics of flip-flop and desorption for a systematic series of phosphatidylcholine lipids. Soft Matter 5:3295–302
    [Google Scholar]
  90. 90.
    Sapay N, Bennett WD, Tieleman DP 2010. Molecular simulations of lipid flip-flop in the presence of model transmembrane helices. Biochemistry 49:7665–73
    [Google Scholar]
  91. 91.
    Sengupta D, Prasanna X, Mohole M, Chattopadhyay A 2018. Exploring GPCR–lipid interactions by molecular dynamics simulations: excitements, challenges and the way forward. J. Phys. Chem. B 122:5727–37
    [Google Scholar]
  92. 92.
    Sensi C, Daniele S, Parravicini C, Zappelli E, Russo V et al. 2014. Oxysterols act as promiscuous ligands of class-A GPCRs: in silico molecular modeling and in vitro validation. Cell. Signal. 26:2614–20
    [Google Scholar]
  93. 93.
    Siani P, de Souza RM, Dias LG, Itri R, Khandelia H 2016. An overview of molecular dynamics simulations of oxidized lipid systems, with a comparison of ELBA and MARTINI force fields for coarse grained lipid simulations. Biochim. Biophys. Acta 1858:2498–511
    [Google Scholar]
  94. 94.
    Swamy M, Beck-Garcia K, Beck-Garcia E, Hartl FA, Morath A et al. 2016. A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity 44:1091–101
    [Google Scholar]
  95. 95.
    Troupiotis-Tsaïlaki A, Zachmann J, González-Gil I, Gonzalez A, Ortega-Gutiérrez S et al. 2017. Ligand chain length drives activation of lipid G protein-coupled receptors. Sci. Rep. 7:2020
    [Google Scholar]
  96. 96.
    van Jaarsveld MT, Houthuijzen JM, Voest EE 2016. Molecular mechanisms of target recognition by lipid GPCRs: relevance for cancer. Oncogene 35:4021–35
    [Google Scholar]
  97. 97.
    van Meer G 2011. Dynamic transbilayer lipid asymmetry. Cold Spring Harb. Perspect. Biol. 3:a004671
    [Google Scholar]
  98. 98.
    van Meer G, Voelker DR, Feigenson GW 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:112–24
    [Google Scholar]
  99. 99.
    Vernier PT, Ziegler MJ, Sun Y, Chang WV, Gundersen MA, Tieleman DP 2006. Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. J. Am. Chem. Soc. 128:6288–89
    [Google Scholar]
  100. 100.
    Volinsky R, Cwiklik L, Jurkiewicz P, Hof M, Jungwirth P, Kinnunen PK 2011. Oxidized phosphatidylcholines facilitate phospholipid flip-flop in liposomes. Biophys. J. 101:1376–84
    [Google Scholar]
  101. 101.
    Wong-Ekkabut J, Xu Z, Triampo W, Tang IM, Tieleman DP, Monticelli L 2007. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys. J. 93:4225–36
    [Google Scholar]
  102. 102.
    Yin H, Xu L, Porter NA 2011. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 111:5944–72
    [Google Scholar]
  103. 103.
    Zacharias DA, Violin JD, Newton AC, Tsien RY 2002. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–16
    [Google Scholar]
  104. 104.
    Zocher M, Zhang C, Rasmussen SGF, Kobilka BK, Müller DJ 2012. Cholesterol increases kinetic, energetic, and mechanical stability of the human β2-adrenergic receptor. PNAS 109:E3463–72
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-052118-115553
Loading
/content/journals/10.1146/annurev-biophys-052118-115553
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error